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Abstract

We propose a new deformation of the quantum harmonic oscillator
Heisenberg-Weyl algebra with a parameter a > −1. This parameter is in-
troduced through the replacement of the homogeneous massm0 in the def-
inition of the momentum operator p̂x as well as in the creation-annihilation
operators â± with a mass varying with position x. The realization of such
a deformation is shown through the exact solution of the corresponding
Schrödinger equation for the non-relativistic quantum harmonic oscilla-
tor within the canonical approach. The obtained analytical expression of
the energy spectrum consists of an infinite number of equidistant levels,
whereas the wavefunctions of the stationary states of the problem un-
der construction are expressed through the Hermite polynomials. Then,
the Heisenberg-Weyl algebra deformation is generalized to the case of
the Lie superalgebra osp (1|2). It is shown that the realization of such
a generalized superalgebra can be performed for the parabose quantum
harmonic oscillator problem, the mass of which possesses a behavior com-
pletely overlapping with the position-dependent mass of the canonically
deformed harmonic oscillator problem. This problem is solved exactly
for both even and odd stationary states. It is shown that the energy
spectrum of the deformed parabose oscillator is still equidistant, however,
both even and odd state wavefunctions are now expressed through the
Laguerre polynomials. Some basic limit relations recovering the canonical
harmonic oscillator with constant mass are also discussed briefly.

Keywords: Heisenberg-Weyl algebra, Lie superalgebra osp (1|2), Exact solution,
Harmonic oscillator, Position-dependent effective mass, Orthogonal polynomials

Corresponding author: ejafarov@physics.science.az

sh.nagiyev@physics.science.az

Joris.VanderJeugt@UGent.be

1



1 Introduction

The uncertainty principle of quantum mechanics is one of the most important foun-
dation elements of its definition. The limit for simultaneous measurements of position
and momentum of certain quantum systems imposed by this principle is well known.
A simpler mathematical formulation of this principle is based on the canonical commu-
tation relation between the position and momentum operators, which states that their
commutator should result in i~, i.e. a c-number [1–4]. Such a commutator is valid only
if the momentum operator in the position representation is simply defined as a first-
order ordinary derivative with respect to position. This definition of the position oper-
ator further leads to the elegant and simple analytical solutions for the wavefunctions
of the stationary states and equidistant energy spectrum in the quantum-mechanical
treatment of the harmonic oscillator [5]. For example, the equidistant energy spectrum
within the canonical approach is well-known:

En = ~ω

(

n+
1

2

)

, n = 0, 1, 2, . . . . (1.1)

The dynamical symmetry algebra of this non-relativistic oscillator problem is also well
known. It is the Heisenberg-Weyl algebra with three generators – the creation and
annihilation operator, and the Hamiltonian itself [6, 7].

In his seminal paper [8], Wigner opened the discussion of the unique determina-
tion of the commutation relation between the position and momentum operator. He
proved for the problem of the quantum harmonic oscillator that the supremacy of the
Heisenberg-Lie equations on the non-commuting nature of the position and momen-
tum operator leads to a picture in which their commutator is no longer a c-number.
His computations led to a non-canonical equidistant energy spectrum that generalizes
(1.1) through a positive parameter γ:

En = ~ω (n+ γ) , γ ≥ 1/2. (1.2)

This discussion of the uniqueness of the canonical commutation relations further led to
the development of the second quantization concept for statistics that differs from both
Bose-Einstein and Fermi-Dirac statistics [9,10]. For the harmonic oscillator, it allowed
more general analytical solutions governed by a dynamical symmetry Lie superalgebra
osp (1|2) in both configuration [11,12] and phase space [13], and the system is referred
to as the parabose quantum harmonic oscillator.

However, the problem highlighted above is true if we deal with a quantum oscillator
system with a homogeneous mass. Replacement of the homogeneous mass m0 with
a mass M (x) varying with position drastically complicates the harmonic oscillator
problem. The concept of a position-dependent mass can be traced up to the semi-
nal Giaever experiment on the observation of the tunneling effect in superconductor
structures [14, 15], where the band structure varying with position is introduced for
a complete theoretical explanation of the observed phenomena [16], and the concept
of the position-dependent band structure later has been generalized to the idea of the
position-dependent mass [17]. Since its introduction, the concept of the mass varying
with position has found successful applications in various branches of physics and re-
lated areas. Its success is evident from the large amount of publications in scientific
journals, devoted to its applications [18–31]. The very sensitive point of these pub-
lished works is that all of them are done within the canonical commutation relations.
We decided to revisit this problem from a different angle – to introduce an analyti-
cal expression of the position-dependent mass to the quantum harmonic oscillator in
such a way that it will lead to a parameter deformation of the harmonic oscillator
Heisenberg-Weyl algebra and then to generalize this case to the more complicated Lie
superalgebra osp (1|2).
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Our motivation for revisiting the problem from the physics point of view is based
on the goal of constructing an exactly solvable oscillator model that will generalize
a triangular-shaped potential on the one hand and an infinite potential well with a
non-rectangular profile on the other hand. Both these potentials are significant due to
their wide use in experimental physics. As we are aware, the first detailed description
of the triangular potential appears in [32, 33]. Then, it was intensively applied as an
intermolecular potential for a more accurate prediction of the peculiar behaviour and
specific phase transitions of several many-particle systems [34–37]. Later, interesting
applications of the potentials with similar profiles also appeared in the field of low-
dimensional systems, where they have been used for the calculation of the electronic
states of the InGaAs/GaAs quantum wells of non-rectangular profile [38]. At the
same time, recent achievements in the design of the one-dimensional photonic crystal
cavities show that, unlike the traditional method of variation of the lattice constant,
the cavity for the photons also can be successfully implemented via a variation of
the crystal width [39–41]. Then, even high-order modes in such photonic crystal
cavities with varying widths exhibit Hermite-Gauss distribution with the equidistant
decreasing of their spacing. It is well known that an exact solution to the infinite
potential well problem leads to a non-equidistant energy spectrum. Moreover, one
can observe equidistance of the energy levels in the models of the confined quantum
systems with the oscillator-shaped profile, if there is an application of semiconfinement
effect only [42–44]. Such confined quantum systems are more appropriate for the
successful description of the one-dimensional photonic crystal cavities with the varied
lattice constant rather than the width of the crystal [45,46]. In this case, we revised our
computation technique and decided to construct a new model of the harmonic oscillator
that in special cases can give birth to these specific potentials with an equidistant
energy spectrum – triangular-shaped potential and non-rectangular potential well.

We structured our paper as follows: a new deformation of the Heisenberg-Weyl
algebra with a parameter a > −1 is introduced in Section 2 in the form of Proposition.
The proof of the Proposition is presented, too. Section 3 is devoted to the analytical
realization of the corresponding non-relativistic quantum harmonic oscillator within
the canonical approach, the dynamical symmetry algebra of which is this deformed
Heisenberg-Weyl algebra. Next, the deformed Heisenberg-Weyl algebra introduced
in Section 2 is generalized to the deformed osp (1|2) Lie superalgebra in Section 4.
Such a deformation is presented in the form of another proposition and its proof is
provided, too. In Section 5, we present an analytical realization of the corresponding
non-relativistic quantum harmonic oscillator within the non-canonical approach, the
dynamical symmetry algebra of which is a deformed osp (1|2) Lie superalgebra. The
final section contains comparative plots of the computed energy spectrum versus the
generalized oscillator potential and briefly discusses the obtained results.

2 Deformation of the quantum harmonic oscil-

lator Heisenberg-Weyl algebra with a param-

eter a > −1

As highlighted in the Introduction, our starting point is the following first-order differ-
ential operator realization of the momentum operator in the x-position representation:

p̂x = −i~ d

dx
. (2.1)

Its commutation with the position operator defined in the x-representation as

x̂ = x, (2.2)
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is well known and it is called the canonical commutation relation between the momen-
tum and position operators:

[p̂x, x̂] = −i~. (2.3)

Introduction of the quantum harmonic oscillator creation and annihilation opera-
tors â+ and â− defined through p̂x and x̂ as follows:

â+ =
1√
2

(√

m0ω

~
x̂− i√

m0ω~
p̂x

)

,

â− =
1√
2

(√

m0ω

~
x̂+

i√
m0ω~

p̂x

)

,

(2.4)

leads to the Heisenberg-Weyl algebra of the quantum harmonic oscillator, involving
the creation-annihilation operators â± and the Hamiltonian Ĥ:

[

Ĥ, â±
]

= ±~ωâ±,
[

â−, â+
]

= 1.
(2.5)

Here, the Hamiltonian with the quantum harmonic oscillator potential

V (x) =
m0ω

2x̂ · x̂
2

, (2.6)

is defined in the non-relativistic approach as

Ĥ = ~ω

(

â+â− +
1

2

)

=
p̂x · p̂x
2m0

+
m0ω

2x̂ · x̂
2

, (2.7)

with m0 being the homogeneous mass of the oscillator and ω being as its angular
frequency.

Proposition 1. Let M ≡ M (x) be a position-dependent mass that is introduced for
the non-relativistic harmonic oscillator system instead of its constant mass m0. Then,
the replacement

√
m0x̂→

√

M(x)x̂,
1√
m0

p̂x → 1

M
1
4

p̂x
1

M
1
4

, (2.8)

which preserves the hermiticity of the momentum operator in the x-configurational
representation, in the Hamiltonian Ĥ (2.7) and in the operators â± (2.4), leads to the
following deformation of the Heisenberg-Weyl algebra with a parameter a > −1:

[

Ĥ, â±
]

= ±~ω (1 + a) â±,
[

â−, â+
]

= 1 + a,
(2.9)

if the mass M (x) is of the following form:

M (x) = m0

(

λ2
0x

2)a = m0 |λ0x|2a , λ0 =

√

m0ω

~
. (2.10)

Proof. First of all, note that the introduction of the combination of product of
the position-dependent mass and momentum operator as 1

M
1
4
p̂x

1

M
1
4

is not new. This

point is discussed thoroughly in [47].
Proposition 1 is proven by the direct computations of the above commutation

relations. First, one finds:
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[

1

M
1
4

p̂x
1

M
1
4

,M
1
2 x̂

]

= −i~
(

1 +
1

2

M ′

M
x

)

, (2.11)

where M ′ ≡ dM/dx.
Applying the substitutions (2.8) in (2.4), yields:

[

â−, â+
]

=
i

~

[

1

M
1
4

p̂x
1

M
1
4

,M
1
2 x̂

]

= 1 +
1

2

M ′

M
x. (2.12)

In order to have a simple deformation of the Heisenberg-Weyl algebra by means
of a parameter a as in (2.9), one needs

1

2

M ′

M
x = a, a > −1. (2.13)

From here, one easily computes the integral and obtains that M = m0

(

λ2
0x

2
)a

=

m0 |λ0x|2a. Here, λ0 is introduced through the integration constant aiming to pre-
serve the dimensionless nature of the multiplier of mass m0. Its substitution in the
commutation relations (2.11) and (2.12) proves the second commutation relation of
eq.(2.9). The first relation of (2.9) is computed in an analogous way.

�

At this point, the restriction a > −1 imposed in eq. (2.13) seems artificial. In fact,
if one wants to avoid singularities for the functionM(x), one would rather just impose
a ≥ 0. The essential justification for the condition a > −1 is given only in the following
section: in order to have deformations of the harmonic oscillator wavefunctions with
appropriate boundary conditions, it is necessary to avoid singularities for the harmonic
oscillator potential at x = 0. The fact that M(x) has a singularity at x = 0 for
−1 < a < 0 does not lead to a singularity of the potential, but for values a < −1 it
would lead to such a singularity of the potential.

One also observes that the case a = −1 destroys the non-commuting nature of the
algebra generators in (2.9). The vanishing of this commutator would imply a violation
of the uncertainty principle, which is a central concept of quantum mechanics.

The deformation of the Heisenberg-Weyl algebra (2.9) by means of a simple factor
(1 + a) will turn out to be very relevant. We are going to present the analytical
realization for the corresponding non-relativistic quantum harmonic oscillator within
the canonical approach. The exact expressions of the wavefunctions of the stationary
states and the energy spectrum of the discrete levels elegantly generalize those of the
well-known oscillator.

3 Non-relativistic harmonic oscillator with a de-

formed Heisenberg-Weyl dynamical symme-

try algebra

Our starting point is the following Schrödinger equation for the oscillator:

[

ˆ̃px · ˆ̃px
2

+
ω2

2
ˆ̃x · ˆ̃x

]

ψ (x) = Eψ (x) , (3.1)

where,

ˆ̃px =
1

M
1
4

p̂x
1

M
1
4

≡ −i~ 1

λa0
√
m0

(

|x|−a d

dx
− a

2
|x|−a−2 · x

)

,

ˆ̃x =M
1
2 x̂ ≡ √

m0λ
a
0 |x|a · x.

(3.2)
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Substitution of (3.2) in the Schrödinger equation (3.1) leads to the following second
order differential equation:

[

− ~
2

2m0
λ−2a
0

(

|x|−a d

dx
− a

2
|x|−a−2 · x

)(

|x|−a d

dx
− a

2
|x|−a−2 · x

)

+
m0ω

2

2
λ2a
0 |x|2a · x2

]

ψ (x) = Eψ (x) .

(3.3)
Here, one observes that the harmonic oscillator potential would become singular at
x = 0 if a < −1. This would lead to wavefunctions which are unbounded at ±∞.
The case a = −1 was already excluded in the previous section. Note that for a = −1
the potential is constant and also then there would be no bound state solutions in
−∞ < x < +∞. All together, we shall from now onwards impose the restriction
a > −1.

Multiplication of this equation by
(

− 2m0
~2

· λ2a
0

)

slightly changes it as follows:

[(

|x|−a d

dx
− a

2
|x|−a−2 · x

)(

|x|−a d

dx
− a

2
|x|−a−2 · x

)

+
2m0E

~2
λ2a
0 − λ4a+4

0 |x|2a · x2
]

ψ (x) = 0.

(3.4)
Simple computations show that

(

|x|−a d

dx
− a

2
|x|−a−2 · x

)(

|x|−a d

dx
− a

2
|x|−a−2 · x

)

= |x|−2a

[

d2

dx2
− 2a

x

d

dx
+

1
4
a (3a+ 2)

x2

]

.

(3.5)

Using this in (3.4) and further multiplying the equation by |x|2a leads to

ψ′′ − 2a

x
ψ′ +

[

1

4
a (3a+ 2)x−2 + κ2λ2a

0 |x|2a − λ4a+4
0 |x|4a · x2

]

ψ = 0. (3.6)

Here, the notations ψ ≡ ψ (x), d
2ψ
dx2

≡ ψ′′, dψ
dx

≡ ψ′ and κ =
√

2m0E
~2

are applied in the

above equation for simplicity.
Now, it is convenient to introduce a dimensionless variable

ξ =
λa+1
0√
a+ 1

|x|a · x, −∞ < ξ < +∞. (3.7)

Such a transformation from x to ξ carried out through eq. (3.7) is a well-known point
canonical transformation [48–50]. It can be successfully applied to the exact solution
of the second-order differential equation for the different forms of quantum systems
with position-dependent mass [51–58]. Its substitution in eq. (3.6), and multiplication

by (a+ 1)−
2a+1
a+1 · λ−2

0 · ξ− 2a
a+1 , yields

ψ′′ − a

(a+ 1) ξ
ψ′ +

1
4
a (3a+ 2) + (a+ 1)κ2λ−2

0 ξ2 − (a+ 1)2 ξ4

(a+ 1)2 ξ2
ψ = 0. (3.8)

We look for analytical solutions of the following form:

ψ = f (ξ) · y (ξ) , (3.9)

where f (ξ) defines the boundary behavior of the wavefunction of the stationary states,
and y (ξ) determines the polynomial behavior of the quantum system within the har-
monic oscillator potential. In particular, since we are interested in deformations of
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harmonic oscillator wavefunctions only, we will investigate analytical expression of
f (ξ) with parameters A and B as

f = |ξ|A eBξ
2

. (3.10)

Herein, the parameter A is responsible for the continuity property of the wavefunction
ψ at x = 0, whereas the parameter B (which should be negative) is responsible for its
vanishing at x = ±∞.

Further easy computations now lead to the following second order differential equa-
tion for y:

y′′ +
2A− a

a+1
+ 4Bξ2

ξ
y′+

+
(a+1)2A2

−(a+1)(2a+1)A+a/2(3a/2+1)+[2B(2A+1)(a+1)−2aB+κ2λ−2
0 ](a+1)ξ2+(4B2

−1)(a+1)2ξ4

(a+1)2ξ2
y = 0.

(3.11)

One observes that the above equation has indeed a polynomial solution of the function
y (ξ) only if the following condition is satisfied:

(a+ 1)2A2 − (a+ 1) (2a+ 1)A+ a/2 (3a/2 + 1)+
[

2B (2A+ 1) (a+ 1)− 2aB + κ2λ−2
0

]

(a+ 1) ξ2 +
(

4B2 − 1
)

(a+ 1)2 ξ4 = µ (a+ 1)2 ξ2,

(3.12)

where the parameter µ will be determined later on.
Equation (3.12) is a polynomial in ξ which should be identically zero. This leads

immediately to the solutions for A and B. For B, the solutions are 1/2 and −1/2;
but the boundary conditions for the wavefunctions imply that only B = −1/2 can be
retained. For A, the quadratic equation following from (3.12) leads to

A = 1 +
1

2

(

ε− 1

a+ 1

)

, (3.13)

where ε = ±1. Then

µ = (ε+ 2) +
κ2λ−2

0

a+ 1
. (3.14)

The substitution of (3.13) and B = −1/2 in (3.11) leads to

y′′ +
[

(ε+ 1) ξ−1 − 2ξ
]

y′ +

(

κ2λ−2
0

a+ 1
− ε− 2

)

y = 0. (3.15)

If ε = +1 one obtains the following value of A

A1 = 1 +
1

2

a

a+ 1
, (3.16)

whereas for ε = −1 one obtains

A2 =
1

2

a

a+ 1
. (3.17)

One observes that A1 = A2 + 1, which means that the corresponding solutions of
(3.15) (denoted by y1 and y2 respectively) satisfy y2 = ξy1. Hence, it is sufficient to
continue with A2 (and ε = −1) only. Equation (3.15) simplifies then as follows:

y′′2 − 2ξy′2 +
κ2λ−2

0 − a− 1

a+ 1
y2 = 0. (3.18)
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The function f reduces to

f = |ξ|
a

2(a+1) e−
1
2
ξ2 . (3.19)

The solutions of (3.18) for y2 are Hermite polynomials of degree n:

y2 = Hn (ξ) , n = 0, 1, 2, . . . . (3.20)

The energy spectrum En can be easily found from the relation

κ2λ−2
0 − a− 1 = 2n (a+ 1) . (3.21)

Easy computations yield

En = (a+ 1) ~ω

(

n+
1

2

)

, n = 0, 1, 2, . . . . (3.22)

Our wavefunction has the following analytical expression:

ψn (x) = Cn
4

√

(λ2
0x

2)ae
−
(λ2

0x2)a+1

2(a+1) Hn

(

λ0x√
a+ 1

√

(λ2
0x

2)a
)

. (3.23)

Note the form of the exponential function in this expression: the vanishing at ±∞
requires indeed a > −1, as mentioned earlier.

The normalization coefficient Cn can be computed using the orthogonality relation
for Hermite polynomials [60]:

1√
π

+∞
∫

−∞

e−x
2

Hm (x)Hn (x) dx = 2nn!δmn.

Easy computations yield:

Cn =

(

a+ 1

π

) 1
4

√

λ0

2nn!
. (3.24)

For the quantum oscillator under consideration, we managed to give closed form
expressions for the wavefunctions of the stationary states (3.23), and for the discrete
energy spectrum (3.22). We are going to generalize these results to the case of the
parabose oscillator in the next two sections. Then all obtained results will be discussed
briefly and their possible limit cases will be analyzed in the final section.

4 Deformation of the quantum parabose oscilla-

tor algebra

Now we generalize our analysis presented in Section 2 to the case where our starting
point is the following first-order differential operator realization of the momentum
operator in the x-position representation:

p̂x = −i~
(

d

dx
− γ − 1/2

x
R̂

)

, γ > 1/2. (4.1)

Here, R̂ is a reflection operator [59]: R̂f(x) = f(−x). Definition (4.1) easily recovers
the canonical definition (2.1) if γ = 1/2. Its commutation with the position operator
(2.2) is called a non-canonical commutation relation and it is defined in the position
x-representation as

[p̂x, x̂] = −i~
[

1 + (2γ − 1) R̂
]

. (4.2)
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Introduction of the quantum harmonic oscillator creation and annihilation operators
â+ and â− as in (2.4), but with p̂x given by (4.1), leads to the following relation:

[

â−, â+
]

= 1 + (2γ − 1) R̂. (4.3)

Together with {R̂, â±} = 0, this forms the so-called parabose oscillator algebra [59].
The Hamiltonian of the quantum parabose oscillator is defined in the non-relativistic

approach in a slightly different manner than (2.7). It is as follows:

Ĥ =
~ω

2

(

â+â− + â−â+
)

=
p̂x · p̂x
2m0

+
m0ω

2x̂ · x̂
2

. (4.4)

The algebra generated by Ĥ and â± (as odd generators) is the Lie superalgebra
osp (1|2). Note that

[

Ĥ, â±
]

= ±~ωâ±. (4.5)

Proposition 2. Let M ≡ M (x) be a position-dependent mass that is introduced for
the non-relativistic harmonic oscillator system instead of its constant mass m0. Then,
the replacement (2.8) in the Hamiltonian Ĥ (4.4) and in the operators â± (2.4) (where
p̂x is as in (4.1)), leads to the following deformation of the parabose algebra and of the
Lie superalgebra osp (1|2) with a parameter a > −1:

[

Ĥ, â±
]

= ±~ω (1 + a) â±,
[

â−, â+
]

= 1 + a+ (2γ − 1) R̂,
(4.6)

if the mass M (x) is of the form (2.10).

Proof. As in Proposition 1, the proof is by direct computations of the above
commutation relations. First, one computes the commutation between 1

M
1
4
p̂x

1

M
1
4
and

M
1
2 x̂. However, one needs to take into account that p̂x now is defined through (4.1).

The commutation relation yields:

[

1

M
1
4

p̂x
1

M
1
4

,M
1
2 x̂

]

= −i~



1 +
1

2

M ′
+

M+
x+





M
1
4
+

M
1
4
−

+
M

1
4
−

M
1
4
+



 (γ − 1/2) R̂



 . (4.7)

Here, the additional definitions M+ ≡ M (x) and M− ≡ M (−x) are introduced for
convenience.

We consider the following case very similar to eq. (2.13):

1

2

M ′
+

M+
x ≡ 1

2

M ′

M
x = a, a > −1. (4.8)

Then, we have

M+ = m0

(

λ2
0x

2)a = m0 |λ0x|2a , (4.9)

and since this is an even function:

M− =M+. (4.10)

This means that the following additional conditions for the action of the reflection
operator R̂ on the position-dependent mass M (x) hold:
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R̂Mν (x) =Mν (x) ,

R̂M ′ (x) =M ′ (−x) ,
[

R̂,Mν
]

= R̂Mν −MνR̂ = 0.

(4.11)

Next, the substitution of (4.9)&(4.10) in (4.7) leads to

[

1

M
1
4

p̂x
1

M
1
4

,M
1
2 x̂

]

= −i~
[

1 + a+ (2γ − 1) R̂
]

. (4.12)

This commutation relation further results in the correctness of all three commutation
relations from (4.6). We drop these computations here because they are tedious but
straightforward to perform.

�

As before, the condition a > −1 is relevant only when the actual wavefunctions of
the system are considered, but we impose it already now.

The concept of the position-dependent mass already led to an interesting defor-
mation of the Heisenberg-Weyl algebra (2.9). The introduction of this concept to the
parabose oscillator has more far-reaching consequences. Now the parity operator R̂ ap-
pears as a result of the commutation relation between the parabose oscillator creation
a+ and annihilation a− operators. This deformed superalgebra defined through (4.6)
reduces to the deformed Heisenberg-Weyl algebra (2.9) if γ = 1/2 or it returns to the
known Lie superalgebra osp (1|2) if a = 0. Therefore, the realization of the parabose
quantum oscillator model possessing such a dynamical symmetry algebra in terms of
the exact analytical expressions of the energy spectrum and wavefunctions of the sta-
tionary states becomes very attractive. In the next section, we are going to show how
such an oscillator model with deformed parabose statistics can be constructed.

5 Non-relativistic parabose oscillator with a de-

formed osp (1|2) dynamical symmetry superal-

gebra

Our starting point is the Schrödinger equation for the parabose oscillator completely
overlapping with eq. (3.1), but now with the operator ˆ̃px defined as

ˆ̃px =
1

M
1
4

p̂x
1

M
1
4

≡ −i~ 1

M
1
2

(

d

dx
− 1

4

M ′

M
− γ − 1/2

x
R̂

)

, (5.1)

whereas the operator ˆ̃x preserves its expression as defined in (3.2).
Substitution of (5.1) in the Schrödinger equation (3.1) now leads to the following

second-order differential equation:

− ~
2

2m0
λ−2a
0 |x|−2a

(

d2

dx2
− 2a

x

d

dx
+
a (3a+ 2) /4− (γ − 1/2)2 + (a+ 1) (γ − 1/2) R̂

x2

)

ψ (x)

+
m0ω

2

2
λ2a
0 |x|2a · x2ψ (x) = Eψ (x) .

(5.2)

As in Section 3, multiplication with
(

− 2m0
~2

· λ2a
0

)

leads to:
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|x|−2a

(

d2

dx2
− 2a

x

d

dx
+
a (3a+ 2) /4− (γ − 1/2)2 + (a+ 1) (γ − 1/2)R̂

x2

)

ψ (x)

+
(

κ2λ2a
0 − λ4a+4

0 |x|2a · x2
)

ψ (x) = 0.

(5.3)

Again, we introduced here κ =
√

2m0E
~2

.

Further, we follow the method applied for the construction of the undeformed
parabose oscillator model in exact solutions [11, 12]: the appearance of the operator
R̂ forces us to split the problem by studying even and odd solutions separately. First,
we consider the even case when n = 2m, where we write ψ → ψ2m. Then, we have

[

|x|−2a

(

d2

dx2
− 2a

x

d

dx
+
a (3a+ 2) /4− (γ − 1/2)2 + (a+ 1) (γ − 1/2)

x2

)

+ κ2λ2a
0 − λ4a+4

0 |x|2a · x2
]

ψ2m = 0.

(5.4)

Now, multiplication by |x|2a yields

ψ′′

2m − 2ax−1ψ′

2m+

+
{[

a (3a+ 2) /4 + (a+ 1) (γ − 1/2)− (γ − 1/2)2
]

x−2 + κ2λ2a
0 |x|2a − λ4a+4

0 |x|4a · x2
}

ψ2m = 0.

(5.5)

Again, we introduced the notations d2ψ
dx2

= ψ′′ and dψ
dx

= ψ′.
It is convenient to follow the method employed in Section 3 and to work with the

dimensionless variable (3.7). Its substitution in eq.(5.5) as well as further multiplica-

tion by (a+ 1)−
2a+1
a+1 · λ−2

0 · ξ− 2a
a+1 yields

ψ′′

2m − a (a+ 1)−1 ξ−1ψ′

2m+

+
{[

a (3a+ 2) /4 + (a+ 1) (γ − 1/2)− (γ − 1/2)2
]

(a+ 1)−2 ξ−2+

+κ2 (a+ 1)−1 λ−2
0 − ξ2

}

ψ2m = 0.

(5.6)

It is clear that this equation generalizes eq.(3.8) and recovers it if γ = 1/2. There-
fore, we follow the same technique that was applied for obtaining an exact solution
of eq.(3.8) and look for solutions of eq.(5.6) as in (3.9) with only a slight notational
difference (namely y → y2m).

We drop long computations and note that the value of B is again −1/2, whereas
the value of A generalizes (3.13) as follows:

A = 1 +
1

2

(

ε− 1 + ε (2γ − 1)

a+ 1

)

, (5.7)

with ε = ±1. Substitution of this value of A and B = −1/2 yields the following second
order differential equation for y ≡ y2m:

y′′2m+

(

a+ 1 + ε (a− 2γ + 2)

a+ 1
ξ−1 − 2ξ

)

y′2m+
κ2λ−2

0 − 2 (a+ 1)− ε (a− 2γ + 2)

a+ 1
y2m = 0.

(5.8)
This resembles the following well-known second-order differential equation, whose

exact solution is the Laguerre polynomial [60]:
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xy′′ (x) + (α+ 1− x) y′ (x) + ny (x) = 0.

Here,

y (x) = L(α)
n (x) .

Introducing a new variable

x = z2,

and performing very simple computations, one obtains that:

y′′
(

z2
)

+
[

(2α+ 1) z−1 − 2z
]

y′
(

z2
)

+ 4ny
(

z2
)

= 0. (5.9)

Comparison of eqs.(5.8) and (5.9) leads to

α ≡ α2m =
1

2
ε

(

1− 2γ − 1

a+ 1

)

. (5.10)

Then, the polynomial solution of eq.(5.8) can be written down in terms of the Laguerre
polynomials as follows:

y2m (ξ) = L(α2m)
m

(

ξ2
)

. (5.11)

The corresponding energy spectrum of the even states has the following expression:

E ≡ E2m = (a+ 1) ~ω (2m+ 1 + α2m) . (5.12)

Further, taking into account that the energy spectrum of the even states (5.12)
should recover both (1.2) if a = 0 and (3.22) if γ = 1/2, one should restrict oneself to
the case with ε = −1. Then, one obtains the following value of A2 that generalizes
(3.17):

A2 =
1

2

a+ 2γ − 1

a+ 1
. (5.13)

Additionally, substitution of ε = −1 in the expression of the parameter α2m changes
eq.(5.10) in the following manner:

α2m =
1

2

(

2γ − 1

a+ 1
− 1

)

. (5.14)

Then, the energy spectrum of the even states (5.12) also simplifies as follows:

E2m = (a+ 1) ~ω

(

2m+
1

2
+
γ − 1/2

a+ 1

)

. (5.15)

The wavefunction of the even stationary states generalizing even states of the
wavefunction (3.23) for case γ ≥ 1/2 can be written in its exact analytical expression
as follows:

ψ2m (x) = C2m
4

√

(λ2
0x

2)a+2γ−1e
−
(λ2

0x2)a+1

2(a+1) L(α2m)
m

(

(

λ2
0x

2
)a+1

a+ 1

)

, (5.16)

where the normalization factor C2m is equal to

C2m = (−1)m (a+ 1)
1
2

(

1
2
−

γ−1/2
a+1

)

√

λ0m!

Γ (m+ α2m + 1)
. (5.17)

This can be easily computed from the orthogonality relation for the Laguerre polyno-
mials [60]:
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∞
∫

0

yαe−yL(α)
n (y)L(α)

n (y) dy =
Γ (n+ α+ 1)

n!
. (5.18)

One follows a similar procedure for the solution of the Schrödinger equation (5.3)
for the odd states with n = 2m+ 1, which reads

[

|x|−2a

(

d2

dx2
− 2a

x

d

dx
+
a (3a+ 2) /4− (γ − 1/2)2 − (a+ 1) (γ − 1/2)

x2

)

+ κ2λ2a
0 − λ4a+4

0 |x|2a · x2
]

ψ2m+1 = 0.

(5.19)

Skipping these computations, we just give the main results.
The energy spectrum of the odd states is as follows:

E2m+1 = (a+ 1) ~ω

(

2m+
3

2
+
γ − 1/2

a+ 1

)

. (5.20)

The wavefunction of the odd stationary states generalizing odd states of the wavefunc-
tion (3.23) for the case γ ≥ 1/2 can be written in its exact analytical expression as
follows:

ψ2m+1 (x) = C2m+1
4

√

(λ2
0x

2)3a+2γ−1e
−
(λ2

0x2)a+1

2(a+1) xL
(α2m+1)
m

(

(

λ2
0x

2
)a+1

a+ 1

)

, (5.21)

where, the normalization factor C2m+1 is equal to

C2m+1 = (−1)m (a+ 1)
−

1
2

(

1
2
+

γ−1/2
a+1

)

√

λ3
0m!

Γ (m+ α2m+1 + 1)
. (5.22)

We have achieved our main goal of obtaining exact solutions to the harmonic os-
cillator problem having a dynamical symmetry defined by deformed parabose algebra,
where the deformation parameter satisfies a > −1. In the final section, some basic
properties of both canonical and parabose oscillator models with a position-dependent
mass obtained in the present paper within the deformation of both the Heisenberg-
Weyl algebra and the parabose algebra generalization are discussed.

6 Discussions

Before discussing our plots presented in figure 1, we want to highlight briefly the re-
sults achieved in the preceding part of the current paper. In the previous sections,
we introduced two propositions on the deformation of the quantum harmonic oscilla-
tor Heisenberg-Weyl algebra and its parabose oscillator algebra (or Lie superalgebra
osp (1|2)). Both propositions have been proven by straightforward calculations of the
relevant commutation relations. The parameter a leading to the deformation of the
algebras appears due to the generalization of the constant mass to a mass varying
with position. Next, we have shown that both the algebra and superalgebra defor-
mations can still be realized in terms of the exact solutions of the corresponding
quantum oscillator problems. The realization of such a parameter deformation of the
Heisenberg-Weyl algebra is given in Section 3: it exhibits an equidistant energy spec-
trum of general behavior (3.22), and the wavefunctions of the stationary states (3.23)
corresponding to this energy spectrum are expressed through the Hermite polynomi-
als. We demonstrated that a realization of the corresponding deformation of the Lie
superalgebra osp (1|2) also exists. Such a realization is presented in Section 5. Its
energy spectrum is still equidistant, however, both even and odd state wavefunctions
of the parabose oscillator model with the position-dependent mass now are expressed
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Figure 1: Quantum harmonic oscillator potential (2.6) with position-dependent
effective mass M(x) (2.10) and behavior of the corresponding equidistant energy
levels (3.22), (5.15) and (5.20) for values of the deformation parameter a =
−0.6; 0; 2.0. Upper plots correspond to the parameter γ = 0.5; middle plots
correspond to the parameter γ = 1.0; lower plots correspond to the parameter
γ = 1.5 (m0 = ω = ~ = 1).

through the Laguerre polynomials. In fig.1, we depicted the quantum harmonic os-
cillator potential (2.6) with position-dependent effective mass M(x) (2.10) and the
behavior of the corresponding equidistant energy levels (3.22), (5.15) and (5.20) for
values of the deformation parameter a = −0.6; 0; 2.0. The upper plots correspond
to the parameter γ = 0.5, the middle plots correspond to the parameter γ = 1.0 and
the lower plots correspond to the parameter γ = 1.5. For simplicity, the measurement
system m0 = ω = ~ = 1 has been selected for these plots.

First of all, one observes the preservation of the equidistance property for the
energy levels despite the fact that the system is now deformed. Therefore, different
values of the parabose parameter γ only change the ground state of the oscillator
model, despite the situation that the mass is not constant but changing with position.
It can be seen from the comparison of the three plots located in each column. It
is exactly this property that was thoroughly discussed and led to the kernel of the
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parabose generalization idea of Wigner in [8].
Let us remind that the exact solution for the non-relativistic quantum harmonic

oscillator in the canonical approach in terms of the wavefunctions of the stationary
states has the following analytical expression in terms of the Hermite polynomials [5]:

ψn (x) =
1√
2nn!

(m0ω

π~

) 1
4
e−

m0ωx2

2~ Hn

(√

m0ω

~
x

)

. (6.1)

Then, the wavefunctions of the canonical oscillator model with the position-dependent
mass (3.23) easily recover this expression for a = 0. Furthermore, putting a = 0 and
γ = 1/2 in the even and odd state wavefunctions of the parabose oscillator model with
the position-dependent mass also returns (6.1). Thus, the energy spectrum expressions
(3.22), (5.15) and (5.20) also easily recover their canonical analogue (1.1) under the
same values of a and γ. This can be observed in the plot (b) of fig.1. Additionally,
plots (e) and (h) exhibit the energy spectrum of the parabose oscillator with a constant
mass (1.2) under the conditions a = 0 and γ > 1/2.

The first and third columns of plots in fig.1 also exhibit another important property
of the constructed oscillator models. It is related to the ‘hidden’ behavior of the
deformation parameter a that is included in the model through the mass changing with
position. The decrease of the negative value of the deformation parameter a changes
the harmonic oscillator potential profile to the triangular-shaped one, if a ≤ −1/2.
This can be observed in the plots (a), (d) and (g) of fig.1.

The increase of the value of this deformation parameter shortens the width of the
harmonic oscillator potential, and the limit a → ∞ transfers both edges of the har-
monic oscillator potential to the potential having a profile very similar to the potential
well problem around the oscillator equilibrium point x = 0. This can be considered as
a specific confinement effect that appears as a result of the introduction of the position-
dependent mass concept to the quantum oscillator system and drastically differs from
the oscillator models with a position-dependent mass also exhibiting confinement ef-
fects [42–44, 61–65]. This difference, exact solubility, simple energy spectrum, and
uniqueness of the discussed quantum systems exhibiting a specific confinement effect
gives great hope for attractive future applications in the field of solid-state physics,
nanotechnologies as well as related areas.
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