Publications of Joris Van der Jeugt

  1. G. Vanden Berghe, H. De Meyer and J. Van der Jeugt,
  2. Shift operator techniques for the classification of multipole-phonon states. IX. Properties of nonscalar R(3) product operators in the $G_2$ group,
    J. Math. Phys. 22 (1981), 2332-2337.
  3. G. Vanden Berghe, H. De Meyer and J. Van der Jeugt,
  4. A special property of the relations connecting quadratic products of $R_3$ shift operators,
    Lett. Nuovo Cim. 33 (1982), 120-122.
  5. H. De Meyer, G. Vanden Berghe and J. Van der Jeugt,
  6. Shift operator properties in the groups $G_2$ and R(7),
    Physica A 114 (1982), 282-284.
  7. H. De Meyer, G. Vanden Berghe and J. Van der Jeugt,
  8. Shift operator techniques for the classification of multipole-phonon states. X. $P_l^0$ eigenstate and eigenvalue determination in $G_2$,
    J. Math. Phys. 23 (1982), 1223-1227.
  9. J. Van der Jeugt, G. Vanden Berghe and H. De Meyer,
  10. Boson realization of the Lie algebra $F_4$ and non-trivial zeros of 6j-symbols,
    J. Phys. A: Math. Gen. 16 (1983), 1377-1382.
  11. J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  12. Shift operator techniques for the classification of multipole-phonon states. XI. Properties of mixed type quadratic product operators in R(7),
    J. Math. Phys. 24 (1983), 1339-1344.
  13. J. Van der Jeugt, G. Vanden Berghe and H. De Meyer,
  14. Shift operator techniques for the classification of multipole-phonon states. XII. $O_l^0$ eigenstate and eigenvalue determination in R(7),
    J. Math. Phys. 24 (1983), 1345-1349.
  15. J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  16. Nonscalar extension of shift operator techniques for SU(3) in an O(3) basis. III. Shift operators of second degree in the tensor components,
    J. Math. Phys. 24 (1983), 1025-1031.
  17. J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  18. Shift operator approach of the spin-isospin supermultiplet state labelling problem: eigenvalue determination of the $\Omega$ and $\Phi$ labelling operators,
    Ann. of Phys. 147 (1983), 85-139.
  19. G. Vanden Berghe, H. De Meyer and J. Van der Jeugt,
  20. SU(3) in an SO(3) basis: eigenvalue spectrum of the $Q_l^0$ and $O_l^0$ operators,
    Lecture Notes in Physics 180, eds. M. Serdaroglu and E. Ínönü (Springer Verlag, Berlin, 1983) 452-453.
  21. J. Van der Jeugt, G. Vanden Berghe and H. De Meyer,
  22. SU(4) in an SO(4) basis: shift operator technique,
    Lecture Notes in Physics 180, eds. M. Serdaroglu and E. Ínönü (Springer Verlag, Berlin, 1983) 454-455.
  23. H. De Meyer, G. Vanden Berghe and J. Van der Jeugt,
  24. Realizations of $F_4$ in $SO(3)\times SO(3)$ bases and structural zeros of the 6j-symbol,
    J. Math. Phys. 25 (1984), 751-754.
  25. P. De Wilde, H. De Meyer, J. Van der Jeugt and G. Vanden Berghe,
  26. On a class of spinor representations of SO(7),
    J. Math. Phys. 25 (1984), 1195-1198.
  27. J. Van der Jeugt,
  28. A pair of commuting missing label operators for $G\supset(SU(2))^n$,
    J. Math. Phys. 25 (1984), 1219-1221.
  29. J. Van der Jeugt, H. De Meyer, G. Vanden Berghe and P. De Wilde,
  30. On tensor operator realizations of the classical Lie algebras and non-trivial zeros of the 6j-symbol,
    Lecture Notes in Physics 201, eds. G. Denardo, G. Ghirardi and T. Weber (Springer Verlag, Berlin, 1984) 101-105.
  31. P. De Wilde, J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  32. Recent developments on shift operators,
    Lecture Notes in Physics 201, eds. G. Denardo, G. Ghirardi and T. Weber (Springer Verlag, Berlin, 1984) 33-35.
  33. G. Vanden Berghe, H. De Meyer and J. Van der Jeugt,
  34. Tensor operator realization of $E_6$ and structural zeros of the 6j-symbol,
    J. Math. Phys. 25 (1984), 2585-2588.
  35. J. Van der Jeugt and P. De Wilde,
  36. The shift operator technique for SO(7) in an $(SU(2))^3$ basis. I. Theory,
    J. Math. Phys. 25 (1984), 2953-2957.
  37. P. De Wilde and J. Van der Jeugt,
  38. The shift operator technique for SO(7) in an $(SU(2))^3$ basis. II. Applications,
    J. Math. Phys. 25 (1984), 2958-2965.
  39. J. Van der Jeugt,
  40. Finite- and infinite-dimensional representations of the orthosymplectic superalgebra osp(3,2),
    J. Math. Phys. 25 (1984), 3334-3349.
  41. J.W.B. Hughes and J. Van der Jeugt,
  42. A pair of commuting scalars for $G_2\supset SU(2)\times SU(2)$,
    J. Math. Phys. 26 (1985), 894-900.
  43. R.T. Sharp, J. Van der Jeugt and J.W.B. Hughes,
  44. Application of generating function techniques to Lie superalgebras,
    J. Math. Phys. 26 (1985), 901-912.
  45. J. Van der Jeugt,
  46. Irreducible representations of the exceptional Lie superalgebras $D(2,1;\alpha)$,
    J. Math. Phys. 26 (1985), 913-924.
  47. J. Van der Jeugt,
  48. The 2-boson Fock space as a realization of $SU_{2,1}$,
    Lett. Nuovo Cim. 43 (1985), 229-232.
  49. J. Van der Jeugt,
  50. The interacting boson-fermion model and the labelling of states in SO(5),
    J. Phys. A: Math. Gen. 18 (1985), L745-748.
  51. H. De Meyer, G. Vanden Berghe, J. Van der Jeugt and P. De Wilde,
  52. A set of commuting missing label operators for $SO(5)\supset SO(3)$,
    J. Math. Phys. 26 (1985), 2124-2126.
  53. H. De Meyer, G. Vanden Berghe and J. Van der Jeugt,
  54. On the spectra of SO(3) scalars in the enveloping algebra of SU(3)$,
    J. Math. Phys. 26 (1985), 3109-3111.
  55. J. Van der Jeugt,
  56. Generating function techniques for Lie superalgebras,
    Proceedings of the 14th Int. Coll. Group Theoretical Methods in Physics, ed. Y.M. Cho (World Scientific Publishing Company, Singapore, 1986) 226-229.
  57. J. Van der Jeugt,
  58. Contribution to the study of shift operators for algebra-subalgebra structures,
    Academiae Analecta, Klasse der Wetenschappen 48 (1986), 53-76.
  59. J. Van der Jeugt,
  60. Integrity bases for symmetry-conserving higher order interaction terms in the interacting boson model,
    J. Phys. A: Math. Gen. 19 (1986), L463-466.
  61. H. De Meyer, J. Van der Jeugt, G. Vanden Berghe and V.K.B. Kota,
  62. Classification of the dynamical symmetries in the extended interacting boson model,
    J. Phys. A: Math. Gen. 19 (1986), L565-568.
  63. J. Van der Jeugt,
  64. Principal five-dimensional subalgebras of Lie superalgebras,
    J. Math. Phys. 27 (1986), 2842-2847.
  65. H. De Meyer, G. Vanden Berghe, J. Van der Jeugt and J. Vanthournout,
  66. Symmetry preserving higher order interactions in the IBA-model,
    Nuclear Structure, Reactions and Symmetries, eds. R.A. Meyer and V. Paar (World Scientific Publishing Company, Singapore, 1986) 1024-1029.
  67. J. Van der Jeugt,
  68. Structure of atypical representations of the Lie superalgebras sl(m/n),
    J. Phys. A: Math. Gen. 20 (1987), 809-824.
  69. J. Van der Jeugt,
  70. Regular subalgebras of Lie superalgebras and extended Dynkin diagrams,
    J. Math. Phys. 28 (1987), 292-301 and 2254(E).
  71. J. Van der Jeugt and H. De Meyer,
  72. Classification of subalgebras in the symplectic model,
    J. Phys. A: Math. Gen. 20 (1987), L263-267.
  73. J. Van der Jeugt,
  74. Representations of N=2 extended supergravity and unitarity conditions in Osp(N,4),
    J. Math. Phys. 28 (1987), 758-764.
  75. V.K.B. Kota, J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  76. Group theoretical aspects of the extended interacting boson model,
    J. Math. Phys. 28 (1987), 1644-1652.
  77. J. Van der Jeugt,
  78. Unimodal polynomials arising from Lie superalgebras,
    Studies in Appl. Math. 77 (1987), 47-59.
  79. B. Morel, J. Patera, R.T. Sharp and J. Van der Jeugt,
  80. Indices of representations of simple superalgebras,
    J. Math. Phys. 28 (1987), 1673-1682.
  81. J. Van der Jeugt and H. De Meyer,
  82. Generating functions for higher-order interaction terms in the IBA Hamiltonian,
    J. Phys. A: Math. Gen. 20 (1987), 5045-5052.
  83. G. Vanden Berghe, J. Vanthournout, J. Van der Jeugt and H. De Meyer,
  84. Symmetry-conserving higher-order interaction terms in the IBA-model: the O(6) limit,
    Proceedings of the XVth Int. Coll. Group Theoretical Methods in Physics, ed. R. Gilmore (World Scientific Publishing Company, Singapore, 1987) 299-303.
  85. H. De Meyer and J. Van der Jeugt,
  86. Classification of symmetry preserving cubic interactions in the Interacting Boson Model,
    Proceedings of the XVth Int. Coll. Group Theoretical Methods in Physics, ed. R. Gilmore (World Scientific Publishing Company, Singapore, 1987) 304-308.
  87. J. Van der Jeugt,
  88. On principal subalgebras of Lie superalgebras and unimodality,
    Proceedings of the XVth Int. Coll. Group Theoretical Methods in Physics, ed. R. Gilmore (World Scientific Publishing Company, Singapore, 1987) 522-526.
  89. J. Vanthournout, J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  90. Totally symmetric irreducible representations of the group SO(6) in the principal SO(3) subgroup basis,
    J. Math. Phys. 28 (1987), 2529-2539.
  91. J. Van der Jeugt,
  92. Orthosymplectic representations of Lie superalgebras,
    Lett. Math. Phys. 14 (1987), 285-291.
  93. J. Van der Jeugt,
  94. Generating functions for Lie superalgebras,
    Bull. Soc. Math. Belg. XXXIX (1987), 49-61.
  95. J. Vanthournout, J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  96. On the spectrum of a third-order SO(3) scalar in the enveloping algebra of SO(6),
    J. Math. Phys. 29 (1988), 802-805.
  97. J. Van der Jeugt,
  98. Integrity bases for dynamical group chains in the IBA model,
    Symmetries and Nuclear Structure, eds. R.A. Meyer and V. Paar (Harwood Academic Publishers, 1988) 72-78.
  99. J. Van der Jeugt,
  100. Finest grading of the Lie superalgebra gl(n/n),
    J. Phys. A: Math. Gen. 21 (1988), L1163-1167.
  101. J. Van der Jeugt,
  102. Indices for plethysms of representations of Lie superalgebras,
    Lecture Notes in Physics 313, eds. H.D. Doebner, J.D. Hennig and T.D. Palev (Springer-Verlag, Berlin, 1988) 185-189.
  103. J. Vanthournout, J. Van der Jeugt, H. De Meyer and G. Vanden Berghe,
  104. Extension of the interacting boson model: higher order interactions preserving the dynamical symmetry (the O(6) limit),
    Lecture Notes in Physics 313, eds. H.D. Doebner, J.D. Hennig and T.D. Palev (Springer-Verlag, Berlin, 1988) 429-433.
  105. J. Van der Jeugt,
  106. A symmetric basis for the E_6 root system,
    Proc. Kon. Ned. Akad. van Wetensch. A92 (1989), 309-314; also in Indagationes Mathematicae 51 (1989).
  107. J. Van der Jeugt,
  108. Character formulae for irreducible representations of the Lie superalgebras sl(m/n),
    Proceedings of the XVIIth Int. Coll. Group Theoretical Methods in Physics, eds. Y. Saint-Aubin and L. Vinet (World Scientific Publishing Company, Singapore, 1989) 457-461.
  109. J. Patera, R.T. Sharp and J. Van der Jeugt,
  110. New gradings of sl(3,C) representations,
    J. Math. Phys. 30 (1989), 2763-2769.
  111. J. Van der Jeugt, J.W.B. Hughes, R.C. King and J. Thierry-Mieg,
  112. Representations of sl(m/n) and their characters,
    Proceedings of the Annual Seminar of the Canadian Mathematical Society on Lie Theory, Differential Equations and Representation Theory, ed. V. Hussin (Les Publications CRM, Montreal, 1990) 233-252.
  113. J. Van der Jeugt, J.W.B. Hughes, R.C. King, and J. Thierry-Mieg,
  114. Character formulae for irreducible modules of the Lie superalgebras sl(m/n),
    J. Math. Phys. 31 (1990), 2278-2304.
  115. J. Van der Jeugt, J.W.B. Hughes, R.C. King, and J. Thierry-Mieg,
  116. A character formula for singly atypical modules of the Lie superalgebra sl(m/n),
    Commun. Algebra 18 (1990), 3453-3480.
  117. J. Van der Jeugt and V. Fack,
  118. The Pragacz identity and a new algorithm for Littlewood-Richardson coefficients,
    Computers Math. Applic. 21 (1991), 39-47.
  119. J. Van der Jeugt,
  120. Character formulae for the Lie superalgebra C(n),
    Commun. Algebra 19 (1991), 199-222.
  121. J. Van der Jeugt, J.W.B. Hughes, R.C. King and J. Thierry-Mieg,
  122. Atypical modules of the Lie superalgebra gl(m/n),
    Proceedings of XVIIIth Int. Coll. Group Theoretical Methods in Physics, Lecture Notes in Physics 382, eds. V.V. Dodonov and V.I. Man'ko (Springer, Berlin, 1991) 512-515.
  123. R.C. King, J.W.B. Hughes and J. Van der Jeugt,
  124. The composition factors of Kac modules of sl(m/n),
    in Proceedings of XVIIIth Int. Coll. Group Theoretical Methods in Physics, Lecture Notes in Physics 382, eds. V.V. Dodonov and V.I. Man'ko (Springer, Berlin, 1991) 522-526.
  125. J. Van der Jeugt,
  126. An algorithm for characters of Hecke algebras $H_n(q)$ of type $A_{n-1}$,
    J. Phys. A: Math. Gen. 24 (1991), 3719-3725.
  127. J.W.B. Hughes and J. Van der Jeugt,
  128. Unimodal polynomials associated with Lie algebras and Lie superalgebras,
    J. Comp. Appl. Math. 37 (1991), 81-88.
  129. V. Fack and J. Van der Jeugt,
  130. Algorithms for generating labelled graphs with given degree,
    J. Comp. Appl. Math. 37 (1991), 187-194.
  131. K. Srinivasa Rao, J. Van der Jeugt and G. Vanden Berghe,
  132. On the algebra of coupled SO(3) tensors,
    J. Math. Phys. 33 (1992), 15-18.
  133. J.W.B. Hughes, R.C. King and J. Van der Jeugt,
  134. On the composition factors of Kac-modules for the Lie superalgebras sl(m/n),
    J. Math. Phys. 33 (1992), 470-491.
  135. K. Srinivasa Rao, J. Van der Jeugt, J. Raynal, R. Jagannathan and V. Rajeswari,
  136. Group theoretical basis for the terminating ${}_3F_2(1)$ series,
    J. Phys. A: Math. Gen. 25 (1992), 861-876.
  137. J. Van der Jeugt,
  138. On the principal subalgebra of quantum enveloping algebras ${\rm gl}_q(l+1)$,
    J. Phys. A: Math. Gen. 25 (1992), L213-L218.
  139. J. Van der Jeugt,
  140. The q-boson operator algebra and q-Hermite polynomials,
    Lett. Math. Phys. 24 (1992), 267-274.
  141. J. Van der Jeugt,
  142. Tensor product of group representations and structural zeros of Racah coefficients,
    J. Math. Phys. 33 (1992), 2417-2421.
  143. V. Fack, J. Van der Jeugt and K. Srinivasa Rao,
  144. Parallel computation of recoupling coefficients using transputers,
    Comp. Phys. Commun. 71 (1992), 285-304.
  145. J. Van der Jeugt,
  146. Subalgebras of quantum enveloping algebras and applications,
    Anales de Física 1, eds. M.A. del Olmo, M. Santander and J.M. Guilarte (Ciemat/Rsef, Madrid, 1993), 131-134.
  147. J. Van der Jeugt,
  148. Dynamical algebra of the q-deformed three-dimensional oscillator,
    J. Math. Phys. 34 (1993), 1799-1806.
  149. J. Van der Jeugt,
  150. R-matrix formulation of deformed boson algebra,
    J. Phys. A: Math. Gen. 26 (1993), L405-L412.
  151. J. Raynal, J. Van der Jeugt, K. Srinivasa Rao and V. Rajeswari,
  152. On the zeros of 3j coefficients: polynomial degree versus recurrence order,
    J. Phys. A: Math. Gen. 26 (1993), 2607-2623.
  153. K. Srinivasa Rao and J. Van der Jeugt,
  154. Stretched 9-j coefficients and summation theorems,
    J. Phys. A: Math. Gen. 27 (1994), 3083-3090.
  155. J. Van der Jeugt, S.N. Pitre and K. Srinivasa Rao,
  156. Multiple hypergeometric functions and 9-j coefficients,
    J. Phys. A: Math. Gen. 27 (1994), 5251-5264.
  157. J. Van der Jeugt,
  158. Adjoint boson realization of SU(N) and a family of structural zeros of 6j coefficients,
    J. Math. Phys. 35 (1994), 4383-4390.
  159. J. Van der Jeugt,
  160. Quantum algebra embeddings: deforming functionals and algebraic approach,
    Canad. J. Phys. 72 (1994), 519-526.
  161. V. Fack, S.N. Pitre and J. Van der Jeugt,
  162. New efficient programs to calculate general recoupling coefficients. Part I: Generation of a summation formula,
    Comp. Phys. Commun. 83 (1994), 275-292.
  163. T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  164. Finite-dimensional representations of the quantum superalgebra $U_q[gl(m/n)]$ and related q-identities,
    Comm. Math. Phys. 166 (1994), 367-378.
  165. J. Van der Jeugt,
  166. Dimension formulae for the Lie superalgebra sl(m/n),
    J. Math. Phys. 36 (1995), 605-611.
  167. V. Fack, S.N. Pitre and J. Van der Jeugt,
  168. New efficient programs to calculate general recoupling coefficients. Part II: Evaluation of a summation formula,
    Comp. Phys. Commun. 86 (1995), 105-122.
  169. J. Van der Jeugt,
  170. Deformed u(3) algebra in an $so_q(3)$ basis,
    J. Group Theory in Phys. 2 (1994), 153-160.
  171. T.D. Palev and J. Van der Jeugt,
  172. The quantum superalgebra $U_q[osp(1/2n)]$: deformed para-Bose operators and root of unity representations,
    J. Phys. A: Math. Gen. 28 (1995), 2605-2616.
  173. R. Jagannathan and J. Van der Jeugt,
  174. Finite dimensional representations of the quantum group $GL_{p,q}(2)$ using the exponential map from $U_{p,q}(gl(2))$,
    J. Phys. A: Math. Gen. 28 (1995), 2819-2831.
  175. J. Van der Jeugt and R. Jagannathan,
  176. Polynomial deformations of osp(1/2) and generalized parabosons,
    J. Math. Phys. 36 (1995), 4507-4518.
  177. J. Van der Jeugt and R. Jagannathan,
  178. The exponential map for representations of $U_{p,q}(gl(2))$,
    Czech. J. Phys. 46 (1996), 269-275.
  179. K. Srinivasa Rao, S.N. Pitre and J. Van der Jeugt,
  180. The Polynomial zeros of degree 2 of the 9-j coefficient,
    Rev. Mex. Fis. 42 (1996), 179-192.
  181. S.N. Pitre and J. Van der Jeugt,
  182. Transformation and summation formulas for Kampé de Fériet series $F^{0:3}_{1:1}(1,1)$,
    J. Math. Anal. Appl. 202 (1996), 121-132.
  183. J. Van der Jeugt,
  184. On the Lie superalgebra embedding $C(n+1)\supset B(0,n)$ and dimension formulas,
    J. Math. Phys. 37 (1996), 4176-4186.
  185. S.N. Pitre and J. Van der Jeugt,
  186. Wigner's 9-j coefficient and its relation to new summation theorems for hypergeometric series,
    Proceedings of the 4th International Wigner Symposium, Guadalajara, 1995, eds. N.M. Atakishiyev, K.B. Wolf and T.H. Seligman (World Scientific Publishing Company, Singapore, 1996), 270-273.
  187. J. Van der Jeugt,
  188. Generalized parabosons and polynomial deformations of osp(1/2),
    New Trends in Quantum Field Theory, eds. A. Ganchev, R. Kerner and I.T. Todorov (Heron Press, Sofia, 1996), 233-241.
  189. V. Fack, S.N. Pitre and J. Van der Jeugt,
  190. Calculation of general recoupling coefficients using graphical methods,
    Comp. Phys. Commun. 101 (1997), 155-170.
  191. J. Van der Jeugt,
  192. Coupling coefficients for Lie algebra representations and addition formulas for special functions,
    J. Math. Phys. 38 (1997), 2727-2740.
  193. J. Van der Jeugt,
  194. Representation theory and addition/convolution formulae for special functions,
    Proceedings of the Quantum Group Symposium at the XXI International Colloquium on Group Theoretical Methods in Physics, Goslar, 1996, eds. H.-D. Doebner and V.K. Dobrev (Heron Press, Sofia, 1997), 363-369.
  195. J. Van der Jeugt, S.N. Pitre and K. Srinivasa Rao,
  196. Transformation and summation formulas for double hypergeometric series,
    J. Comp. Appl. Math. 83 (1997), 185-193.
  197. J. Van der Jeugt,
  198. The Jordanian deformation of su(2) and Clebsch-Gordan coefficients,
    Czech. J. Phys. 47 (1997), 1283-1289.
  199. J. Van der Jeugt, S.N. Pitre and K. Srinivasa Rao,
  200. Transformation and summation formulas for multiple hypergeometric series, and the 9-j coefficient,
    Special Functions and Differential Equations, eds. K. Srinivasa Rao, R. Jagannathan, G. Vanden Berghe and J. Van der Jeugt (Allied Publishers, New Delhi, 1998), 171-177.
  201. V. Fack, S.N. Pitre and J. Van der Jeugt,
  202. Racah coefficients, general recoupling coefficients and graph theoretical methods,
    Special Functions and Differential Equations, eds. K. Srinivasa Rao, R. Jagannathan, G. Vanden Berghe and J. Van der Jeugt (Allied Publishers, New Delhi, 1998), 178-183.
  203. J. Van der Jeugt,
  204. Orthogonal polynomial identities from tensor product decompositions,
    Special Functions and Differential Equations, eds. K. Srinivasa Rao, R. Jagannathan, G. Vanden Berghe and J. Van der Jeugt (Allied Publishers, New Delhi, 1998), 184-191.
  205. J. Van der Jeugt,
  206. Representations and Clebsch-Gordan coefficients for the Jordanian quantum algebra U_h(sl(2)),
    J. Phys. A: Math. Gen. 31 (1998), 1495-1508.
  207. K. Srinivasa Rao and J. Van der Jeugt,
  208. Transformations of single and double hypergeometric series from the triple sum series for the 9-j coefficient,
    Int. J. Theor. Phys. 37 (1998), 891-905.
  209. H.T. Koelink and J. Van der Jeugt,
  210. Convolutions for orthogonal polynomials from Lie and quantum algebra representations,
    SIAM J. Math. Anal. 29 (1998), 794-822.
  211. J. Van der Jeugt and R. Jagannathan,
  212. Realizations of su(1,1) and U_q(su(1,1)) and generating functions for orthogonal polynomials,
    J. Math. Phys. 39 (1998), 5062-5078.
  213. J. Van der Jeugt and R.B. Zhang,
  214. Characters and composition factor multiplicities for the Lie superalgebra gl(m/n),
    Lett. Math. Phys. 47 (1999), 49-61.
  215. V. Fack, S. Lievens and J. Van der Jeugt,
  216. On bounds for the rotation distance between binary coupling trees,
    Electronic Notes in Discrete Mathematics 3 (1999).
  217. V. Fack, S. Lievens and J. Van der Jeugt,
  218. On rotation distance between binary coupling trees and applications for 3nj-coefficients,
    Comput. Phys. Commun. 119 (1999), 99-114.
  219. H.T. Koelink and J. Van der Jeugt,
  220. Bilinear generating functions for orthogonal polynomials,
    Constr. Approx. 15 (1999), 481-497.
  221. J. Van der Jeugt and K. Srinivasa Rao,
  222. Invariance groups of transformations of basic hypergeometric series,
    J. Math. Phys. 40 (1999), 6692-6700.
  223. T.D. Palev and J. Van der Jeugt,
  224. Fock representations of the Lie superalgebra q(n+1).
    J. Phys. A: Math. Gen. 33 (2000), 2527-2544.
  225. T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  226. Fock representations of the superalgebra sl(n+1|m), its quantum analogue Uq[sl(n+1|m)] and related quantum statistics.
    J. Phys. A: Math. Gen. 33 (2000), 2545-2553.
  227. J. Van der Jeugt,
  228. Hypergeometric series related to the 9-j coefficient of su(1,1).
    J. Comp. Appl. Math. 118 (2000), 337-351.
  229. T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  230. A new description of the quantum superalgebra Uq[sl(n+1|m)] and related Fock representations.
    in Quantum Theory and Symmetries, Proceedings of the International Symposium. Eds. H.-D. Doebner, J.-D. Hennig, W. Lucke and V.K. Dobrev (World Scientific, Singapore, 2000), 437-441.
  231. N. Debergh and J. Van der Jeugt,
  232. Realizations of the Lie superalgebra q(2) and applications.
    J. Phys. A: Math. Gen. 34 (2001), 8119-8133.
  233. S. Lievens and J. Van der Jeugt,
  234. Transformation formulas for double hypergeometric series related to 9-j coefficients and their basic analogues.
    J. Math. Phys. 42 (2001), 5417-5430.
  235. A. Jellal, T.D. Palev and J. Van der Jeugt,
  236. Macroscopic properties of A-statistics.
    J. Phys. A: Math. Gen. 34 (2001), 10179-10199.
  237. J. Van der Jeugt,
  238. The invariance groups of certain single and double hypergeometric series.
    in Proceedings of the Second International Conference of the Society for Special Functions and their Applications, Lucknow, India, 2001. Eds. R.Y. Denis and M.A. Pathan (SSFA, Chennai, 2001), 43-57.
  239. J. Van der Jeugt,
  240. Transformation formula for a double Clausenian hypergeometric series, its q-analogue, and its invariance group.
    J. Comp. Appl. Math. 139 (2002), 65-73.
  241. V. Fack, S. Lievens and J. Van der Jeugt,
  242. On the diameter of the rotation graph of binary coupling trees.
    Discrete Mathematics 245 (2002), 1-18.
  243. T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  244. Jacobson generators of the quantum superalgebra U_q[sl(n+1|m)] and Fock representations.
    J. Math. Phys. 43 (2002), 1646-1663.
  245. T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  246. Jacobson generators of (quantum) sl(n+1|m). Related statistics.
    in Proceedings of Institute of Mathematics of NAS of Ukraine, volume 43. Eds. A.G. Nikitin, V.M. Boyko and R.O. Popovych (Institute of Mathematics, Kyiv, 2002; ISBN 966-02-2488-5), 478-485.
  247. S. Lievens and J. Van der Jeugt,
  248. 3nj-coefficients of su(1,1) as connection coefficients between orthogonal polynomials in n variables.
    J. Math. Phys. 43 (2002), 3824-3849.
  249. T.D. Palev and J. Van der Jeugt,
  250. Jacobson generators, Fock representations and statistics of sl(n+1).
    J. Math. Phys. 43 (2002), 3850-3873.
  251. T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  252. Deformed Jacobson generators of the algebra U_q[sl(n+1)] and their Fock representations.
    in Proceedings of the IInd International Symposium Quantum Theory and Symmetries. Eds. E. Kapuscik and A. Horzela (World Scientific, Singapore, 2002; ISBN 981-02-4887-3), 521-526.
  253. R.C. King, T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  254. The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator.
    J. Phys. A: Math. Gen. 36 (2003), 4337-4362.
  255. J. Van der Jeugt,
  256. 3nj-Coefficients and orthogonal polynomials of hypergeometric type.
    Lecture Notes in Mathematics, vol. 1817: Orthogonal Polynomials and Special Functions. Eds. Erik Koelink and Walter Van Assche (Springer, Berlin, 2003).
  257. T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  258. Microscopic and macroscopic properties of A-superstatistics.
    J. Phys. A: Math. Gen. 36 (2003), 7093-7112.
  259. E.M. Moens and J. Van der Jeugt,
  260. A determinantal formula for supersymmetric Schur polynomials.
    Journal of Algebraic Combinatorics 17 (2003), 283-307.
  261. W. Van Assche, G. Vanden Berghe and J. Van der Jeugt,
  262. K. Srinivasa Rao and his work.
    J. Comp. Appl. Math. 160 (2003), 1-8.
  263. S. Lievens and J. Van der Jeugt,
  264. Realizations of coupled vectors in the tensor product representations of su(1,1) and su(2).
    J. Comp. Appl. Math. 160 (2003), 191-208.
  265. R.C. King, T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
  266. A non-commutative n-particle 3D Wigner quantum oscillator.
    J. Phys. A: Math. Gen. 36 (2003), 11999-12019.
  267. S. Lievens and J. Van der Jeugt,
  268. Multivariable orthogonal polynomials associated with tensor products of the oscillator algebra b(1).
    J. Math. Phys. 44 (2003), 6179-6194.
  269. T.D. Palev and J. Van der Jeugt,
  270. Quasiboson representations of sl(n+1) and generalized quantum statistics.
    Proceedings of the XXIII International Colloquium on Group Theoretical Methods in Physcis, vol. 1, p. 91-98.
    Eds. A.N. Sissakian, G.S. Pogosyan, L.G. Mardoyan (JINR Publishing Department, Dubna, 2002; ISBN 5-85165-695-6)
  271. T.D. Palev and J. Van der Jeugt, 
    Macroscopic properties of A-statistics and A-superstatistics
    in Group 24: Physical and mathematical aspects of symmetries (Institute of Physics Conference Series no. 173). Eds. J.P. Gazeau, R. Kerner, J.-P. Antoine, S. Métens and J.-Y. Thibon (IOP Publishing, Bristol, 2003; ISBN 0 7503 0933 4), 421-424.
  272. E.M. Moens and J. Van der Jeugt,
    On dimension formulas for gl(m|n) representations.
    J. Lie Theory 14 (2004), 523-535.
  273. E.M. Moens and J. Van der Jeugt,
    On characters and dimension formulas for representations of the Lie superalgebra gl(m|n).
    in: Lie Theory and Its Applications in Physics V. Eds. H.-D. Doebner and V.K. Dobrev (World Scientific, Singapore, 2004; ISBN 981-238-936-9), 64-73.
  274. R.C. King, T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
    On the n-Particle Wigner Quantum Oscillator: Noncommutative Coordinates and Particle Localisation.
    in: Lie Theory and Its Applications in Physics V. Eds. H.-D. Doebner and V.K. Dobrev (World Scientific, Singapore, 2004; ISBN 981-238-936-9), 327-341.
  275. E.M. Moens and J. Van der Jeugt,
    A character formula for atypical critical gl(m|n) representations labelled by composite partitions.
    J. Phys. A: Math. Gen. 37 (2004), 12019-12039.
  276. S. Lievens, K. Srinivasa Rao and J. Van der Jeugt,
    The finite group of the Kummer solutions.
    Integral Transform Spec. Funct. 16 (2005), 153-158.
  277. N.I. Stoilova and J. Van der Jeugt,
    A classification of generalized quantum statistics associated with classical Lie algebras.
    J. Math. Phys. 46 (2005), 033501 (16 pp).
  278. N.I. Stoilova and J. Van der Jeugt,
    Lie algebraic generalization of quantum statistics.
    in: Group Theoretical Methods in Physics. Institute of Physics Conference Series 185. Eds. G.S. Pogosyan, L.E. Vicent and K.B. Wolf (IOP Publishing, Bristol, 2005; ISBN 0-7503-1008-1), 509-514.
  279. R.C. King, T.D. Palev, N.I. Stoilova and J. Van der Jeugt,
    The N-particle Wigner Quantum Oscillator: non-commutative coordinates and physical properties.
    in: Group Theoretical Methods in Physics. Institute of Physics Conference Series 185. Eds. G.S. Pogosyan, L.E. Vicent and K.B. Wolf (IOP Publishing, Bristol, 2005; ISBN 0-7503-1008-1), 545-550.
  280. N.I. Stoilova and J. Van der Jeugt,
    Solutions of the compatibility conditions for a Wigner quantum oscillator.
    J. Phys. A: Math. Gen. 38 (2005), 9681-9687.
  281. N.I. Stoilova and J. Van der Jeugt,
    A classification of generalized quantum statistics associated with basic classical Lie superalgebras.
    J. Math. Phys. 46 (2005), 113504 (22 pp).
  282. N.I. Stoilova and J. Van der Jeugt,
    All fundamental fermions fit inside one su(1|5) irreducible representation.
    Int. J. Theor. Phys. 44 (2005), 1157-1165.
  283. R.C. King, N.I. Stoilova and J. Van der Jeugt,
    Representations of the Lie superalgebra gl(1|n) in a Gel'fand-Zetlin basis and Wigner quantum oscillators.
    J. Phys. A: Math. Gen. 39 (2006), 5763-5785.
  284. S. Lievens and J. Van der Jeugt,
    Invariance groups of three term transformations for basic hypergeometric series.
    J. Comp. Appl. Math. 197 (2006), 1-14.
  285. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    Harmonic oscillators coupled by springs: Discrete solutions as a Wigner quantum system.
    J. Math. Phys. 47 (2006), 113504 (23 pp).
  286. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    On the eigenvalue problem for arbitrary odd elements of the Lie superalgebra gl(1|n) and applications.
    J. Phys. A: Math. Theor. 40 (2007), 3869-3888.
  287. E.M. Moens and J. Van der Jeugt,
    Composite supersymmetric S-functions and characters of gl(m|n) representations.
    Bulg. J. Phys. 33 (s2) (2006), 251-268.
  288. N.I. Stoilova and J. Van der Jeugt,
    Lie superalgebraic framework for generalization of quantum statistics.
    Bulg. J. Phys. 33 (s2) (2006), 292-300.
  289. N.I. Stoilova and J. Van der Jeugt,
    A classification of generalized quantum statistics associated with the exceptional Lie (super)algebras.
    J. Math. Phys. 48 (2007), 043504 (18 pp).
  290. E.I. Jafarov, S. Lievens, S.M. Nagiyev and J. Van der Jeugt,
    The Wigner function of a q-deformed harmonic oscillator model.
    J. Phys. A: Math. Theor. 40 (2007), 5427-5441.
  291. S. Lievens and J. Van der Jeugt,
    Symmetry groups of Bailey's transformations for 10-Phi-9-series.
    J. Comp. Appl. Math. 206 (2007), 498-519.
  292. N.I. Stoilova and J. Van der Jeugt,
    The parafermion Fock space and explicit so(2n+1) representations.
    J. Phys. A: Math. Theor. 41 (2008), 075202 (13 pp).
  293. E. Jafarov, S. Lievens and J. Van der Jeugt,
    The Wigner distribution function for the one-dimensional parabose oscillator.
    J. Phys. A: Math. Theor. 41 (2008), 235301 (18 pp).
  294. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    Unitary representations of the Lie superalgebra osp(1|2n) and parabosons.
    Bulg. J. Phys. 35 (s1) (2008), 403-414.
  295. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    A class of unitary irreducible representations of the Lie superalgebra osp(1|2n).
    J. Gen. Lie Theory Appl. 2 (2008), 206-210.
  296. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    Harmonic oscillator chains as Wigner Quantum Systems: periodic and fixed wall boundary conditions in gl(1|n) solutions.
    J. Math. Phys. 49 (2008), 073502 (22 pp).
  297. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    The paraboson Fock space and unitary irreducible representations of the Lie superalgebra osp(1|2n).
    Commun. Math. Phys. 281 (2008), 805-826.
  298. S. Lievens and J. Van der Jeugt,
    Spectrum generating functions for non-canonical quantum oscillators.
    J. Phys. A: Math. Theor. 41 (2008), 355204 (20 pp).
  299. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    A linear chain of interacting harmonic oscillators: solutions as a Wigner Quantum System.
    J. Phys: Conf. Series 128 (2008), 012028 (11 pp).
  300. N.I. Stoilova and J. Van der Jeugt,
    Algebraic generalization of quantum statistics.
    J. Phys: Conf. Series 128 (2008), 012061 (13 pp).
  301. R. Chakrabarti, N.I. Stoilova and J. Van der Jeugt,
    Representations of the orthosymplectic Lie superalgebra osp(1|4) and paraboson coherent states.
    J. Phys. A: Math. Theor. 42 (2009), 085207 (16 pp).
  302. G. Regniers and J. Van der Jeugt,
    Analytically solvable Hamiltonians for quantum systems with a nearest-neighbour interaction.
    J. Phys. A: Math. Theor. 42 (2009), 125301 (16 pp).
  303. N.I. Stoilova and J. Van der Jeugt,
    Parafermions, Parabosons and Representations of so(infinity) and osp(1|infinity).
    Intern. J. Math. 20 (2009), 693-715.
  304. G. Regniers and J. Van der Jeugt,
    Wigner quantization of Hamiltonians describing harmonic oscillators coupled by a general interaction matrix.
    SIGMA 5 (2009), 106, (17 pp).
  305. R. Chakrabarti and J. Van der Jeugt,
    Quantum communication through a spin chain with interaction determined by a Jacobi matrix.
    J. Phys. A: Math. Theor. 43 (2010), 085302 (20 pp).
  306. S. Lievens, N.I. Stoilova and J. Van der Jeugt,
    Finite-dimensional solutions of coupled harmonic oscillator quantum systems.
    In: Group Theoretical Methods in Physics 2006. Eds. J.L. Birman, S. Catto and B. Nicolescu (Canopus Publishing Ltd, Exeter, 2009; ISBN 978-0-9549846-8-7), 363-367.
  307. R.C. King, N.I. Stoilova and J. Van der Jeugt,
    Representations of the Lie superalgebra gl(1|n) and Wigner Quantum Oscillators.
    In: Group Theoretical Methods in Physics 2006. Eds. J.L. Birman, S. Catto and B. Nicolescu (Canopus Publishing Ltd, Exeter, 2009; ISBN 978-0-9549846-8-7), 340-344.
  308. R. Chakrabarti, N.I. Stoilova and J. Van der Jeugt,
    Paraboson coherent states
    Physics of Atomic Nuclei 73 (2010), 269-275. 
  309. N.I. Stoilova and J. Van der Jeugt,
    Parabosons, parafermions and explicit representations of infinite-dimensional algebras.  
    Physics of Atomic Nuclei 73 (2010), 533-540.
  310. E.I. Jafarov and J. Van der Jeugt,
    Transition to sub-Planck structures through the superposition of q-oscillator stationary states.
    Phys. Lett. A 374 (2010), 3400-3404.
  311. E.I. Jafarov and J. Van der Jeugt, 
    Quantum state transfer in spin chains with q-deformed interaction terms.
    J. Phys. A: Math. Theor. 43 (2010), 405301 (18 pp).
  312. N.I. Stoilova and J. Van der Jeugt,
    Gel'fand-Zetling basis and Clebsch-Gordan coefficients for covariant representations of the Lie superalgebra gl(m|n).
    J. Math. Phys. 51 (2010), 093523 (15 pp).
  313. G. Regniers and J. Van der Jeugt, 
    Analytically solvable quantum Hamiltonians and relations to orthogonal polynomials.
    In: Lie Theory and Its Applications in Physics VIII, Varna 2009. Ed. V. Dobrev. AIP Conference Proceedings 1243 (2010), 99-114.
  314. G. Regniers and J. Van der Jeugt,
    The Hamiltonian H=xp and classification of osp(1|2) representations
    In: Lie Theory and Its Applications in Physics VIII, Varna 2009. Ed. V. Dobrev. AIP Conference Proceedings 1243 (2010), 138-147.
  315. G. Regniers and J. Van der Jeugt,
    Wigner quantization of some one-dimensional Hamiltonians
    J. Math. Phys. 51 (2010), 123515 (21 pp). 
  316. N.I. Stoilova and J. Van der Jeugt,
    An exactly solvable spin chain related to Hahn polynomials.
    SIGMA 7 (2011), 033, (13 pp).
  317. J. Van der Jeugt,
    Quantum communication and state transfer in spin chains,
    J. Phys: Conference Series 284 (2011), 012059 (10 pp).
  318. E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt,
    Finite oscillator models: the Hahn oscillator,
    J. Phys. A: Math. Theor. 44 (2011), 265203 (15 pp).
  319. E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt,
    The su(2)a Hahn oscillator and a discrete Fourier-Hahn transform,
    J. Phys. A: Math. Theor. 44 (2011), 355205 (18 pp).
  320. G. Regniers and J. Van der Jeugt,
    Angular momentum decomposition of the three-dimensional Wigner harmonic oscillator
    J. Math. Phys. 52 (2011), 113503 (21 pp). 
  321. N.I. Stoilova and J. Van der Jeugt,
    Explicit representations of classical Lie superalgebras in a Gelfand-Zetlin basis.
    Banach Center Publications 93 (2011), 83-93. 
  322. S. Lievens and J. Van der Jeugt,
    Spectrum generating functions for oscillators in Wigner's quantization.
    Banach Center Publications 93 (2011), 189-197.
  323. E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt,
    Deformed su(1,1) algebra as a model for quantum oscillators.
    SIGMA 8 (2012), 025, (15 pp).
  324. E.I. Jafarov and J. Van der Jeugt,
    A finite oscillator model related to sl(2|1),
    J. Phys. A: Math. Theor. 45 (2012), 275301 (16 pp).
  325. E.I. Jafarov and J. Van der Jeugt,
    Discrete series representations for sl(2|1), Meixner polynomials and oscillator models,
    J. Phys. A: Math. Theor.
    45 (2012), 485201 (18 pp).
  326. E.I. Jafarov and J. Van der Jeugt,
    The oscillator model for the Lie superalgebra sh(2|2) and Charlier polynomials.
    J. Math. Phys. 54 (2013), 103506 (12 pp).
  327. J. Van der Jeugt,
    Finite oscillator models described by the Lie superalgebra sl(2|1),
    in: Symmetries and groups in contemporary physics (Nankai Series in Pure, Applied Mathematics and Theoretical Physics vol. 11). Eds. C. Bai, J.-P. Gazeau and M.-L. Ge (World Scientific, Singapore, 2013), 301-306.
  328. J. Van der Jeugt,
    A Wigner distribution function for finite oscillator systems,
    J. Phys. A: Math. Theor.
    46 (2013), 475302 (15 pp).
  329. E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt,
    The u(2)_alpha and su(2)_alpha Hahn Harmonic Oscillators,
    Bulg. J. Phys.
     40 (2) (2013), 115-120. 
  330. J. Van der Jeugt,
    Wigner quantization and Lie superalgebra representations,
    Lie theory and its applications in physics. In: Springer Proceedings in Mathematics & Statistics 36 (2013), 149-165.
  331. E.I. Jafarov and J. Van der Jeugt,
    Quantum oscillator models with a discrete position spectrum in the framework of Lie superalgebras,
    J. Phys: Conference Series 512 (2014), 012034 (9 pp).
  332. R. Oste and J. Van der Jeugt,
    The Wigner distribution function for the su(2) finite oscillator and Dyck paths,
    J. Phys. A: Math. Theor.
    47 (2014), 285301 (16 pp).
  333. N.M. Atakishiyev, E.I. Jafarov, A.M. Jafarova and J. Van der Jeugt,
    The Husimi distribution function and superposition of q-harmonic oscillator stationary states,
    Trans. Nat. Acad. Sciences Azerbaijan XXXIV (2014), 147-156.
  334. E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt,
    On a pair of difference equations for the 4F3 type orthogonal polynomials and related exactly-solvable quantum systems,
    Lie theory and its applications in physics. In: Springer Proceedings in Mathematics & Statistics 111 (2014), 291-299.
  335. N.I. Stoilova and J. Van der Jeugt,
    A class of infinite-dimensional representations of the Lie superalgebra osp(2m+1|2n) and the parastatistics Fock space
    ,
    J. Phys. A: Math. Theor. 48 (2015), 155202 (16 pp).
  336. H. De Bie, R. Oste and J. Van der Jeugt,
    Unique characterization of the Fourier transform in the framework of representation theory,
    J. Phys: Conference Series 597 (2015), 012026 (9 pp).
  337. E.I. Jafarov, A.M. Jafarova and J. Van der Jeugt,
    The su(2) Krawtchouk oscillator model under the CP deformed symmetry,
    J. Phys: Conference Series 597 (2015), 012047 (9pp).
  338. R. Oste and J. Van der Jeugt,
    Motzkin Paths, Motzkin Polynomials and Recurrence Relations,
    Electronic Journal of Combinatorics
    22(2) (2015), #P2.8.
  339. D. Eelbode, T. Raeymaekers and J. Van der Jeugt,
    Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators,
    J. Math. Phys. 56 (2015), 101701 (11 pp). 
  340. Hendrik De Bie, Roy Oste and Joris Van der Jeugt,
    Generalized Fourier Transforms Arising from the Enveloping Algebras of  sl(2) and osp(1|2),
    International Mathematics Research Notices 15 (2016), 4649-4705.
  341. R. Oste and J. Van der Jeugt,
    Doubling (Dual) Hahn Polynomials: Classification and Applications.
    SIGMA 12 (2016), 003, (27 pp).
  342. N.I. Stoilova and J. Van der Jeugt,
    Gel'fand-Zetlin basis for a class of representations of the Lie superalgebra gl(infinity|infinity)
    ,
    J. Phys. A: Math. Theor. 49 (2016), 165204 (21 pp).
  343. R. Oste and J. Van der Jeugt,
    A finite oscillator model with equidistant position spectrum based on an extension of su(2)
    ,
    J. Phys. A: Math. Theor. 49 (2016), 175204 (19 pp).
  344. N.I. Stoilova and J. Van der Jeugt,
    The parastatistics Fock space and explicit infinite-dimensional representations of the Lie superalgebra osp(2m+1|2n),
    Lie theory and its applications in physics. In: Springer Proceedings in Mathematics & Statistics 191 (2016), 169-180.
  345. R. Oste and J. Van der Jeugt,
    Algebraic structures related to Racah doubles,
    Lie theory and its applications in physics. In: Springer Proceedings in Mathematics & Statistics 191 (2016), 550-564.
  346. R. Oste and J. Van der Jeugt,
    Tridiagonal test matrices for eigenvalue computations: Two-parameter extensions of the Clement matrix,
    J. Comput. Appl. Math. 314 (2017), 30-39. 
  347. N.I. Stoilova, J. Thierry-Mieg and J. Van der Jeugt,
    Extension of the osp(m|n) ~ so(m-n) correspondence to the infinite-dimensional chiral spinors and self dual tensors,
    J. Phys. A: Math. Theor. 50 (2017), 155201 (21 pp).
  348. N.I. Stoilova and J. Van der Jeugt,
    Lie superalgebraic approach to quantum statistics. osp(3|2) Wigner quantum oscillator,
    Bulg. J. Phys.
     44 (2017), 1-8. 
  349. R. Oste and J. Van der Jeugt,
    A Finite Quantum Oscillator Model Related to Special Sets of Racah Polynomials,
    Physics of Atomic Nuclei 80 (2017), 786-793.
  350. Hendrik De Bie, Roy Oste and Joris Van der Jeugt,
    The total angular momentum algebra related to the S3 Dunkl Dirac equation
    ,
    Annals of Physics 389 (2018), 192-218.
  351. J. Van der Jeugt and N.I. Stoilova,
    The "odd" Gelfand-Zetlin basis for representations of general linear Lie superalgebras,
    Physical and Mathematical Aspects of Symmetries (Proceedings of the 31st International Colloquium on Group Theoretical Methods in Physics), eds. S. Duarte et al. (Springer, 2017), p 343-348.
  352. N.I. Stoilova and J. Van der Jeugt,
    The Z2xZ2-graded Lie superalgebra pso(2m+1|2n) and new parastatistics representations
    ,
    J. Phys. A: Math. Theor. 51 (2018), 135201 (17 pp). 
  353. Hendrik De Bie, Roy Oste and Joris Van der Jeugt,
    On the algebra of symmetries of Laplace and Dirac operators
    ,
    Lett. Math. Phys. 108 (2018), 1905-1953.
  354. N.I. Stoilova, J. Thierry-Mieg and J. Van der Jeugt,
    On superdimensions of some infinite-dimensional irreducible representations of osp(m|n),
    Quantum Theory and Symmetries with Lie theory and its applications in physics. In: Springer Proceedings in Mathematics & Statistics 263 (2018), 165-176.
  355. H. De Bie, R. Oste and J. Van der Jeugt,
    Symmetries of the S3 Dirac-Dunkl operator,
    Quantum Theory and Symmetries with Lie theory and its applications in physics. In: Springer Proceedings in Mathematics & Statistics 263 (2018), 255-260.
  356. N.I. Stoilova, J. Thierry-Mieg and J. Van der Jeugt,
    On characters and superdimensions of some infinite-dimensional irreducible representations of osp(m|n),
    Phys. Atom. Nuclei 81 (2018), 939-944.
  357. N.I. Stoilova and J. Van der Jeugt,
    Representations of the Lie superalgebra B(infinity,infinity) and parastatistics Fock spaces
    ,
    J. Phys. A: Math. Theor. 52 (2019), 135201 (28 pp). 
  358. N.I. Stoilova and J. Van der Jeugt,
    Clebsch-Gordan Coefficients for Covariant Representations of the Lie superalgebra gl(n|n) in odd Gelfand-Zetlin basis,
    AIP Conference Proceedings 2075 (2019), 090022.
  359. N.I. Stoilova and J. Van der Jeugt,
    Parabosons, parafermions and representations of Z2 x Z2-graded Lie superalgebras,
    J. Phys: Conference Series 1194 (2019), 012102 (9pp).
  360. P.S. Isaac, N.I. Stoilova and J. Van der Jeugt,
    The Z2 x Z2-graded general linear Lie superalgebra,
    J. Math. Phys. 61 (2020), 011702.
  361. N.I. Stoilova and J. Van der Jeugt,
    Partition functions and thermodynamic properties of paraboson and parafermion systems,
    Phys. Lett. A 384 (2020), 126421.
  362. J. Van der Jeugt,
    9j-Coefficients and Higher,
    in: Encyclopedia of Special Functions: the Askey-Bateman Project. Volume 2: Multivariable Special Functions. Editors: T.H. Koornwinder and J.V. Stokman.
    Cambridge University Press (2021), 402-419.
  363. N.I. Stoilova and J. Van der Jeugt,
    A class of representations of the orthosymplectic Lie superalgebras B(n,n) and B(infinity,infinity),
    Lie Theory and Its Applications in Physics. In: Springer Proceedings in Mathematics & Statistics 335 (2019), 185-201.
  364. E.I. Jafarov, S.M. Nagiyev, R. Oste and J. Van der Jeugt,
    Exact solution of the position-dependent effective mass and angular frequency Schrodinger equation: harmonic oscillator model with quantized confinement parameter,
    J. Phys. A: Math. Theor. 53 (2020), 485301 (14 pp).
  365. E.I. Jafarov, A.M. Mammadova and J. Van der Jeugt,
    On the direct limit from pseudo Jacobi polynomials to Hermite polynomials,
    Mathematics 9 (2021), 88.
  366. A.K. Bisbo, H. De Bie and J. Van der Jeugt,
    Representations of the Lie Superalgebra osp(1|2n) with Polynomial Bases,
    SIGMA 17 (2021), 031, 27pp.
  367. E.I. Jafarov and J. Van der Jeugt,
    Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass,
    Eur. Phys. J. Plus 136 (2021), 758 (10pp).
  368. H. De Bie, A. Langlois-Rémillard, R. Oste and J. Van der Jeugt,
    Finite-dimensional representations of the symmetry algebra of the dihedral Dunkl-Dirac operator,
    J. Algebra 591 (2022), 170-216.
  369. N.I. Stoilova and J. Van der Jeugt,
    The Z2xZ2-graded Lie superalgebra pso(2n+1|2n) and pso(infinity,infinity), and parastatistics Fock spaces,
    J. Phys. A: Math. Theor. 55 (2022), 045201 (14 pp).
  370. E.I. Jafarov and J. Van der Jeugt,
    Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass in an external homogeneous field,
    Pramana - J. Phys. 96 (2022), 35 (10pp).
  371. A.K. Bisbo, H. De Bie and J. Van der Jeugt,
    A Lie algebra of Grassmannian Dirac operators and Vector Variables,
    J. Lie Theory 32 (2022), 751-770.
  372. A.K. Bisbo and J. Van der Jeugt,
    Bases for infinite dimensional simple 𝔬𝔰𝔭(1|2𝑛)-modules respecting the branching 𝔬𝔰𝔭(1|2𝑛)⊃𝔤𝔩(𝑛)
    ,
    J. Math. Phys.
    63 (2022), 061702 (25 pp).
  373. N.I. Stoilova and J. Van der Jeugt,
    A Klein operator for paraparticles,
    Lie Theory and Its Applications in Physics. In: Springer Proceedings in Mathematics & Statistics 396 (2022), 263-268.
  374. N.I. Stoilova and J. Van der Jeugt,
    On classical Z2×Z2-graded Lie algebras,
    J. Math. Phys. 64 (2023), 061702 (8 pp).
  375. H. De Bie, A. Langlois-Rémillard, R. Oste and J. Van der Jeugt,
    Generalised symmetries and bases for Dunkl monogenics,
    Rocky Mountain J. Math. 53 (2023), 397-415.
  376. N.I. Stoilova and J. Van der Jeugt,
    The Exceptional Lie Algebra g2 is Generated by Three Generators Subject to Quadruple Relations,
    J. Lie Theory 33 (2023), 1005-1008.
  377. N.I. Stoilova and J. Van der Jeugt,
    Orthosymplectic Z2xZ2-graded Lie superalgebras and parastatistics,
    J. Phys. A: Math. Theor. 57 (2024), 095202 (13 pp).
  378. N.I. Stoilova and J. Van der Jeugt,
    Generalized boson and fermion operators with a maximal total occupation property,
    J. Phys. A: Math. Theor. 57 (2024), 395206 (17 pp).

    Joris Van der Jeugt
    October 2024