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Abstract

We consider the symmetry algebra generated by the total angular momentum operators,
appearing as constants of motion of the S3 Dunkl Dirac equation. The latter is a deformation
of the Dirac equation by means of Dunkl operators, in our case associated to the root system
A2, with corresponding Weyl group S3, the symmetric group on three elements. The explicit
form of the symmetry algebra in this case is a one-parameter deformation of the classical total
angular momentum algebra so(3), incorporating elements of S3. This was obtained using recent
results on the symmetry algebra for a class of Dirac operators, containing in particular the
Dirac-Dunkl operator for arbitrary root system. For this symmetry algebra, we classify all finite-
dimensional, irreducible representations and determine the conditions for the representations to
be unitarizable. The class of unitary irreducible representations admits a natural realization
acting on a representation space of eigenfunctions of the Dirac Hamiltonian. Using a Cauchy-
Kowalevsky extension theorem we obtain explicit expressions for these eigenfunctions in terms
of Jacobi polynomials.

1 Introduction

Our aim is to study the symmetry algebra generated by the total angular momentum operators, as
constants of motion of the Dirac equation, when modified by means of Dunkl operators. We will
explain in short its context. The Dirac equation can be written as

i~
∂

∂t
ψ(x, t) = Hψ(x, t) (1.1)

with the Dirac Hamiltonian for a free particle having the form

H = c

3∑
n=1

enpn + e0mc
2 . (1.2)

Here, m is the rest mass, c the speed of light, ~ the reduced Planck constant, and the components
of the momentum operator in the coordinate representation are given by

pj =
~
i

∂

∂xj
, j = 1, 2, 3 . (1.3)

For the following, we will adopt the natural convention where ~ = c = 1. The entities e0, e1, e2, e3
are assumed to satisfy the anticommutation relations {ei, ej} = eiej + ejei = 2δij for i, j ∈
{0, 1, 2, 3}. Though usually realized by 4×4 matrices, for our purposes, and with higher dimensional
generalizations in mind, it suffices to consider e0, e1, e2, e3 as abstract generators of a Clifford algebra.
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Accordingly, the wave function ψ belongs to an appropriate spinor representation space (having
four components for the 4× 4 matrix realization).

Multiplying both sides of equation (1.1) by e0 (on the left), we obtain the equivalent form as
an eigenvalue equation for the spacetime Dirac operator. Indeed, defining γj = e0ej for j = 1, 2, 3
and γ0 = e0, one arrives at the anticommutation relations of the Dirac algebra, {γµ, γν} = 2ηµν

for µ, ν ∈ {0, 1, 2, 3} with ηµν the Minkowski metric (to obtain the opposite sign, append a factor
i in the definition of γµ). Up to a term proportional to the mass m, the Dirac Hamiltonian (1.2)
consists of another Dirac operator, associated to three-dimensional Euclidean space instead of
four-dimensional spacetime, and which squares to the Laplace operator on Euclidean space.

In the non-relativistic setting, the Hamiltonian for a free particle is given by

Hnr =
1

2m

3∑
n=1

p2n , (1.4)

which is proportional to the Laplace operator on 3D Euclidean space. In this case, the angular
momentum is a constant of motion. For Lij = xipj − xjpi with i, j ∈ {1, 2, 3}, in the Heisenberg
picture we have

i~
d

dt
Lij = [Hnr, Lij ] = 0 .

In fact, this holds for any system with a spherically symmetric potential. The symmetries
L23, L31, L12 of Hnr are seen to satisfy the commutation relations of the angular momentum
algebra, that is the Lie algebra so(3).

For the Dirac Hamiltonian (1.2), the angular momentum generators Lij no longer commute with
H. Instead, the total angular momentum is conserved, taking into account also spin. Indeed, in
this case we have [H,Jij ] = 0 for

Jij = Lij + Sij , Sij =
~
2i
eiej with i, j ∈ {1, 2, 3} . (1.5)

(Note that when e1, e2, e3 are represented in terms of Pauli matrices, one has exey = iez for (x, y, z)
a cyclic permutation of {1, 2, 3}, though this does not hold in the abstract setting.) The symmetry
algebra of H generated by J23, J31, J12, what one can call the “total angular momentum algebra”,
is again seen to be the Lie algebra so(3).

The former “classical” scenarios can be generalized by means of Dunkl operators [6, 20], a
generalization of partial derivatives in the form of differential-difference operators associated to
a root system, and invariant under its Weyl group G. These Dunkl operators retain a desirable
commutative property, but allow for non-local effects through reflection terms. They have seen
numerous applications since their introduction in for instance physical models involving reflections
[12–16,19–21].

Recently, Feigin and Hakobyan [10] considered a deformation of the quantum angular momentum
generators by means of Dunkl operators, in the context of Calogero-Moser systems. In fact,
using Dunkl operators instead of the coordinate representation momentum operators (1.3) for
the free particle Hamiltonian (1.4), one arrives at the Calogero-Moser Hamiltonian in harmonic
confinement [10]. The algebraic relations for the symmetry algebra of this Hamiltonian were
determined and seen to constitute a deformation of the standard angular momentum algebra [10].

Our aim is now to study the deformation of the total angular momentum algebra obtained
through the use of Dunkl operators as momentum operators in the Dirac Hamiltonian (1.2). This
can be interpreted as the addition of a potential term to H, whose form depends on the choice of
reflection group or root system.
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Given the 3D Dirac operator appearing in H, a useful aid in this study will be some recent results
on symmetries of Dirac-Dunkl operators, in arbitrary dimension N [5]. The Dirac-Dunkl operator
is obtained by replacing the derivatives ∂/∂xj by Dunkl derivatives Dj in the Dirac operator

N∑
j=1

ej
∂

∂xj
−→

N∑
j=1

ejDj , (1.6)

and has appeared also in other contexts, e.g. [2, 18]. In N -dimensional Euclidean space, the system
of Dunkl operators (and thus the reflection terms) depends on the choice of a (reduced) root system,
or explicitly on the generators of the underlying reflection group G.

In recent work [3], the symmetry algebra of the Dirac-Dunkl operator for N = 3 and G = (Z2)3

(and of the associated Dirac equation on the two-sphere) was identified as the so-called Bannai-Ito
algebra [23]. This lead to the construction of representations of the Bannai-Ito algebra using the
actions of the Dunkl operators. Moreover, by moving up in dimension a higher rank version of the
Bannai-Ito algebra was postulated as the symmetry algebra of the (Z2)

N Dirac-Dunkl operator [4].
For a recent overview of the Bannai-Ito algebra and its applications, we refer the reader to ref. [14].

These results inspired our investigation into the Dunkl version of the Dirac operator for another
reflection group, the symmetric group on three elements S3, associated to the root system A2.
Doing so, this provided a stepping stone towards the determination of the symmetry algebra for a
bigger class of generalized Laplace and Dirac operators in general dimension N , in the framework of
Wigner systems [5]. These results contain in particular the Dunkl versions for arbitrary root system
(that is, for arbitrary N and general G), though they hold for a more general class of abstract
Dirac operators. Armed with these new tools we now return to the three-dimensional case with the
objective of finding representations, and explicit realizations, of these abstract symmetry algebras.

In three dimensions, the symmetry algebra of such a Dirac operator forms an extension of the
classical total angular momentum algebra, the Lie algebra so(3). The algebraic relations were
obtained in abstract form in [5] and are given by

[O23, O12] = O31 + {O123, O2}+ [O3, O1]

[O31, O23] = O12 + {O123, O3}+ [O1, O2] (1.7)

[O12, O31] = O23 + {O123, O1}+ [O2, O3]

where [A,B] = AB − BA and {A,B} = AB + BA are respectively the commutator and the
anticommutator of A and B. This algebra, which we will denote by O3, is generated by seven
generally non-trivial elements: O1, O2, O3, O12, O23, O31, O123. The general expressions of these
symmetries are given in [5, formulas (3.8) and (3.10)]. For the classical Dirac operator in terms of
the standard partial derivatives, the one-index symmetries O1, O2, O3 were seen to be identically
zero and thus in this case the commutation relations (1.7) indeed reduce to those of the Lie algebra
so(3). For other types of Dirac operators, the relations (1.7) form an extension of so(3) whose nature
depends on the explicit form of the one-index symmetries O1, O2, O3 in particular. When dealing
with Dunkl operators, the choice of root system and associated reflection group G is what determines
the structure and the explicit form of the one-index symmetries O1, O2, O3 and as a consequence
also of the symmetry algebra, as seen from the right-hand side of the algebraic relations (1.7).

For the current paper, this is the root system A2 with Weyl group G = S3, the symmetric
group on three elements. We will use the notation OS3 to denote the specific form the abstract
algebra O3 takes on in the case of the S3 Dirac-Dunkl operator. The explicit relations of the algebra
generators are given in (3.6). From these expressions it is clear that one can speak of a one-parameter
deformation of the total angular momentum algebra so(3) incorporating the symmetric group S3.
When the deformation parameter κ is set to zero, one recovers the ordinary so(3) algebra, as the
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Dunkl operators then reduce to regular partial derivatives. For non-zero κ, the algebra relations (3.6)
provide an interesting and exciting new structure: a deformation of so(3) by means of elements of
the S3 group algebra. This algebra OS3 is the main object of study in this paper. In particular, we
shall classify (finite-dimensional irreducible) representations of this algebra, and provide an explicit
realization of a class of representations in terms of orthogonal polynomials.

We briefly elaborate upon other cases which have been considered. For the case of (Z2)
3

Dirac-Dunkl operator, the commutators in the left-hand side of the algebraic relations (1.7) become
anticommutators through the use of commuting involutions present in the reflection group. This
yields the Bannai-Ito algebra as the symmetry algebra [3]. In more recent work [14], the root system
of type B3 was also considered to define extensions of the Bannai-Ito algebra. A crucial ingredient
in this paper is again the existence of commuting involutions in the reflection group. The lack of
such involutions characterizes the case at hand of the symmetric group, and its importance as a
reference work for future investigations in higher dimensions.

In the subsequent section, we go over the definitions and notions required to introduce the
Dirac-Dunkl operator related to S3. In section 3, we elaborate on the explicit expressions of the
symmetries of this operator and give the algebraic relations (1.7) for this specific case. In section 4,
we construct a form of ladder operators and use them to classify all finite-dimensional irreducible
representations of the symmetry algebra in abstract form. In the last section we determine explicit
expressions for wavefunctions which form a unitary irreducible representation of the symmetry
algebra, as realized in the framework of Dunkl operators.

2 The S3 Dunkl Dirac Hamiltonian

We begin by introducing the concepts needed to define the Dunkl operators we will use to deform
the Dirac Hamiltonian (1.2). We consider three-dimensional Euclidean space R3 with coordinates
x1, x2, x3. The symmetric group S3 is generated by the transpositions g12, g23, g31 which act on
functions on R3 in the following way

g12f(x1, x2, x3) = f(x2, x1, x3), g23f(x1, x2, x3) = f(x1, x3, x2), g31f(x1, x2, x3) = f(x3, x2, x1) .

Denoting the two even elements by g123 = g12g23 = g31g12 = g23g31 and g321 = g23g12 = g12g31 =
g31g23, the six elements of S3 are {1, g12, g23, g31, g123, g321}. For convenience we give the multiplica-
tion table of S3 in Table 1.

Table 1: Multiplication table of S3.

↗ 1 g12 g23 g31 g123 g321
1 1 g12 g23 g31 g123 g321
g12 g12 1 g123 g321 g23 g31
g23 g23 g321 1 g123 g31 g12
g31 g31 g123 g321 1 g12 g23
g123 g123 g31 g12 g23 g321 1
g321 g321 g23 g31 g12 1 g123

The symmetric group S3 arises as the Weyl group of the root system A2. The associated Dunkl
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operators are explicitly given by [6, 20]

D1 = ∂x1 + κ

(
1− g12
x1 − x2

+
1− g13
x1 − x3

)
, D2 = ∂x2 + κ

(
1− g12
x2 − x1

+
1− g23
x2 − x3

)
,

D3 = ∂x3 + κ

(
1− g31
x3 − x1

+
1− g23
x3 − x2

)
.

(2.1)

Here the parameter κ denotes the value of the multiplicity function on the single conjugacy class
all transpositions of the symmetric group share. This multiplicity function is usually taken to be
real and non-negative, in order to have some favorable properties such as intertwining operators [7].
Now, the property that makes these generalizations of partial derivatives so special is that they
commute with one another, [Di,Dj ] = 0 for i, j ∈ {1, 2, 3}. Moreover, for i, j, k a cyclic permutation
of 1, 2, 3, the action of S3 on the Dunkl operators is simply given by

gijDi = Djgij , gijDj = Digij , gijDk = Dkgij .

The commutation relations with the coordinate variables are easily shown to be

[Di, xj ] = Dixj − xjDi =


1 + κ

∑
k 6=i

gik i = j

−κgij i 6= j

(2.2)

for i, j, k ∈ {1, 2, 3}. Note that when κ = 0 these reduce to the standard relations as the Dunkl
operators then reduce to ordinary partial derivatives.

The Laplace-Dunkl operator is given by the sum of the squares of the coordinate Dunkl operators

∆ = (D1)
2 + (D2)

2 + (D3)
2 , (2.3)

which is obviously invariant under the action of S3. It is independent of the choice of orthonormal
basis of R3. In this setting, the Dirac-Dunkl operator D is defined as a square root of the Dunkl
Laplacian as follows:

D = e1D1 + e2D2 + e3D3 , (2.4)

where e1, e2, e3 generate the three-dimensional Euclidean Clifford algebra and satisfy the anticommu-
tation relations {ei, ej} = 2δij for i, j ∈ {1, 2, 3}. The three-dimensional Euclidean Clifford algebra
can be realized by means of the well-known Pauli matrices. For the first part of this paper, we
will work with abstract Clifford elements e1, e2, e3. We will use the Pauli matrices for the explicit
construction of representation spaces in Section 5.

The deformation of the Dirac Hamiltonian (1.2) by means of Dunkl operators is given by

Hκ =

3∑
n=1

enDn + e0m =
3∑

n=1

en
∂

∂xn
+ e0m+ κ

3∑
i=1

ei

(
1− gij
xi − xj

+
1− gik
xi − xk

)
, (2.5)

where in the last summation i, j, k is a cyclic permutation of 1, 2, 3. Note that for notational
convenience ~ = c = 1, and we have left out the imaginary unit i which is used to make the
momentum operators self-adjoint. The self-adjointness is easily recovered by accompanying every
Dunkl operator in the following with a factor 1/i (or ~/i when ~ 6= 1). We see that the use of Dunkl
operators corresponds to the addition of a potential term to the Hamiltonian H.

Before moving on to the symmetries, we will briefly elaborate upon an algebraic structure
naturally related to the Dirac operator. Together with the vector variable x = e1x1 + e2x2 + e3x3,
the operator D generates a realization of the osp(1|2) Lie superalgebra [2, 11], with relations

[{D,x}, D] = −2D, [{D,x}, x] = 2x. (2.6)
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Here, the anticommutator {D,x} can be written in terms of the Euler operator E as follows

{D,x} = 2E + 3 + 6κ , E = x1∂x1 + x2∂x2 + x3∂x3 . (2.7)

The so-called Scasimir operator [11] of this osp(1|2) realization, given by

Γ + 1 =
1

2
([D,x]− 1) , (2.8)

satisfies {Γ + 1, D} = 0 and {Γ + 1, x} = 0, while commuting with the even elements of osp(1|2). It
squares to the Casimir element, which generates the center of osp(1|2). The notation Γ refers to its
appearance in the expression for the Dirac operator in spherical coordinates. This angular Dirac
operator Γ was the main object of study for the Z3

2 Dunkl case [3].
Working out the commutator in the right-hand side of (2.8) using (2.2) we obtain

Γ + 1 = 1 + κ(g12 + g23 + g31)− e1e2L12 − e2e3L23 − e3e1L31 . (2.9)

Here, the Dunkl versions of the angular momentum operators are defined as

L12 = x1D2 − x2D1, L23 = x2D3 − x3D2, L31 = x3D1 − x1D3, (2.10)

where we have again left out the imaginary unit for notational convenience. In the classical case, for
κ = 0, the expression (2.9) for Γ is seen to correspond to the spin-orbit interaction L · S, with the
angular momentum and spin angular momentum given by

L = (L23, L31, L12) , S =
~
2

(e2e3, e3e1, e1e2) .

Using the property [∆, xj ] = 2Dj , the Dunkl angular momentum operators (2.10) are easily
shown to commute with the Dunkl Laplacian (2.3). It is for these operators (and generalizations
thereof in dimension N) that the “Dunkl angular momentum algebra” was determined in ref. [10].
In the next section we will present the “Dunkl total angular momentum algebra.”

3 Symmetry algebra of the S3 Dunkl Dirac Hamiltonian

The Dirac-Dunkl operator (2.4) appearing in the Hamiltonian (2.5) is a special case of a class
of generalized Dirac operators for which the symmetry algebra was obtained recently in abstract
form [5]. This symmetry algebra, in general, is generated by elements which either commute or
anticommute with the Dirac-Dunkl operator. The constants of motion commuting with the Dunkl
Dirac Hamiltonian Hκ will follow from these results.

In three dimensions, the symmetry algebra, denoted by O3, is governed by the relations (1.7).
It consists of three one-index symmetries O1, O2, O3 and a three-index symmetry O123 which
anticommute with the Dirac operator, and three two-index symmetries O12, O23, O31 which commute
with the Dirac operator. These two-index symmetries will play the role of total angular momentum
operators. The case at hand is that of the reflection group S3, with symmetry algebra denoted by
OS3. We will elaborate upon the explicit form the symmetries and the relations (1.7) take on for
this case.

For the S3 case, the one-index symmetries are explicitly given by [5, Theorem 3.6]

O1 =
κ√
2

(G12 −G31) O2 =
κ√
2

(G23 −G12) O3 =
κ√
2

(G31 −G23), (3.1)

where

G12 =
1√
2
g12(e1 − e2), G23 =

1√
2
g23(e2 − e3), G31 =

1√
2
g31(e3 − e1).
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Note that the three one-index symmetries are not independent as O3 = −O1 −O2, and moreover
O1O2O1 = (3κ2/2)O3. As a direct consequence of e0 anticommuting with e1, e2, e3, we see that
G12, G23, G31 and in turn O1, O2, O3 anticommute with the Dunkl Dirac Hamiltonian Hκ.

The operators G12, G23, G31 appearing here consist of a transposition of S3 appended with the
Clifford element corresponding to the normed vector in the root system associated to the reflection
in question (which is an element of the Pin group of the Clifford algebra). It was observed already [5]
that they also anticommute with D (one easily verifies this by direct computation)

{D,G12} = 0, {D,G23} = 0, {D,G31} = 0.

The symmetries G12, G23, G31 in fact generate a new copy of the symmetric group S3, which extends
its action to affect also Clifford algebra elements, with an extra minus sign. Indeed, we have

(Gij)
2 = 1, GijeiGij = −ej , GijejGij = −ei, GijekGij = −ek

where (i, j, k) is a cyclic permutation of {1, 2, 3}. Moreover, G12G23G12 = G31 with analogous
relations for conjugation with G23 and G31. The symmetries corresponding to the two even elements
of S3 are

G123 = G12G23 =
1

2
g123(e1e2 + e2e3 + e3e1 − 1) = G23G31 = G31G12,

G321 = G23G12 =
1

2
g321(e2e1 + e3e2 + e1e3 − 1) = G31G23 = G12G31,

which both commute with the S3 Dirac-Dunkl operator, the element e0, and hence with Hκ. This
gives two constants of motion, directly related to the underlying reflection group of the Dunkl
operators, corresponding to the actions of cyclically permuting the coordinates x1, x2, x3. Indeed,
the addition of the potential term to the Hamiltonian (2.5) breaks the spherical symmetry, being
invariant only under a subgroup of the rotation group SO(3).

The individual symmetries G12, G23, G31 are not contained in the algebra OS3. However, the
one-index symmetries O1, O2, O3 are built up from G12, G23, G31, so it is useful to extend the
symmetry algebra to contain also this realization of S3. We will denote this extension by OSt3.

The two-index symmetries Oij commute with the S3 Dirac-Dunkl operator. These Dunkl versions
of the total angular momentum operators are explicitly given by [5, Example 4.2.2]

Oij = Lij +
1

2
eiej +Oiej −Ojei

= Lij +
1

2
eiej +

κ√
2

(Gijei −Gjkei +Gijej −Gkiej) (3.2)

= Lij +
1

2
eiej + κ(g12 + g23 + g31)eiej −Oke1e2e3

where i, j, k is a cyclic permutation of 1, 2, 3, Lij is a Dunkl angular momentum operator (2.10),
and the last line follows by means of the identity

O1e1 +O2e2 +O3e3 = κ(g12 + g23 + g31) .

For κ = 0, they reduce to the classical total angular momentum operators (1.5) (up to multiplication
by the imaginary unit i). When κ is nonzero, they contain besides a Dunkl angular momentum
term (2.10) and a spin term, also a non-trivial part involving reflections and Clifford elements.

As each term of Oij contains an even number of Clifford algebra generators e1, e2, e3, using again
their anticommutation relations, we find that the symmetries O12, O23, O31 indeed commute with
the Dirac-Dunkl Hamiltonian Hκ.
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The final symmetry is the three-index symmetry

O123 = e1e2e3 +O1e2e3 +O2e3e1 +O3e1e2 + L12e3 + L23e1 + L31e2 (3.3)

which anticommutes with the S3 Dirac-Dunkl operator. This symmetry is equal to the Scasimir of
osp(1|2) given by (2.8), multiplied by e1e2e3 (as obtained already in general in ref. [5]):

O123 =
1

2
([D,x]− 1) e1e2e3 = (Γ + 1) e1e2e3 .

The entity e1e2e3 satisfies (e1e2e3)
2 = −1 and acts as a pseudo-scalar in the 3D Clifford algebra

generated by e1, e2, e3. In fact, in the realization by means of the Pauli matrices, e1e2e3 is just i
times the identity matrix. Because of the anticommutation relations of e1, e2, e3, one immediately
sees that [D, e1e2e3] = 0. However, e1e2e3 anticommutes with e0. The Scasimir element Γ + 1
portrays the opposite behavior, anticommuting with D and commuting with e0. As a consequence,
O123 will anticommute with the Dirac-Dunkl Hamiltonian Hκ.

By direct computation, one readily shows that the symmetry O123 is central in the algebra OSt3.
Moreover, it can be written in terms of the other symmetries as follows

O123 = −1

2
e1e2e3 −O1e2e3 −O2e3e1 −O3e1e2 +O12e3 +O31e2 +O23e1 .

Again by direct computation one finds

(O123)
2 = − 1

4
+O2

1 +O2
2 +O2

3 +O2
12 +O2

23 +O2
31 (3.4)

= O2
12 +O2

23 +O2
31 −

3

2
κ2(G123 +G321) + 3κ2 − 1

4
,

which corresponds, up to a sign, to the Casimir element (Γ + 1)2 of the osp(1|2) realization (2.6).
We have shown that the Dunkl Dirac Hamiltonian (2.5) admits also the symmetries (3.1), (3.2)

and (3.3) of the Dirac-Dunkl operator (2.4). The two-index symmetries O12, O23, O31 commute
with the Hamiltonian Hκ and generalize the classical total angular momentum operators (1.5) as
constants of motion of the Dunkl Dirac equation. We now translate the algebraic relations (1.7) of
the symmetry algebra O3 for a general Dirac operator to our Dunkl framework, yielding the “Dunkl
total angular momentum algebra.”

Theorem 1. The algebra OSt3 generated by the symmetries G12, G23, G31 and O12, O23, O31, O123

is governed by the following relations:

• O123 commutes with the other symmetries,

• G12, G23, G31 generate a copy of S3 and act on the indices of O12, O23, O31 by an S3 action
with minus sign, i.e.

G12O12 = −O12G12, G12O23 = −O31G12, G12O31 = −O23G12, (3.5)

and analogous actions of G23 and G31,

• the commutation relations

[O12, O31] = O23 +
√

2κO123(G12 −G31) +
3

2
κ2(G123 −G321)

[O23, O12] = O31 +
√

2κO123(G23 −G12) +
3

2
κ2(G123 −G321) (3.6)

[O31, O23] = O12 +
√

2κO123(G31 −G23) +
3

2
κ2(G123 −G321).
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where κ is a scalar factor.

Proof. This follows immediately from (1.7), the explicit expressions (3.1) and

[O1, O2] =
3

2
κ2(G123 −G321) = [O2, O3] = [O3, O1] .

Note that for κ = 0 the commutation relations (3.6) reduce to the well-known relations of the
Lie algebra so(3), the classical total angular momentum algebra. For the sequel we will consider κ
to be non-zero.

4 Representations

Both from a purely mathematical point of view and because of their potential use in constructing
physical models, we are interested in determining all finite dimensional irreducible (unitary) repre-
sentations of the algebra OSt3 in abstract form. We will build up irreducible representations starting
from a mutual eigenvector of a set of commuting operators. Contrary to the classical case where
one generally uses an eigenbasis for the z component of the total angular momentum, corresponding
to J12 or O12 in our notation, it will be helpful to incorporate the S3 structure for the Dunkl case.
From the relations (3.5), we see that the linear combination O12 +O23 +O31 anticommutes with
G12, G23, G31 and thus commutes with the even elements G123 and G321 of S3. Now, in order to
construct irreducible representations, we will use a form of ladder operators. Hereto, we start by
defining some auxiliary operators.

Definition 2. Say ω = e2πi/3, so

ω = −1

2
+ i

√
3

2
, ω2 = −1

2
− i

√
3

2
= ω = ω−1 , ω3 = 1 .

We define the following linear combinations in the algebra OSt3, with inverse relations on the right,

O0 =
−i√

3
(O12 +O23 +O31), O12 =

i√
6

(
√

2O0 +O+ +O−),

O+ = −i

√
2

3
(O12 + ωO23 + ω2O31), O23 =

i√
6

(
√

2O0 + ω2O+ + ωO−), (4.1)

O− = −i

√
2

3
(O12 + ω2O23 + ωO31), O31 =

i√
6

(
√

2O0 + ωO+ + ω2O−) .

We also define a set of linear combinations of G12, G23, G31

N+ = G12 + ωG23 + ω2G31 , N− = G12 + ω2G23 + ωG31 . (4.2)

Note that N+ and N− generate the same subset of the group algebra CS3 as O1, O2, O3 do. The
addition of G12 yields the full S3 realization.

Proposition 3. The elements of the algebra OSt3 defined in Definition 2 satisfy the relations

[O0, O±] = ±O± + 2κO123N± (4.3)

[O+, O−] = 2O0 + κ2[N+, N−] (4.4)

where [N+, N−] = −i 3
√

3(G123 −G321).

9



Moreover, the elements N± are nilpotent, that is N2
± = 0, and satisfy

(N±N∓)2 = 9N±N∓ . (4.5)

The interaction with O0, O+, O− is as follows

N±O0 = −O0N± , N±O± = −O∓N∓ , N±O∓ = −O±N∓ . (4.6)

Finally, the square (3.4) can be rewritten in the following forms

(O123)
2 =−O2

0 −
1

2
{O+, O−}+ κ2

1

2
{N+, N−} −

1

4

=−O2
0 −O+O− +O0 + κ2N+N− −

1

4
(4.7)

=−O2
0 −O−O+ −O0 + κ2N−N+ −

1

4
.

Proof. The relations (4.3) and (4.4) are proved by straightforward computations using the commu-
tation relations (3.6). For the commutator of N+ and N− we have

N+N− = (G12 + ωG23 + ω2G31)(G12 + ω2G23 + ωG31) = 3 + 3ω2G123 + 3ωG321 , (4.8)

while similarly

N−N+ = (G12 + ω2G23 + ωG31)(G12 + ωG23 + ω2G31) = 3 + 3ωG123 + 3ω2G321 , (4.9)

which leads to [N+, N−] = −i 3
√

3(G123 −G321), and also {N+, N−} = 6− 3(G123 +G321).
We illustrate the nilpotency of N+, the result for N− is similar,

N2
+ =

(
G12 + ωG23 + ω2G31

)2
= 1 + ωG12G23 + ω2G12G31 + ωG23G12 + ω2 +G23G31 + ω2G31G12 +G31G23 + ω

= 1 + ω + ω2 + (1 + ω + ω2)G123 + (1 + ω + ω2)G321 = 0.

In the same way, starting now from the expressions (4.8) and (4.9), we obtain (4.5).
The interactions in (4.6) follow immediately from

G12O0 = −O0G12 G23O0 = −O0G23 G31O0 = −O0G31

G12O+ = −O−G12 G23O+ = −ω2O−G23 G31O+ = −ωO−G31 (4.10)

G12O− = −O+G12 G23O− = −ωO+G23 G31O− = −ω2O+G31 ,

which are direct consequences of (3.5) and the definitions (4.1), (4.2).
Finally, the square (3.4) is rewritten using the inverse relations (4.1). We find

− 6(O2
12 +O2

23 +O2
31)

= (
√

2O0 +O+ +O−)2 + (
√

2O0 + ω2O+ + ωO−)2 + (
√

2O0 + ωO+ + ω2O−)2

= (2 + 2 + 2)O2
0 + (1 + ω + ω2)O2

+ + (1 + ω2 + ω)O2
−

+ (1 + ω2 + ω){
√

2O0, O+}+ (1 + ω + ω2){
√

2O0, O−}+ (1 + 1 + 1){O+, O−}.

The results now follow using the expression for {N+, N−} and (4.3).

An essential ingredient for the construction and classification of representation spaces is the
existence of a couple of ladder operators.
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Proposition 4. The elements in the algebra OSt3

K+ =
1

2
{O0, O+} K− =

1

2
{O0, O−} (4.11)

satisfy the relation

[O0,K±] = ±K± . (4.12)

Moreover, we have the factorization

K+K− = −
(
O2

123 + (O0 − 1/2)2
)(

(O0 − 1/2)2 − κ2N+N−
)

(4.13)

K−K+ = −
(
O2

123 + (O0 + 1/2)2
)(

(O0 + 1/2)2 − κ2N−N+

)
. (4.14)

Proof. We immediately find that

[O0,K±] =
1

2
[O0, {O0, O±}] =

1

2
{O0, [O0, O±]} = ±1

2
{O0, O±}+ κ{O0, O123N±} = ±K±

as O123 commutes with O0 and N±, and N± anticommutes with O0, see (4.6).
The factorization of K+K− and K−K+ follows by long and tedious, but otherwise straightforward

computations starting from the definitions (4.11), and using the relations (4.3), (4.6), and the
expression (4.7).

From (4.10) we find the interaction of the S3 realization with K± to be as follows

G12K+ = K−G12 , G123K+ = ω2K+G123 , G321K+ = ωK+G321 ,

G23K+ = ω2K−G23 , G123K− = ωK−G123 , G321K− = ω2K−G321 , (4.15)

G31K+ = ωK−G31 .

Our aim is now to determine all finite-dimensional irreducible representations of OSt3. Hereto,
let (V, ρV ) be a representation of OSt3. From here on, we consider V as an OSt3 module by setting
G · v = ρV (G)v for G ∈ OSt3 and v ∈ V .

The element O123 commutes with all of the algebra OSt3 so its action on an invariant subspace
V0 of the representation V will be multiplication by a constant Λ. The constant Λ will later be
determined in terms of other parameters characterizing the representation.

Following the results obtained in Proposition 3, our starting point will be the element O0,
given by (4.1), which commutes with the even S3 elements G123 and G321. Hence, without loss of
generality, we can consider a mutual eigenvector for all these elements. Take v0 ∈ V to be such an
eigenvector with eigenvalue λ for O0. The eigenvalue for G123 is restricted to the set {1, ω, ω2} as
G3

123 = G123G321 = 1 and if G123v0 = αv0 then G321v0 = α−1v0.
We will construct the OSt3 invariant subspace containing v0. If V is irreducible this space must

be either V or trivial. The trivial case results from v0 being the zero vector, so from now on we
assume that v0 is not the zero vector.

If O0v0 = λv0, then for a positive integer k, the vector (K±)kv0 is also an eigenvector of O0.
Indeed, using [O0, (K±)k] = ±k(K±)k, which follows directly from (4.12), we have

O0(K±)kv0 =
(
(K±)kO0 + [O0, (K±)k]

)
v0 = K±O0v0 ± k(K±)kK±v0 = (λ± k)(K±)kv0 . (4.16)

The set of vectors
{

(K+)kv0
∣∣ k ∈ N

}
must be linearly independent because they have distinct

eigenvalues as eigenvectors of O0. If we impose V to be finite-dimensional, then (K+)kv0 = 0 for
some k ∈ N. Without loss of generality we may assume that K+v0 = 0. Following the same reasoning,
the sequence

{
(K−)kv0

∣∣ k ∈ N
}

must also be linearly independent and thus must terminate. Hence

11



K−(Kn
−v0) = 0 for some n ∈ N and we may assume without loss of generality that n is minimal in

this aspect, i.e. Kn
−v0 6= 0.

So far, we have obtained the following vectors of the representation V :{
vk := (K−)kv0

∣∣ k = 0, . . . , n
}
. (4.17)

The space spanned by these vectors is invariant under the action of O0, G123, G321, O123 and K−,
with O0vk = (λ− k)vk. Recall that G123v0 = αv0 for α ∈ {1, ω, ω2}, or thus α = ω` for some integer
`. By (4.15), we then have

G123vk = G123(K−)kv0 = ωk(K−)kG123v0 = ω`+kvk, G321vk = ω−`−kvk .

The transpositionsG12, G23, G31 all square to the identity and anticommute withO0. Let v−k = G12vk,
then G12v

−
k = vk and O0v

−
k = O0G12vk = −G12O0vk = −(λ − k)v−k . Moreover, G23vk and G31vk

must both be proportional to v−k since the compositions G123 and G321 act diagonally on vk, and in
turn also on v−k . Indeed, we have

G123v
−
k = G123G12vk = G12G321vk = ω−`−kv−k , G321v

−
k = ω`+kv−k .

It follows from G12K− = K+G12 that v−k = G12(K−)kv0 = (K+)kG12v0 = (K+)kv−0 or thus
K+v

−
k = v−k+1. In this way, we arrive at the following set of vectors of V :

B =
{
v+k := vk = (K−)kv0

∣∣ k = 0, . . . , n
}
∪
{
v−k := G12v

+
k = (K+)kG12v0

∣∣ k = 0, . . . , n
}

. (4.18)

All these vectors are eigenvectors of the mutually commuting elements O0 and G123:

O0v
±
k = ±(λ− k)v±k , (4.19)

for k ∈ {0, . . . , n}, while

G123v
±
k = ω±(`+k)v±k , G321v

±
k = ω∓(`+k)v±k . (4.20)

Note that the representation V is characterized or labeled by (λ, n, `) where n is a non-negative
integer and ` ∈ Z3 = Z/3Z with 3Z = {3z | z ∈ Z} the set of multiples of 3.

We will show that the set B spans the OSt3 invariant subspace containing v0, which if V is
irreducible must be all of V . Moreover, in case the O0 eigenvalues are all distinct then B forms a
basis for the irreducible representation V . Hereto, we determine the action of all elements on B.

The explicit action of G23 and G31 follows from (4.20) as

G23v
±
k = G12G123v

±
k = ω±(`+k)G12v

±
k = ω±(`+k)v∓k , G31v

±
k = G12G321v

±
k = ω∓(`+k)v∓k ,

(4.21)
and in turn the action of N± as defined by (4.2),

N+v
±
k = (G12 + ωG23 + ω2G31)v

±
k = (1 + ω1±`±k + ω−1∓`∓k)v∓k = 3 13Z(`+ k ± 1)v∓k . (4.22)

where we employ the notation,

13Z(k) =
1 + ωk + ω−k

3
=

{
1 if k ≡ 0 (mod 3) ⇐⇒ k ∈ 3Z
0 if k ≡ 1, 2 (mod 3) ⇐⇒ k 6∈ 3Z .

Similarly, we have
N−v

±
k = 3 13Z(`+ k ∓ 1)v∓k . (4.23)
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By (4.5), we find that the linear combinations of G123 and G321 denoted by N+N− and N−N+,
see (4.8) and (4.9), satisfy the polynomial equation X2 − 9X = 0. Consequently their eigenvalues
are 0 and 9. Following (4.22) and (4.23), we obtain the diagonal actions

N+N−v
±
k = 9 13Z(`+ k ∓ 1)v±k , and N−N+v

±
k = 9 13Z(`+ k ± 1)v±k . (4.24)

We already know that K−v
+
k = v+k+1 and K+v

−
k = v−k+1 with v±l = 0 for l > n. Using (4.13) we

find the action of K+ and K− on the rest of the basis B:

K+v
+
k = K+K−v

+
k−1 = −

(
O2

123 + (O0 − 1/2)2
)(

(O0 − 1/2)2 − κ2N+N−
)
v+k−1

= −
(
Λ2 + (λ− k + 1/2)2

)(
(λ− k + 1/2)2 − 9κ213Z(`+ k − 2)

)
v+k−1 , (4.25)

and similarly

K−v
−
k = K−K+v

−
k−1 = −

(
O2

123 + (O0 + 1/2)2
)(

(O0 + 1/2)2 − κ2N−N+

)
v−k−1

= −
(
Λ2 + (λ− k + 1/2)2

)(
(λ− k + 1/2)2 − 9κ213Z(`+ k − 2)

)
v−k−1 . (4.26)

For ease of notation, we define the expression A(k) to denote these actions, that is

A(k) = −
(
Λ2 + (λ− k + 1/2)2

)(
(λ− k + 1/2)2 − 9κ213Z(`+ k + 1)

)
, (4.27)

such that

K+v
+
k = A(k)v+k−1 = K+K−v

+
k−1 , K−v

−
k = A(k)v−k−1 = K−K+v

−
k−1

K+K−v
−
k = A(k)K+v

−
k−1 = A(k)v−k , K−K+v

+
k = A(k)K−v

+
k−1 = A(k)v+k .

(4.28)

For the action of O+ and O− on B, we set out as follows. Using (4.3) we have

K± =
1

2
{O0, O±} = O±O0 +

1

2
[O0, O±] = O±O0 ±

1

2
O± + κO123N± . (4.29)

As K−v
+
k = v+k+1 for k ≤ n− 1, we find

v+k+1 = K−v
+
k = O−

(
O0 −

1

2

)
v+k + κO123N−v

+
k = (λ− k − 1/2)O−v

+
k + 3κΛ13Z(`+ k − 1)v−k .

Hence, for λ− k − 1/2 6= 0 (we will handle the zero case after determining the possible values for λ)

O−v
+
k =

1

λ− k − 1/2
v+k+1 −

3κΛ

λ− k − 1/2
13Z(`+ k − 1)v−k . (4.30)

The action of O− on v+n is consistent with (4.30) by letting v+n+1 = 0 as by

0 = K−v
+
n = O−

(
O0 −

1

2

)
v+n + κO123N−v

+
n = (λ− n− 1/2)O−v

+
n + 3κΛ13Z(`+ n− 1)v−n

we have, for λ− n− 1/2 6= 0

O−v
+
n = − 3κΛ

λ− n− 1/2
13Z(`+ n− 1)v−n .

The action (4.26) together with (4.29) yields the action of O− on v−k . On the one hand

K−v
−
k = O−

(
O0 −

1

2

)
v−k + κO123N−v

−
k = −(λ− k + 1/2)O−v

−
k + 3κΛ13Z(`+ k + 1)v+k ,
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while on the other hand for k ≥ 1 we have K−v
−
k = K−K+v

−
k−1 = A(k)v−k−1, so for λ− k + 1/2 6= 0

O−v
−
k =

−A(k)

λ− k + 1/2
v−k−1 +

3κΛ

λ− k + 1/2
13Z(`+ k + 1)v+k . (4.31)

For λ 6= 1/2, this is consistent with the action of O− on v−0 by letting v−−1 = 0 as

0 = K−v
−
0 = O−

(
O0 −

1

2

)
v−0 + κO123N−v

−
0 =

(
− λ− 1

2

)
O−v

−
0 + 3κΛ13Z(`+ 1)v+0 .

In a similar way we obtain the action of O+ to be given by

O+v
−
k =

−1

λ− k − 1/2
v−k+1 +

3κΛ

λ− k − 1/2
13Z(`+ k − 1)v+k (4.32)

and since K+v
+
k = K+K−v

+
k−1 = A(k)v+k−1

O+v
+
k =

A(k)

λ− k + 1/2
v+k−1 −

3κΛ

λ− k + 1/2
13Z(`+ k + 1)v−k . (4.33)

The actions of all elements of the algebra OSt3 are fixed by the four constants n, λ,Λ, `, where `
is integer and n is a positive integer. We will now examine all possible values which lead to finite
irreducible representations. The conditions for the dimension to be finite, K+v

+
0 = 0 and K−v

+
n = 0

can be combined with the results (4.13) and (4.14) of Proposition 4.11 to find{
K−K+v

+
0 = 0

K+K−v
+
n = 0

⇐⇒
{
−
(
O2

123 + (O0 + 1/2)2
)(

(O0 + 1/2)2 − κ2N−N+

)
v+0 = 0 ,

−
(
O2

123 + (O0 − 1/2)2
)(

(O0 − 1/2)2 − κ2N+N−
)
v+n = 0 .

When plugging in the appropriate actions, (4.19) and (4.24), this yields the system of equations{
−
(
Λ2 + (λ+ 1/2)2

)(
(λ+ 1/2)2 − 9κ213Z(`+ 1)

)
= 0

−
(
Λ2 + (λ− n− 1/2)2

)(
(λ− n− 1/2)2 − 9κ213Z(`+ n− 1)

)
= 0

(4.34)

to be satisfied for every set of valid values for n, λ,Λ, `. We distinguish three distinct classes of
solutions of (4.34) depending on which pair of factors are zero and on the value of `, which decides
whether the function 13Z is 0 or 1.

(a) Λ2 + (λ+ 1/2)2 = 0 and (λ− n− 1/2)2 − 9κ2 = 0, that is when 13Z(`+ n− 1) = 1

(b) Λ2 + (λ+ 1/2)2 = 0 and (λ− n− 1/2)2 = 0, that is when 13Z(`+ n− 1) = 0

(c) Λ2 + (λ+ 1/2)2 = 0 and Λ2 + (λ− n− 1/2)2 = 0

Note that there are two more cases we have omitted from our classification. We briefly expand on
this before continuing. First, we have the case where Λ2+(λ−n−1/2)2 = 0 and (λ+1/2)2−9κ2 = 0,
that is when 13Z(`+ 1) = 1. This will turn out to be equivalent to case (a) after renaming v−k to
v+n−k and vice versa, as seen from the action of O0. Similarly, the case where Λ2 + (λ−n− 1/2)2 = 0
and (λ+ 1/2)2 = 0 will be equivalent with case (b).

We continue with the classification of all finite-dimensional irreducible representations. Note
that in all three cases Λ2 + (λ + 1/2)2 = 0 which fixes the value Λ = ε i (λ + 1/2), up to a sign
ε = ±1, and thus the action of O123 in function of λ. This leaves a freedom in the choice of sign of
Λ. In the algebra relations (3.6), and (4.3)–(4.4) by extension, the central element O123 is always
accompanied by a single factor κ. We note that when one permits also negative values for κ, the
sign of Λ can always be chosen such that the product κO123 has a positive action.
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For each case we need to check whether the vectors (4.18) are independent. Since v0 is a
generating vector of V , irreducibility can be checked by verifying that for each v±k there is an algebra
element X±k such that X±k v

±
k = v0. Note that (K+)kv+k = A(k)A(k − 1) · · ·A(1)v0 by (4.28), while

G12(K−)kv−k = A(k)A(k − 1) · · ·A(1)G12v
−
0 and G12v

−
0 = v+0 = v0. Hence, in order to have an

irreducible representation, the expression A(k), given by (4.27), must be non-zero for k ∈ {1, . . . , n}.
Plugging in Λ2 = −(λ+ 1/2)2, we find

A(k) = −
(
− (λ+ 1/2)2 + (λ− k + 1/2)2

)(
(λ− k + 1/2)2 − 9κ213Z(`+ k + 1)

)
= k(2λ+ 1− k)

(
(λ− k + 1/2)2 − 9κ213Z(`+ k + 1)

)
. (4.35)

We now work out the explicit value of λ and ` for the three cases.

4.1 Case (a)

For the case (a) we have 13Z(`+ n− 1) = 1 or thus ` ≡ 2n+ 1 (mod 3) which fixes the eigenvalues
of the reflections, e.g. G123v

±
k = ω±(2n+1+k)v±k , see (4.20) and (4.21). Moreover, from (λ − n −

1/2)2 − 9κ2 = 0 we find λ = n± 3κ+ 1/2. With unitary representations in mind, we first handle
the case λ = n+ 3κ+ 1/2. The action of O0 on B is now given by

O0v
±
k = ±(n− k + 3κ+ 1/2)v±k , k ∈ {0, . . . , n} . (4.36)

We see that for a positive parameter κ every vector of the set B has a distinct eigenvalue for O0,
so the elements of B are independent. Note that λ− k ± 1/2 6= 0 for κ > 0 and k ∈ {0, 1, . . . , n}
so the previously determined actions of the elements of OSt3 on B, see e.g. (4.30), are all well-
defined. Moreover, the expression (4.35) is readily seen to be non-zero for all positive values κ
and k ∈ {1, . . . , n}. This shows that, for positive κ, the set B forms a basis for the OSt3 invariant
subspace containing v0, which if V is irreducible must be all of V . The actions of the other generators
of OSt3 are given by (4.30), (4.31), (4.32), (4.33).

Next, we consider the other choice λ = n−3κ+1/2. The O0-eigenvalues (4.19) are not necessarily
all distinct when 6κ ∈ {1, 2, . . . , 2n + 1}. Moreover, the condition for irreducibility now leads to
disallowed values for κ, namely 6κ /∈ {n + 2, n + 3, . . . , 2n + 1} ∪ ({1, . . . , n} ∩ 3Z), while also
3κ− 1 /∈ {0, 1, . . . , n− 1} ∩ 3Z, and 3κ− 2 /∈ {0, 1, . . . , n− 2} ∩ 3Z. Hence B would form a basis for
an irreducible OSt3 representation if and only if κ is not allowed to take on these specific values.
As a consequence this choice will not lead to unitary representations for general values of κ.

Finally, note that the choice λ = n − 3κ + 1/2 with κ positive is equivalent to considering
negative values for κ when λ = n+ 3κ+ 1/2. For a given real value of κ, the sign accompanying
κ in λ = n ± 3κ + 1/2 can thus always be chosen such that λ is positive. For negative κ, the
disallowed values follow immediately by replacing κ by −κ in the previously obtained conditions.
These values correspond in fact to those of the S3 Dunkl operator singular parameter set for which
no intertwining operators exist [7, 8, 20].

4.2 Case (b)

For the case (b) we have 13Z(`+ n− 1) = 0 or thus ` 6≡ 2n+ 1 (mod 3). This gives two distinct
options for the eigenvalues of G123 and in turn for the actions of the other reflections. The condition
(λ− n− 1/2)2 = 0 implies that λ = n+ 1/2, which again yields 2n+ 2 distinct O0 eigenvalues

O0v
±
k = ±(n− k + 1/2)v±k , k ∈ {0, . . . , n} .

For the case at hand the acquired actions (4.30),(4.31),(4.32),(4.33) do not lead to the full action of
O− or O+, as we would have to divide by zero. Indeed, we have O0v

+
n = 1

2v
+
n and O0v

−
n = −1

2v
−
n so
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the denominator in (4.30) would become zero for k = n. We determine the action of O− on v+n and
O+ on v−n in another way. By means of relation (4.3) acting on v+n we find

(O0O− −O−O0)v
+
n = −O−v+n + 2κO123N−v

+
n

⇐⇒ O0O−v
+
n −

1

2
O−v

+
n = −O−v+n

⇐⇒ O0O−v
+
n = −1

2
O−v

+
n ,

which implies O−v
+
n = β−v

−
n for some constant β−. In the same manner we find O+v

−
n = β+v

+
n for

some constant β+. Using the interaction of G12 and O±, see (4.10), we find

β−v
−
n = O−v

+
n = O−G12v

−
n = −G12O+v

−
n = −G12β+v

+
n = −β+v−n ,

while by (4.7) we have

β+β−v
+
n = O+O−v

+
n =

(
− (O123)

2 −
(
O0 −

1

2

)2
+ κ2N+N−

)
v+n = −Λ2v+n .

Hence β− = −β+ = ±Λ = ±i(n + 1). Note that we have an extra freedom in the choice of sign,
besides the one present for the sign of Λ.

Finally, we check whether the expression (4.35) is non-zero for k ∈ {1, . . . , n}. For λ = n+ 1/2,
only the factor (n− k + 1)2 − 9κ213Z(`+ k + 1) could become zero. Hereto, we distinguish between
the two options for `. For ` ≡ 2n (mod 3) this gives the conditions

(k + 2)2 − 9κ2 6= 0 for k ∈ {0, . . . , n− 1} ∩ 3Z ,

while ` ≡ 2n+ 2 (mod 3) leads to

(k + 1)2 − 9κ2 6= 0 for k ∈ {0, . . . , n} ∩ 3Z .

This shows that B forms a basis for an irreducible OSt3 representation if and only if κ is not allowed
to take on some specific values.

4.3 Case (c)

As n is positive, the conditions Λ2 + (λ+ 1/2)2 = 0 and Λ2 + (λ− n− 1/2)2 = 0 lead to λ = n/2
and Λ2 = −(n+ 1)2/4. In this scenario, the vectors v±k and v∓n−k have the same O0 eigenvalue:

O0v
±
k = ±

(n
2
− k
)
v±k , O0v

∓
n−k = ∓

(n
2
− (n− k)

)
v∓n−k = ±

(n
2
− k
)
v∓n−k .

The G123 eigenvalues (4.20) for v±k and v∓n−k are given by

G123v
±
k = ω±(`+k)v±k , G123v

∓
n−k = ω∓(`+n−k)v∓n−k = ω∓(n−`)ω±(`+k)v∓n−k .

Two different scenarios now occur depending on the value of `, that is whether ` ≡ n (mod 3) or
not. We distinguish in the first place with respect to the parity of n.
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4.3.1 Even n

For n an even integer, λ = n/2 is an integer so the previously determined actions of the elements
of OSt3 on B are all well-defined. When ` ≡ n (mod 3), the space generated by v0 is comprised
of two irreducible components and decomposes as follows. The vectors v+λ and v−λ both have 0
as O0 eigenvalue and G12v

+
λ = v−λ . Hence, defining u+0 = v+λ + v−λ and u−0 = v+λ − v−λ , we have

G12u
+
0 = u+0 and G12u

−
0 = −u−0 , while O0u

±
0 = 0 and furthermore G123u

±
0 = ωn+λu±0 = u±0 . If we

now define u±−k = (K−)ku±0 and u±k = (K+)ku±0 for k ∈ {1, . . . , λ}, then the sets

B+ = {u+k | k = −λ, . . . , 0, . . . , λ} B− = {u−k | k = −λ, . . . , 0, . . . , λ}
each form the basis for an OSt3 invariant subspace of dimension n + 1. We go over the actions
on these spaces. We have O0u

±
k = k u±k and G123u

±
k = ω−ku±k . Moreover, G12u

±
k = ±u±−k, while

G23u
±
k = ±ω−ku±−k and G31u

±
k = ±ωku±−k. For positive k, we have by definition K+u

±
k = u±k+1 and

K−u
±
−k = u±−k−1. The other actions are found as follows. Note that for positive k,

u±k = (K+)ku±0 = (K+)k(v+λ ± v−λ ) =
k−1∏
l=0

A(λ− l)v+λ−k ± v−λ+k

and similarly

u±−k = (K−)ku±0 = (K−)k(v+λ ± v−λ ) = v+λ+k ±
k−1∏
l=0

A(λ− l)v−λ−k .

Again for positive k, we then find

K+u
±
−k = K+K−u

±
−k+1 = A(λ+ k)u±−k+1 , K−u

±
k = K−K+u

±
k−1 = A(λ+ k)u±k−1 .

Here we used A(λ + k) = A(λ − k + 1), which is readily verified from (4.35) with λ = n/2 and
` ≡ n (mod 3).

We check whether the expression (4.35) is non-zero for k ∈ {1, . . . , n}. For λ = n/2, the only
factor of (4.35) with ` ≡ n (mod 3) that could become zero is(n+ 1

2
− k
)2
− 9κ213Z(n+ k + 1) .

This leads to the conditions(
k +

3

2

)2
− 9κ2 6= 0 for k ∈ {−λ+ 2, . . . , λ+ 1} ∩ 3Z ,

which shows that, except for specific κ values, B+ and B− each form the basis for an OSt3 invariant
space.

If ` 6≡ n (mod 3), then v±k and v∓n−k have different eigenvalues for G123. We check whether the
expression (4.35) is non-zero for k ∈ {1, . . . , n}. For λ = n/2, the only factor of (4.35) that could
become zero is (n+ 1

2
− k
)2
− 9κ213Z(`+ k + 1) .

Hereto, we distinguish between the two options for `. For ` ≡ n+1 ( mod 3) this gives the conditions(
k +

1

2

)2
− 9κ2 6= 0 for k ∈ {−λ, . . . , λ− 1} ∩ 3Z ,

while ` ≡ n− 1 (mod 3) also leads to(
k +

1

2

)2
− 9κ2 6= 0 for k ∈ {−λ, . . . , λ− 1} ∩ 3Z .

This shows that B forms a basis for an irreducible OSt3 representation if and only if κ is not allowed
to take on some specific values.
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4.3.2 Odd n

Next, we consider the case where n is an odd integer. As λ = n/2 is now a half-integer there exists
an integer value k0 = λ− 1/2 = (n− 1)/2 such that

O0v
+
k0

=
1

2
v+k0 , O0v

−
k0+1 =

1

2
v−k0+1, O0v

+
k0+1 = −1

2
v+k0+1, O0v

−
k0

= −1

2
v−k0 ,

These specific eigenvalues have as a consequence that the acquired actions (4.30),(4.31),(4.32),(4.33)
do not lead to the full action of O− or O+, as we would have to divide by zero. Using (4.29),
however, we find

v+k0+1 = K−v
+
k0

= O−

(
O0 −

1

2

)
v+k0 + κO123N−v

+
k0

= 3κΛ13Z(`+ k0 − 1)v−k0 .

Since k0 < n, the action K−v
+
k0

may not result in zero by the assumption of minimality on n, so we

must have 13Z(`+ k0 − 1) = 1 or thus ` ≡ 2k0 + 1 ≡ n (mod 3). It follows that the vectors v+k0+1

and v−k0 , which have the same O0 eigenvalue, are not linearly independent as now v+k0+1 = 3κΛv−k0 .

In the same way, we find v−k0+1 = 3κΛv+k0 . By means of these results and the actions (4.25) and

(4.26) of K± we obtain that the vector v−k is proportional to v+n−k for every k ∈ {0, 1, . . . , n}. Indeed,
by (4.26) we have for instance

v+k0+2 = K−v
+
k0+1 = 3κΛK−v

−
k0

= −3κΛ
(
Λ2 + 1

)
v−k0−1 .

However, acting on v+k0 with [O0, O−], see relation (4.3), we find an equation which can never be

satisfied unless v+k0+1 = 0. Hence, we have no representations for odd n in case (c).

4.4 Unitary representations

To find irreducible unitary representations we check which of the irreducible representations admit
an invariant positive definite Hermitian form. Hereto, we introduce an antilinear antimultiplicative
involution X 7→ X† compatible with the algebraic relations (3.6) of the algebra OSt3. This involution
has the properties (aX + bY )† = aX† + bY † and (XY )† = Y †X† for X,Y ∈ OSt3 and a, b ∈ C,
where a denotes complex conjugation.

For real κ, the algebraic relations (3.6) are compatible with the star conditions

O†12 = −O12 O†23 = −O23 O†31 = −O31 O†123 = −O123 .

and
G†12 = G12 G†23 = G23 G†31 = G31 G†123 = G321 .

Remark 5. Note that the total angular momentum operators O12, O23, O31 become self-adjoint when
accompanied by the factor 1/i we have left out for notational convenience.

In terms of Definition 2, this leads to the relations (4.3)–(4.4) being compatible with the star
conditions

O†123 = −O123 O†0 = O0, O†± = O∓, K†± = K∓, N †± = N∓ . (4.37)

We show that if the value of κ is suitably restricted, the representation V is unitary under (4.37).
Hereto, we introduce a sesquilinear form 〈·, ·〉 : V × V → C such that for X ∈ OSt3 and v, w ∈ V

〈Xv,w〉 = 〈v,X†w〉 .
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The condition O†0 = O0 implies that vectors with different O0 eigenvalues are orthogonal, so the
previously determined bases are in fact orthogonal. Hence, we may define the form 〈·, ·〉 by putting

〈v+k , v+l 〉 = hk δk,l , 〈v+k , v−l 〉 = 0 ,

where we can freely let h0 = 1 or 〈v+0 , v+0 〉 = 1. Note that

〈v−k , v−l 〉 = 〈G12v
+
k , G12v

+
l 〉 = 〈G12G12v

+
k , v

+
l 〉 = 〈v+k , v+l 〉 = hk δk,l .

In order to be an inner product we need hk > 0 for k ≥ 0. Using the star condition K†− = K+

and using K+v
+
k = A(k)v+k−1 with (4.27), we have for k ≥ 1

hk = 〈v+k , v+k 〉 = 〈K−v+k−1, v+k 〉 = 〈v+k−1,K+v
+
k 〉 = A(k)〈v+k−1, v+k−1〉 = A(k)hk−1 . (4.38)

In this way we arrive at the condition A(k) > 0 for 1 ≤ k ≤ n, which is obviously satisfied for
the case (a) with the choice λ = n + 3κ + 1/2. This will constitute the only class of unitary
representations without further restrictions on the non-negative parameter κ. For the other choice
of case (a), λ = n− 3κ+ 1/2, this only holds when κ is restricted to |κ| < 1/3. For the case (b),
we have two options for `, leading to different restrictions on the value of κ in order for A(k) > 0
to hold for 1 ≤ k ≤ n. If ` ≡ 2n (mod 3), then κ must satisfy |κ| < 2/3, while ` ≡ 2n+ 2 (mod 3)
implies the condition |κ| < 1/3. For the case (c) with n even we have |κ| < 1/2 if ` ≡ n (mod 3)
and |κ| < 1/6 if ` 6≡ n (mod 3).

Given an inner product we can introduce the orthonormal basis

w±k =
v±n−k
‖v±n−k‖

(k = 0, 1, . . . , n− 1, n)

where ‖v±n−k‖ =
√
〈v±n−k, v±n−k〉 =

√
hn−k. We find using (4.38)

K−w
+
k = K−

v+n−k
‖v+n−k‖

=
v+n−k+1√
hn−k

=
√
A(n− k + 1)w+

k−1

and by (4.28)

K+w
+
k = K+

v+n−k
‖v+n−k‖

= A(n− k)
v+n−k−1√
hn−k

=
√
A(n− k)w+

k+1 ,

while similarly

K−w
−
k = K−

v−n−k
‖v−n−k‖

= A(n− k)
v−n−k−1√
hn−k

=
√
A(n− k)w−k+1

and

K+w
−
k = K+

v−n−k
‖v−n−k‖

=
v−n−k+1√
hn−k

=
√
A(n− k + 1)w−k−1 .

Returning to the case (a), the right-hand side follows from

A(k) = k(2n+ 6κ+ 2− k)
(
(n+ 3κ− k + 1)2 − 9κ213Z(2n+ k + 2)

)
.

We summarize all actions for the case (a) in the following proposition.
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Proposition 6. For a given positive parameter κ and a choice of sign ε = ±1, we have an irreducible
representation of OSt3 of dimension 2n+ 2 for every non-negative integer n. This representation is
unitary, corresponding to the star conditions (4.37). The actions of the OSt3 operators on a set of
basis vectors w+

0 , w+
1 , . . ., w+

n and w−0 , w−1 , . . ., w−n are given by:

O0w
±
k = ±

(
k +

1

2
+ 3κ

)
w±k (4.39)

O123w
±
k = ε i (n+ 1 + 3κ) w±k (4.40)

K+w
+
k =

{√
(k + 1)(n− k)(n+ k + 2 + 6κ)(k + 1 + 6κ)w+

k+1 if k ≡ 2 (mod 3)

(k + 1 + 3κ)
√

(n− k)(n+ k + 2 + 6κ)w+
k+1 if k 6≡ 2 (mod 3)

(4.41)

K+w
−
k =

{√
k(n− k + 1)(n+ k + 1 + 6κ)(k + 6κ)w+

k−1 if k ≡ 0 (mod 3)

(k + 3κ)
√

(n− k + 1)(n+ k + 1 + 6κ)w+
k−1 if k 6≡ 0 (mod 3)

(4.42)

K−w
+
k =

{√
k(n− k + 1)(n+ k + 1 + 6κ)(k + 6κ)w+

k−1 if k ≡ 0 (mod 3)

(k + 3κ)
√

(n− k + 1)(n+ k + 1 + 6κ)w+
k−1 if k 6≡ 0 (mod 3)

(4.43)

K−w
−
k =

{√
(k + 1)(n− k)(n+ k + 2 + 6κ)(k + 1 + 6κ)w−k+1 if k ≡ 2 (mod 3)

(k + 1 + 3κ)
√

(n− k)(n+ k + 2 + 6κ)w−k+1 if k 6≡ 2 (mod 3)
(4.44)

while for O+ and O− we have the following actions. If k ≡ 0 (mod 3) then

O+w
+
k =

√
(n− k)(n+ k + 2 + 6κ) w+

k+1 (4.45)

O+w
−
k = −

√
k(n− k + 1)(n+ k + 1 + 6κ)(k + 6κ)

k + 3κ
w−k−1 + ε i

3κ(n+ 1 + 3κ)

k + 3κ
w+
k (4.46)

O−w
+
k =

√
k(n− k + 1)(n+ k + 1 + 6κ)(k + 6κ)

k + 3κ
w+
k−1 − ε i

3κ(n+ 1 + 3κ)

k + 3κ
w−k (4.47)

O−w
−
k = −

√
(n− k)(n+ k + 2 + 6κ) w−k+1 ; (4.48)

if k ≡ 1 (mod 3) then

O+w
+
k =

√
(n− k)(n+ k + 2 + 6κ) w+

k+1 (4.49)

O+w
−
k = −

√
(n− k + 1)(n+ k + 1 + 6κ) w−k−1 (4.50)

O−w
+
k =

√
(n− k + 1)(n+ k + 1 + 6κ) w+

k−1 (4.51)

O−w
−
k = −

√
(n− k)(n+ k + 2 + 6κ) w−k+1 ; (4.52)

if k ≡ 2 (mod 3) then

O+w
+
k =

√
(k + 1)(n− k)(n+ k + 2 + 6κ)(k + 1 + 6κ)

k + 1 + 3κ
w+
k+1 − ε i

3κ(n+ 1 + 3κ)

k + 1 + 3κ
w−k (4.53)

O+w
−
k = −

√
(n− k + 1)(n+ k + 1 + 6κ) w−k−1 (4.54)

O−w
+
k =

√
(n− k + 1)(n+ k + 1 + 6κ) w+

k−1 (4.55)

O−w
−
k = −

√
(k + 1)(n− k)(n+ k + 2 + 6κ)(k + 1 + 6κ)

k + 1 + 3κ
w−k+1 + ε i

3κ(n+ 1 + 3κ)

k + 1 + 3κ
w+
k . (4.56)

For the realization of S3 within OSt3 we have the actions

G12w
±
k = w∓k G23w

±
k = ω±(1−k) w∓k G31w

±
k = ω±(k−1) w∓k (4.57)

G123w
±
k = ω±(1−k) w±k G321w

±
k = ω±(k−1) w±k . (4.58)
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We thought it to be instructive to include a diagram depicting the basis vectors and actions
of Proposition 6 according to their eigenvalues for O0 and G123, given in Figure 1. Denoting the
action (4.39) by O0w

±
k = ±λkw±k , the distance between λ0 and −λ0 on the horizontal axis is 6κ+ 1,

and thus depends on the value of the parameter κ.

5 Explicit realizations

The irreducible unitary representations of case (a) as classified above have an explicit realization
in the framework of Dunkl operators (2.1). Indeed, in the original construction of the algebra the
symmetries O12, O23, O31 consist of Dunkl angular momentum operators with added reflection terms,
see (3.2). When a symmetry (anti)commuting with the Dirac-Dunkl operator D acts on an element
in the kernel of D, the result is again in this kernel. Furthermore, as the symmetries O12, O23, O31

are grade-preserving, it is no surprise that homogeneous polynomials of fixed degree in kerD will
form the desired representation spaces.

We will first introduce some notations and definitions. Let Pn(RN ) denote the space of
homogeneous polynomials of degree n in N variables. The Dunkl monogenics of degree n are
homogeneous spinor-valued polynomials of degree n in the kernel of the Dirac-Dunkl operator,
which we will denote by Mn(RN , S) = kerD ∩ (Pn(RN )⊗ S). Here S is a spinor representation of
the Clifford algebra. For the three-dimensional Clifford algebra realized by the Pauli matrices, a
two-dimensional Dirac spinor representation is simply S ∼= C2, with basis spinors χ+ = (1, 0)T and
χ− = (0, 1)T .

The Dunkl monogenics form eigenspaces of the angular Dirac-Dunkl operator Γ. Indeed, for
ψn ∈Mn(R3, S) we have using Dψn = 0 and (2.7)

(Γ + 1)ψn =
1

2
([D,x]− 1)ψn =

1

2
(Dx− 1)ψn

=
1

2
({D,x} − 1)ψn =

1

2
(2E + 3 + 6κ− 1)ψn .

As Eψn = nψn, this gives the following eigenvalues

(Γ + 1)ψn = (n+ 1 + 3κ)ψn . (5.1)

Keeping in mind the relation O123 = (Γ + 1)e1e2e3, and comparing these eigenvalues with the
action (4.40), this confirms our expectation regarding realizations of the obtained representations.

Appending a factor (1 + e0) to a Dunkl monogenic ψn ∈Mn(R3, S), we obtain a (rather trivial)
eigenfunction of the Dunkl Dirac Hamiltonian (2.5). Indeed, using the anticommutaton relations of
the Clifford algebra, we find

Hκ(1 + e0)ψn = D(1 + e0)ψn +me0(1 + e0)ψn = (1− e0)Dψn +m(e0 + 1)ψn = m(e0 + 1)ψn .

Note that (1 + e0)ψn is no longer an eigenfunction of O123, as the latter does not commute, but
anticommutes with Hκ.

We will set out to construct a basis for the space of Dunkl monogenics. Hereto, it is useful to
emulate a setting similar to that of Definition 2 and Proposition 3 by means of a coordinate change:uv

w

 =


1√
2
−1√
2

0
1√
6

1√
6
−2√
6

1√
3

1√
3

1√
3


x1x2
x3

 ,

x1x2
x3

 =


1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

1√
3


uv
w

 . (5.2)
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The action of g12 on functions of (u, v, w) becomes very simple, flipping only the sign of u,
g12f(u, v, w) = f(−u, v, w), while the other transpositions g23 and g31 act as follows

g23f(u, v, w) = f
(1

2
u+

√
3

2
v,

√
3

2
u− 1

2
v, w

)
, g31f(u, v, w) = f

(1

2
u−
√

3

2
v,−
√

3

2
u− 1

2
v, w

)
.

For the Dunkl operators associated to this new coordinate basis we find the following explicit
expressions: we have Dw = ∂w, while

Du = ∂u + κ

(
1− g12
u

+
1− g23
u−
√

3v
+

1− g31
u+
√

3v

)
, Dv = ∂v + κ

(√
3

1− g23
−u+

√
3v

+
√

3
1− g31
u+
√

3v

)
.

The commutation relations of Du,Dv,Dw and u, v, w are given in Table 2. We see that in the

Table 2: Commutation relations Du,Dv,Dw and u, v, w.

[↓,→] u v w

Du 1 + κ(2g12 + 1
2g23 + 1

2g31) −κ
√
3
2 (g23 − g31) 0

Dv −κ
√
3
2 (g23 − g31) 1 + κ(32g23 + 3

2g31) 0
Dw 0 0 1

coordinate frame of u, v, w the action of the reflection group is restricted to the (u, v)-plane.
As u, v, w form again an orthonormal basis of R3, the Laplace-Dunkl operator (2.3) can also be

written as
∆ = D2

u +D2
v +D2

w .

By applying the same coordinate change (5.2) to the Clifford generators e1, e2, e3, that is

eu =
1√
2

(e1 − e2), ev =
1√
6

(e1 + e2 − 2e3), ew =
1√
3

(e1 + e2 + e3) ,

the Dirac-Dunkl operator can now be written as

D = euDu + evDv + ewDw .

Similarly, in these new coordinates the vector variable becomes x = ueu + vev + wew which squares
to x2 = u2 + v2 +w2 and the Euler operator is given by E = u∂u + v∂v +w∂w. The triple eu, ev, ew
forms another basis of the Euclidean Clifford algebra since one readily verifies by means of the
anticommutation relations of e1, e2, e3 that also

e2u = e2v = e2w = 1, {eu, ev} = {ev, ew} = {ew, eu} = 0 .

For practical purposes, we will realize eu, ev, ew by the Pauli matrices

eu =

(
0 1
1 0

)
, ev =

(
0 −i
i 0

)
, ew =

(
1 0
0 −1

)
. (5.3)

The generators of the realization of S3 within OSt3 in this framework become

G12 = g12eu , G23 = g23
1

2
(−eu +

√
3ev) , G31 = g31

1

2
(−eu −

√
3ev) ,

all of which anticommute with D. In terms of the Pauli matrices, we have

G12 = g12

(
0 1
1 0

)
, G23 = g23

(
0 ω2

ω 0

)
, G31 = g31

(
0 ω
ω2 0

)
. (5.4)
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Similar to (3.2), in the u, v, w coordinates we obtain the following symmetries commuting with D:

Ouv = uDv − vDu +
1

2
euev + κeuev(g12 + g23 + g31) , (5.5)

Ovw = vDw − wDv +
1

2
evew + κ

3

4
evew(g23 + g31) + κ

√
3

4
eweu(g23 − g31) , (5.6)

Owu = wDu − uDw +
1

2
eweu + κeweug12 + κ

1

4
euev(g23 + g31) + κ

√
3

4
evew(g23 − g31) . (5.7)

By direct verification after applying the coordinate change (5.2), the operators of Definition 2 now
turn out to be

O0 = −iOuv, O+ = iOwu +Ovw, O− = iOwu −Ovw ,

and N± follows from the new expressions for the transpositions (5.4), while

O123 = −1

2
euevew − κ(g12 + g23 + g31)euevew +Ouvew +Ovweu +Owuev .

The angular Dirac-Dunkl operator Γ is again related to O123, we have O123 = (Γ + 1)euevew.

5.1 A basis for the space of Dunkl monogenics

Next, we construct the vectors upon which these operators act. As already alluded to, the
representation space will consist of Dunkl monogenics, homogeneous polynomials in the kernel of
D. Except for the lowest degree or dimension, finding explicit expressions for a basis of the space
of Dunkl monogenics is far from trivial. For an abelian reflection group, as in ref. [3], one can
single out coordinates and, starting from polynomials on R, gradually work up in dimension by
means of Cauchy-Kowalevsky extension maps. For a non-abelian reflection group G, however, one
is not able to single out coordinates at will, as the orbits of the action, or the conjugacy classes,
of G are not singleton sets. The advantage of the coordinate change (5.2) is that the coordinate
w does become invariant under all reflections. This means that for the coordinate w we do in
fact have a Cauchy-Kowalevsky extension map (see Proposition 9) which allows us to move from
two-dimensional space to three dimensions. On R2, Dunkl monogenics follow from the expressions
for the Dunkl harmonics which were determined already in [6].

When working in R2 spanned by the coordinates u and v, it is useful to have a separate notation
for the two-dimensional analogues of the Dirac-Dunkl operator, vector variable and Laplace-Dunkl
operator:

D̃ = euDu + evDv , x̃ = euu+ evv , ∆̃ = D2
u +D2

v = D̃
2
, x̃2 = u2 + v2 . (5.8)

They satisfy the (anti)commutation relations, readily verified by means of the relations in Table 2,

[D̃, x̃2] = 2x̃, {D̃, x̃} = 2(Ẽ + 1 + 3κ), Ẽ = u∂u + v∂v , (5.9)

where the Euler operator Ẽ when acting on a polynomial measures the degree in u and v.
Finally, for the following proposition, the hypergeometric series [1, 22] is defined as

2F1

(
a, b

c
; z

)
=
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (5.10)

where we use the common notation for Pochhammer symbols [1, 22]: (a)0 = 1 and (a)k = a(a +
1) · · · (a+ k − 1) for k = 1, 2, . . . .
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Proposition 7. For a non-negative integer k, the polynomials φ+k and φ−k defined as

φ±k (u, v) = (u± iv)k
(κ+ 1)n

n!
2F1

( −n, κ
−n− κ ;

(−u± iv)3

(u± iv)3

)
, n = bk/3c (5.11)

form a basis for the space of Dunkl harmonics Hk(R2) = ker ∆̃ ∩ Pk(R2).

Proof. On two dimensional space R2 the Laplace-Dunkl operator ∆̃ can be factorized as

∆̃ = D2
u +D2

v = (Du + iDv)(Du − iDv) .

For reflection groups on R2, the analogues of harmonic polynomials for the Dunkl Laplacian were
determined explicitly already in [6]. The expression (5.11) is the hypergeometric form of polynomials
satisfying (see [6])

(Du + iDv)φ+k (u, v) = 0, (Du − iDv)φ−k (u, v) = 0 ,

and hence ∆̃φ±k (u, v) = 0. For k ≥ 1 the dimension of Hk(R2) is 2 so φ+k and φ−k form a basis, while
the dimension of H0(R2) is 1 in accordance with φ+0 = 1 = φ−0 .

Note that the polynomial φ−k is simply the complex conjugate of φ+k . These polynomials can also
be written in terms of the Jacobi polynomials [17], which are defined in terms of the hypergeometric
series as

Pα,βn (x) =
(α+ 1)n

n!
2F1

(−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
. (5.12)

By means of the identity

(x+ y)nP (α,β)
n

(
x− y
x+ y

)
=

(α+ 1)n
n!

xn 2F1

(−n,−n− β
α+ 1

;−y
x

)
, (5.13)

we can write (5.11), denoting z = u+ iv and z = u− iv, as

φ+k (u, v) = (−1)nzk−3n(z3 + z3)nP (−n−κ−1,−n−κ)
n

(
z3 − z3
z3 + z3

)
, n = bk/3c . (5.14)

We use the previous result to obtain spinor-valued polynomials in the kernel of the two-
dimensional Dirac-Dunkl operator D̃ = euDu + evDv. Recall that for the three-dimensional Clifford
algebra realized by the Pauli matrices, a two-dimensional Dirac spinor representation is S ∼= C2,
with basis spinors χ+ = (1, 0)T and χ− = (0, 1)T .

Proposition 8. For a non-negative integer k, the polynomials

ϕ+
k (u, v) = φ+k (u, v)χ+ and ϕ−k (u, v) = φ−k (u, v)χ− (5.15)

form a basis for the space Mk(R2,C2).

Proof. Acting with D̃ = euDu + evDv on ϕ+
k we find using the Pauli matrices (5.3)

D̃ϕ+
k (u, v) =

(
0 1
1 0

)
Duφ+k (u, v)

(
1
0

)
+

(
0 −i
i 0

)
Dvφ+k (u, v)

(
1
0

)
= (Du + iDv)φ+k (u, v)

(
0
1

)
which vanishes by definition of φ+k . In the same way we find D̃ϕ−k (u, v) = 0. As the dimension of
Mk(R2,C2) is 2, ϕ+

k and ϕ−k form a basis.
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For non-negative κ, there exists a Fischer decomposition for Dunkl monogenics in the sense of
the following direct sum decomposition

Pn(R2)⊗ C2 =
n⊕
k=0

x̃n−kMn(R2,C2) .

Every spinor-valued polynomial on R2 can thus be written in terms of Dunkl monogenics on R2,
for which a basis is given in Proposition 8. The next step consists of moving from R2 to Dunkl
monogenics on R3 by means of a Cauchy-Kowalevski isomorphism.

Proposition 9. For a non-negative integer n, a basis for the space Mn(R3,C2) is given by the
2n+ 2 polynomials

ψ±n,k(u, v, w) = CKw

[
x̃n−kϕ±k (u, v)

]
, k ∈ {0, 1, . . . , n} (5.16)

where the Cauchy-Kowalevski isomorphism is given by

CKw : Pn(R2)⊗ C2 →Mn(R3,C2) : pn(u, v) 7→ exp(−wewD̃)pn(u, v) . (5.17)

Note that as pn(u, v) is a polynomial of degree n, this reduces to the finite sum

CKw

[
pn(u, v)

]
= exp(−wewD̃)pn(u, v) =

n∑
a=0

(−1)a

a!
wa(ewD̃)apn(u, v) .

Proof. We show that the Cauchy-Kowalevski extension CKw maps Pn(R2)⊗ C2 into Mn(R3,C2).
Let pn(u, v) ∈ Pn(R2)⊗ C2. Using Dw = ∂w and the commutation relations in Table 2 we obtain

DCKw

[
pn(u, v)

]
= (D̃ + ew∂w)

n∑
a=0

(−1)a

a!
wa(ewD̃)apn(u, v)

=
n−1∑
a=0

(−1)a

a!
waew(ewD̃)a+1pn(u, v) +

n∑
a=1

(−1)a

(a− 1)!
wa−1ew(ewD̃)apn(u, v)

which clearly vanishes. Hence, as the map (5.17) preserves the degree of a polynomial we have
CKw

[
pn(u, v)

]
∈Mn(R3,C2).

The inverse of the isomorphism CKw is given by the map which evaluates a function in w = 0.
As the degree of a polynomial in Mn(R3,C2) is fixed, this inverse is clearly injective.

Note that ψ±n,k given by (5.16) can also be written in terms of Jacobi polynomials (5.12) by
working out the explicit action of the map (5.17). To achieve this, we first state a result, which
follows from the commutation relations (5.9). For Mk ∈Mk(R2,C2) and non-negative integers a, b,

D̃
a
x̃bMk = dka,b x̃

b−aMk , (5.18)

where dka,b = 0 for a > b, and otherwise distinguishing between even and odd a, b one has

dk2α,2β = 22α(−β)α(−β − k − 3κ)α, dk2α,2β+1 = 22α(−β)α(−β − k − 1− 3κ)α,

dk2α+1,2β = −22α+1(−β)α+1(−β − k − 3κ)α, dk2α+1,2β+1 = −22α+1(−β)α(−β − k − 1− 3κ)α+1 .

Using now in turn the identity (5.18), D̃ew = −ewD̃ , (2α)! = 22α(1)α(1/2)α and the identity (5.13),
we obtain

ψ±n,k(u, v, w) = Ψn−k(x̃, w)ϕ±k (u, v) (5.19)
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with ϕ±k given by (5.15) (see also (5.14)), and

Ψn−k(x̃, w) =
β!

(12)β
(u2 + v2 + w2)β (5.20)

×

P
(− 1

2
,k+3κ)

β

(
u2+v2−w2

u2+v2+w2

)
− ewwx̃

u2+v2+w2P
( 1
2
,k+1+3κ)

β−1

(
u2+v2−w2

u2+v2+w2

)
if n− k = 2β ,

x̃ P
(− 1

2
,k+1+3κ)

β

(
u2+v2−w2

u2+v2+w2

)
− eww β+k+1+3κ

β+ 1
2

P
( 1
2
,k+3κ)

β

(
u2+v2−w2

u2+v2+w2

)
if n− k = 2β + 1 .

5.2 Representations

Given a non-negative integer n, we show that the basis vectors ψ±n,k for k ∈ {0, 1, . . . , n} transform
irreducibly under the action of the algebra OSt3. As the elements of OSt3 (anti)commute with the
Dirac-Dunkl operator, the kernel of the Dirac-Dunkl operator is invariant under the action of OSt3.
Furthermore, the elements of OSt3 are grade-preserving so the space Mn(R3,C2) is invariant under
the action of OSt3.

The spinor ψ±n,k corresponds, up to rescaling, precisely to the basis vector w±k of Proposition 6.
We establish this as follows. The two-dimensional vector variable and Dirac-Dunkl operator (5.8)
generate another realization of the Lie superalgebra osp(1|2). Its Scasimir element, similar to (2.8),
is given by

Γ̃ + 1 =
1

2
[D̃, x̃]− 1

2
=

1

2
[Du, u] +

1

2
[Dv, v] + euev(vDu − uDv +

1

2
[Du, v]− 1

2
[Dv, u]) .

By means of the commutation relations in Table 2 we find the explicit form

Γ̃ + 1 =
1

2
+ κ(g12 + g23 + g31)− euev(uDv − vDu) .

Comparing with expression (5.5) we observe that Γ̃ + 1 = −euevOuv, and hence O0 = −ieuev(Γ̃ + 1).
Similar to (5.1), now using (5.9) and ϕ±k ∈Mk(R2,C2) = ker D̃ ∩ (Pk(R2)⊗ C2) we find

(Γ̃ + 1)ϕ±k (u, v) =
1

2
([D̃, x̃]− 1)ϕ±k (u, v) =

1

2
(D̃ x̃− 1)ϕ±k (u, v)

=
1

2
({D̃, x̃} − 1)ϕ±k (u, v) =

1

2
(2Ẽ + 2 + 6κ− 1)ϕ±k (u, v)

which, as the Euler operator Ẽ = u∂u + v∂v measures the degree of a polynomial in u and v, gives

(Γ̃ + 1)ϕ±k (u, v) =
(
k +

1

2
+ 3κ

)
ϕ±k (u, v) .

Using −ieuevχ± = ±χ±, which is readily verified using the Pauli matrices (5.3), the action of O0

on ϕ±k then follows to be

O0ϕ
±
k (u, v) = ±

(
k +

1

2
+ 3κ

)
ϕ±k (u, v) .

Since O0 commutes with D̃, x̃ and eww we also have, by definition of ψ±n,k,

O0ψ
±
n,k = ±

(
k +

1

2
+ 3κ

)
ψ±n,k .

Finally, as O123 = (Γ + 1)euevew and ψ±n,k ∈Mn(R3,C2), by (5.1) we find the action

O123ψ
±
n,k = i(n+ 1 + 3κ)ψ±n,k .
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To conclude, we consider the action of the S3 realization on a spinor ψ±n,k. Using G12ϕ
±
k =

(−1)kϕ±k , the expressions (5.4) and the fact that G12 anticommutes with x̃ and D̃, we find

G12ψ
±
n,k = (−1)n−k(−1)kψ∓n,k = (−1)nψ∓n,k .

Similarly, using now G23ϕ
+
k = (−1)kω±(1−k)ϕ+

k we have

G23ψ
±
n,k = (−1)nω±(1−k)ψ∓n,k .

This shows, up to rescaling, the correspondence of ψ±n,k with the vector w±k of Proposition 6.
The abstract inner product on the unitary representation (see section 4.4) can now also be

realized explicitly. An integral formulation follows by combining the inner product on the spinor
space C2 with the inner product on the unit sphere for Dunkl harmonics [9]

〈Φ1,Φ2〉 =

∫
S2

(Φ†1 · Φ2)h
2
κ(u, v, w) dudvdw ,

where hκ(u, v, w) is the S3 invariant weight function [9]

hκ(u, v, w) = |u|κ|(u2 − 3v2)/4|κ .

Using this inner product, the polynomial ψ±n,k given by (5.20) can be normalized to a wavefunction

corresponding precisely to the normed vector w±k of Proposition 6. The orthogonality can be verified
by means of the orthogonality relation of the Jacobi polynomials [17].

6 Conclusion

We presented the symmetry algebra generated by the total angular momentum operators, appearing
as constants of motion of the S3 Dunkl Dirac equation. The latter arises as a deformation of the
Dirac equation by using Dunkl operators instead of partial derivatives as momentum operators.
This corresponds to the addition of a specific potential term to the Dirac Hamiltonian. The Dunkl
total angular momentum algebra is a one-parameter deformation of the Lie algebra so(3) involving
reflections. We have classified all finite-dimensional irreducible representations of this algebra
and we have determined the conditions for the representations to be unitarizable. Among the
obtained classes of irreducible representations of the symmetry algebra, there is one class of unitary
representations for arbitrary positive parameter value. This last class admits a natural realization
by means of Dunkl monogenics, for which we constructed an explicit basis.

The current results on the symmetry algebra remain to hold when additional potential terms
are added to the Hamiltonian. Indeed, the Dunkl total angular momentum operators also commute
with functions of the vector variable x = e1x1 + e2x2 + e3x3, and thus with a spherically symmetric
potential as x2 = |x|2. Furthermore, one may add a deformed spin-orbit interaction term of the
form (2.9) and retain the Dunkl total angular momentum components as conserved quantities.

In future work we aim to elevate the setting of the current paper in two directions. On the one
hand, one can consider the N -dimensional case where the reflection group associated to the Dunkl
operator is the symmetric group SN . On the other hand, it would be interesting to consider more
involved root systems (as was done for the type B3 in [14]), first in three dimensions and then also
in higher dimensions. We look forward to tackle these problems using the insights obtained here.
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Figure 1: Graphical representation of the basis vectors according to their eigenvalues for O0 and
G123. On the horizontal axis, the shorthand notation O0w

±
k = ±λkw±k is used, and on the vertical

axis the three values 1, ω, ω−1 are repeated periodically. There are two main actions: 1) The
arrows represent the actions of K+ and K− through which one moves between the vectors in one
half of the vector space. 2) In this picture, the action of an odd element of S3 corresponds to a
reflection through the origin, as illustrated for w+

0 and w−0 by the dashed line. The action of O± is
a combination of the two main actions.
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