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Abstract We work in three-dimensional Euclidean space on which the sym-
metric group S3 acts in a natural way. Here, we consider the Dunkl operators,
a generalization of partial derivatives in the form of differential-difference ope-
rators associated to a reflection group, S3 in our case. In this setting, the main
object of study is the Dunkl version of the Dirac operator. We determine the
classes of symmetries of the Dirac-Dunkl operator and present the algebra
they generate.

1 Introduction

We present a different view on a recently considered specific case of more ge-
neral abstract results. In a first paper [3], we determined the symmetries, and
the algebraic structure they generate, for a class of Laplace-like and Dirac-like
operators in the framework of Wigner quantization. These operators include,
in particular, the Dunkl version of Laplace and Dirac operators associated
to arbitrary reflection group or root system. The term Dunkl refers to the
Dunkl operators [5, 8], a generalization of partial derivatives in the form of
differential-difference operators associated to a reflection group. In a second
article [4], we moved from the abstract setting to a concrete example being
the S3 Dirac-Dunkl operator, which appears in the Dirac Hamiltonian for

Hendrik De Bie
Department of Mathematical Analysis, Faculty of Engineering and Architecture,
Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
e-mail: Hendrik.DeBie@UGent.be

Roy Oste, Joris Van der Jeugt
Department of Applied Mathematics, Computer Science and Statistics, Faculty of
Sciences, Ghent University, Krijgslaan 281-S9, 9000 Gent, Belgium
e-mail: Roy.Oste@UGent.be; e-mail: Joris.VanderJeugt@UGent.be

1



2 Hendrik De Bie, Roy Oste, and Joris Van der Jeugt

the S3 Dunkl Dirac equation. Here, S3 is the symmetric group on three ele-
ments which acts in a natural way on three-dimensional Euclidean space by
coordinate permutation, and occurs as the reflection group associated to the
root system A2. The structure of the symmetries and symmetry algebra in
this case followed by substituting the corresponding Dunkl operators in the
expressions obtained for the abstract Dirac-like operator, void of references
to Dunkl operators or reflection groups. In the current paper, we will show
that, though requiring more tedious computations, the algebraic relations
for the symmetries of the S3 Dirac-Dunkl operator can be obtained also in
the concrete setting of Dunkl operators and reflection groups. The reason
for this is not only to further clarify these results, but also to validate their
correctness and moreover highlight the power and beauty of approaching and
dealing with a problem in a more abstract general framework.

In fact, the calculations in the current paper served as an inspiration for,
and predate the work on the generalized version. They were in turn inspired
by results on Dirac-Dunkl operators for other classes of reflection groups
and root systems. We mention in particular the (Z2)n and B3 cases [1, 2, 7]
where the symmetry algebra was shown to generalize the so-called Bannai-Ito
algebra.

In the subsequent section, we go over the definition and notions required
to introduce our main object of study, the Dirac-Dunkl operator related to
S3. In section 3, we present the symmetries of this Dirac-Dunkl operator with
explicit expressions and also give the algebra generated by them.

2 The S3 Dirac-Dunkl operator

We consider three-dimensional space R3 with coordinates x1, x2, x3. The sym-
metric group S3 is generated by the transpositions g12, g23, g31 which act on
functions in a natural way, e.g. g12f(x1, x2, x3) = f(x2, x1, x3). Denoting
g123 = g12g23 = g31g12 = g23g31 and g321 = g23g12 = g12g31 = g31g23, the six
elements of S3 are {1, g12, g23, g31, g123, g321}.

For a parameter κ, usually assumed to be positive, the Dunkl operators [5,
8] associated to S3 are given by

D1 = ∂x1
+ κ

(
1− g12
x1 − x2

+
1− g13
x1 − x3

)
, D2 = ∂x2

+ κ

(
1− g12
x2 − x1

+
1− g23
x2 − x3

)
,

D3 = ∂x3 + κ

(
1− g31
x3 − x1

+
1− g23
x3 − x2

)
.

The property that makes these generalizations of partial derivatives so special
is that they commute with one another, [Di,Dj ] = 0 for i, j ∈ {1, 2, 3}.
Furthermore, the action of S3 on the Dunkl operators is simply given by
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g12D1 = D2g12, g12D2 = D1g12, g12D3 = D3g12, (1)

and similarly for g23 and g31. The commutation relations with the coordinate
variables are readily shown to be

[Di, xj ] = Dixj − xjDi =

1 + κ
∑
k 6=i

gik i = j

−κgij i 6= j

(2)

for i, j, k ∈ {1, 2, 3}. Note that when κ = 0 these reduce to [Di, xj ] = δij , as
the Dunkl operators then reduce to ordinary partial derivatives.

In this setting, the Laplace-Dunkl operator is given by

∆κ = (D1)2 + (D2)2 + (D3)2.

The Dirac-Dunkl operator D is defined as a square root of the Dunkl Lapla-
cian as follows:

D = e1D1 + e2D2 + e3D3,

where e1, e2, e3 generate the three-dimensional Euclidean Clifford algebra and
hence satisfy {ei, ej} = 2δij for i, j ∈ {1, 2, 3}. They can be realized by means

of the well-known Pauli matrices: e1 =

(
0 1
1 0

)
, e2 =

(
0 −i
i 0

)
, e3 =

(
1 0
0 −1

)
.

Together with the vector variable x = e1x1 + e2x2 + e3x3, the operator
D generates a realization of the osp(1|2) Lie superalgebra, governed by the
relations

[{D,x}, D] = −2D, [{D,x}, x] = 2x.

Here, the operator {D,x} = Dx + xD can be written as 2(E + 3κ) where
E = x1∂x1 + x2∂x2 + x3∂x3 is the Euler operator, which measures the degree
of a homogeneous polynomial in x1, x2, x3.

3 Symmetries of the Dirac-Dunkl operator

We now turn to the subject of symmetries of the operator D. By the word
symmetry, we have in mind an operator which “supercommutes” (commutes
or anticommutes) with the operator in question.

A first symmetry of the Dirac-Dunkl operator is the so-called Scasimir
operator of the osp(1|2) realization above, which anticommutes with D. It is
given explicitly by

1

2

(
[D,x]− 1

)
= 1 + κ(g12 + g23 + g31) + e1e2L12 + e2e3L23 + e3e1L31, (3)
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where the right-hand side is obtained through the commutation relations (2).
The Scasimir operator is usually denoted by Γ+1, where the notation Γ refers
to the “angular Dirac operator”, appearing when D is written in spherical
coordinates. Moreover, in the right-hand side of (3)

L12 = x1D2 − x2D1, L23 = x2D3 − x3D2, L31 = x3D1 − x1D3

are the Dunkl versions of the angular momentum operators, which commute
with ∆κ. They are the main object of study in a related paper on the Dunkl
angular momentum algebra [6].

The square of the Scasimir operator yields the osp(1|2) Casimir operator
which commutes with D:

(Γ + 1)2 = Γ + κ(g12 + g23 + g31) + 3κ2(1 + g123 + g321)− (L2
12 +L2

23 +L2
13).

Another symmetry of D inherent to the Clifford algebra, is the pseudo-
scalar e1e2e3. Because of the anti-commutation relations of e1, e2, e3, one
immediately sees that [D, e1e2e3] = 0 and moreover (e1e2e3)2 = −1. In fact,
in the realization by means of the Pauli matrices, e1e2e3 is just i times the
identity matrix.

While the Dunkl Laplacian is invariant under the action of S3, following
the interaction (1), the Dirac-Dunkl operator is not, as the group action
leaves the Clifford elements e1, e2, e3 unchanged. To get symmetries of D, we
extend the S3 action to affect also Clifford elements. We do this by appending
a group element of S3 with an appropriate element in the Pin group of the
Clifford algebra. In this way, we arrive at the symmetries

G12 =
1√
2
g12(e1 − e2), G23 =

1√
2
g23(e2 − e3), G31 =

1√
2
g31(e3 − e1). (4)

One readily verifies that they satisfy

G12e1 = −e2G12, G12e2 = −e1G12, G12e3 = −e3G12, (G12)2 = 1,

with analogous relations for G23 and G31. Hence, they anti-commute with D.
We also have symmetries which commute with the S3 Dirac-Dunkl operator,
corresponding to the two even elements of S3:

G123 = G12G23 =
1

2
g123(e1e2 + e2e3 + e3e1 − 1) = G23G31 = G31G12,

G321 = G23G12 =
1

2
g321(e2e1 + e3e2 + e1e3 − 1) = G31G23 = G12G31.

Finally, we present the most interesting class of symmetries of D. They
extend the notion of Dunkl angular momentum operators as symmetries of
the Dunkl Laplacian to Dunkl total angular momentum operators in the
context of Dirac theory.
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Theorem 1. The operators

O12 = x1D2 − x2D1 +
1

2
e1e2 +

κ√
2

(G12e1 +G12e2 −G23e1 −G31e2),

O23 = x2D3 − x3D2 +
1

2
e2e3 +

κ√
2

(G23e2 +G23e3 −G31e2 −G12e3), (5)

O31 = x3D1 − x1D3 +
1

2
e3e1 +

κ√
2

(G31e3 +G31e1 −G12e3 −G23e1)

commute with D and with x.

Proof. We show that [O12, D] = 0, the other results are completely analogous.
Using the commutation relations (2), we have

[x1, D]D2 = −(1 + κg12 + κg13)e1D2 + κg12e2D2 + κg13e3D2 ,

− [x2, D]D1 = −κg12e1D1 + (1 + κg21 + κg23)e2D1 − κg23e3D1 ,

1

2
[e1e2, D] = −e2D1 + e1D2 .

Finally, for i 6= j and k elements of {1, 2, 3} we have

[Gijek, D] = Gij{ek, D} = 2GijDk , (6)

where we used DGij = −GijD and the anticommutation relations of the
Clifford algebra. Using relation (6) to compute the final terms of [O12, D]
and plugging in the definition (4), all components of [O12, D] cancel out. ut

Theorem 2. The algebra generated by the symmetries Γ + 1, e1e2e3, G12,
G23, G31 and O12, O23, O31 is governed by the following relations:

• Γ + 1 and e1e2e3 commute with the other symmetries,
• G12, G23, G31 generate a copy of S3 and act on the indices of O12, O23, O31

by an S3 action with minus sign, i.e.

G12O12 = −O12G12, G12O23 = −O31G12, G12O31 = −O23G12,

and analogous actions of G23 and G31,
• the commutation relations

[O23, O12] = O31 +
√

2κ(Γ + 1)e1e2e3(G23 −G12) +
3

2
κ2(G123 −G321)

[O31, O23] = O12 +
√

2κ(Γ + 1)e1e2e3(G31 −G23) +
3

2
κ2(G123 −G321)

[O12, O31] = O23 −
√

2κ(Γ + 1)e1e2e3(G12 −G31) +
3

2
κ2(G123 −G321).

Proof. We work out [O23, O12] — the other relations follow in a similar man-
ner — by going over the commutators of the different components of the
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operators (5). By means of the commutation relations (2) we have

[L23, L12] = L31(1 + κg12 + κg23)− κL12g23 − κL23g12,

which can also be found in ref. [6]. Here, we recognize a first ingredient
to make O31, namely L31. Recalling the expression (3) for Γ + 1, the
terms accompanied with a factor κ will form part of the product

√
2κ(Γ +

1)e1e2e3(G23 −G12). Another part of this product is given by the commuta-
tors [Lij , Gklem] = (Lij −Lgkl(i)gkl(j))Gklem, where the indices in the second
term are permuted by the S3-action.

Next, we have [L23, e1e2] = 0 = [e2e3, L12], while [ 12e2e3,
1
2e1e2] = 1

2e3e1.
The final ingredients to make O31 follow from the terms in the commuta-
tors [eiej , Gklem] = Gkl(egkl(i)egkl(j)em − emeiej) — with suitable values
for i, j, k, l,m — where two of the three indices of the Clifford elements are
equal and thus cancel out. The remaining terms of the latter commutators
serve as parts of the product

√
2κ(Γ + 1)e1e2e3(G23 − G12), whose final in-

gredient follows from the commutators [Gijek, Glmen] = GijGlmeglm(k)en −
GlmGijegij(n)ek — again with appropriate values for i, j, k, l,m, n — when
glm(k) 6= n or gij(n) 6= k. This leaves eight terms such as G23e2G12e1 =
−G23G12 = −G321 of which two cancel out and the remaining six terms form
3
2κ

2(G123 −G321), so we arrive at the desired result. ut

For a further analysis of the symmetry algebra of Theorem 2, and its
representations, the reader is referred to Ref. [4].
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