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Abstract. After introducing Wigner Quantum Systems, we give a shoriexe
of the one-dimensional Wigner Quantum Oscillator. Then wene the three-
dimensionaN-particle Wigner Quantum Oscillator, and its relation te the su-
peralgebra((1|3N). In this framework (and first foN = 1), energy, coordinates,
momentum and the angular momentum of the particles aretigesd.

Wigner Quantum Systems (WQSs) are quantum systems in whechathonical com-
mutation relations (CCRs) are replaced by a compatibility ¢dambetween the Heisenberg
equations and Hamilton’s equations. By dropping the CCRs, W(8sahatural framework
for quantum mechanics with non-commutative coordinatesrehive consider in particular
the three-dimensiond-particle Wigner Quantum Oscillator (WQO). As an introdugtex-
ample, some properties of the one-dimensional WQO are redewith an emphasis on the
different particle probability distributions (as compar® the ordinary one-dimensional os-
cillator). For the three-dimensionBl-particle WQO, a solution related to the Lie superalge-
brasl(1/3N) is considered. FON = 1 we investigate the operators corresponding to coordi-
nates, momentum and angular momentum of the particle inss dfarepresentation spaces.
Remarkable properties include the discrete spectrum ofdauate operators and their non-
commutativity (and the same for the momentum operators)s fids some unconventional
consequences for the particle localisation. We comparesirthese properties with those of
the canonical quantum oscillator (CQO). Finally, the casgjémeraNN is described.

Let H be the Hamiltonian of a system expressed in terms of the auates and mo-
menta. This system is a WQS [1, 2] if all postulates of ordingmantum mechanics hold,
ie.

P1 The state spacd is a Hilbert space. To every physical observeblthere corresponds
a Hermitian (self-adjoint) operat@ acting inW.



P2 The observabl® can take on only those values which are eigen\falué dihe expec-
tation value of the observab@in a state is given by(O)y = (,00)/ (¢, ).

But the postulate on canonical commutation relations (CCRegpisiced by:

P3 In the Heisenberg picture, Hamilton’s equations and thesétderg equations hold and
are identical (as operator equationsyVin

Let us consider the harmonic oscillator Hamiltonian for ateyn ofN particles in three di-
mensions,
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in terms of the 6 variablesRgk andPyy (k=1,2,3, a = 1,2...,N) interpreted as the Carte-

sian coordinates and momenta of Meparticles. By postulat®3, the 3D vector operators
R1,...,Rn andP4,..., Py must satisfy Hamilton’s equations

A
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Pq = —msza, Ra = apa, (2
and the Heisenberg equations
= = [H ) Ra]» (3)

fora =1,2,...,N. Moreover (2) and (3) should be identical as operator eqgnatiThis leads
to the following compatibility conditions (CCs):
~ ,\ o in-
[H,Py] = ifmw?Ry, [H,Rq] = ——Pa. (4)
The task is now to find operator solutions of (4). This turnstowbe a difficult problem, for
which not all solutions are known, except for the case of aréigle in one dimension. Let us
therefore first consider the Hamiltoni&hfor the one-dimensional WQO,

2 mw?

~ p_ mw*= 2
A=omt 2™ ®)
depending upon the 2 variables (operatorahdp. The compatibility conditions (4) are
ALp=iima?,  [A.f) = p, ©

Wigner solved these equations [3], leading to the first examia “Wigner quantum system”.
The solution can be obtained by introducing two new opesdtorandb™:

mow . . 1
=\ 3 T 2mr @

Then it follows thatd = "@{b~ b*}, and the compatibility conditions (6) read
[{b™,b"},b*] = +2b*. (8)

These relations correspond to the defining relations of tbesnuperalgebrasp(1|2) Further-
more, the self-adjointness #f, f and p'lead to the star conditiond™ = H and (b*)" = b*.
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Thus one is led to the classification of star representatibise Lie superalgebrasp(1|2).
These representations are known: they are of &, ) and labelled by a positive real num-
bera. The actions of the operatdns on the orthonormal basis vectas) (n > 0) are:

b™|2n) =+/2(n+a)|2n+1),  b"|2n+1)=+/2(n+1)|2n+2), 9)
b-|2n) =v2n|2n—1), b |2n+1) =+/2(n+a)|2n). (10)

Only fora=1/2 one finds back the canonical case. In general, one has
H [n) = (n+a)hw|n). (11)

So the energy levels are equidistant, and in unitxethey are given b¥, = n+a. From (7),
one findgp, f] = ih(b™b~ —b~b™). Then the action (9)-(10) yields

[,F]|2n) = —2aifl|2n),  [p,f]|2n+1) = —2(1— a)ifi|2n+1). (12)

So again it is easy to see that #oe= 1/2 one gets the canonical commutation relafipsf] =
—ih. But this also shows that there are non-canonical solutionthis WQS.

In order to discuss position probabilities for this WQO, Bet m= w = 1. Using
F = (b* 4+b~)/+/2, one finds now from (9) and (10)

7(\/_|2n 1) ++/2(n+a)|2n+ 1)),
f|2n+1: \/ (n+a)|2n)++/2(n+1)|2n+2)). (13)

This means that is (or extends to) an unbounded Jacobi operatof2¢@., ). In fact, this
Jacobi operator corresponds to the generalized Hermi;mpmiialer(]a_l/z) (x), orthogonal
over R with respect to the weight functiomza_le_xz [4, p. 157] @ = 1/2 corresponds to
the usual Hermite polynomials). So the spectrumn @& R. In order to see this, consider the
formal eigenvectors(x) of f, for the eigenvalue, and write them as(x) = 5,,_oan(X) | n).

The equationVi(x) = X v(x) leads, using (13), to

Xa2n(X) = vNazn-1(X) +vN+adani1(X),  Xdani1(X) = v/N+adan(X) + v+ 1aan2(X).
(14)

f|2n) =

1/2)

Comparing this with the recurrence relatlonsl-lzﬁi?1 (x) yields

Z)ha Y2 (x) X2~ 2exp(—2/2) ), (15)

whereh(a 1/2)( X) is thenormalized generalized Hermite polynomial. By orthogonality it fol-
lows that (see also [5])

n) = /+ i) (x) X222 exp(—x?/2)v(x)dx (16)

This means that the probability distribution for the WQO lgelocated at positiorx, when

(@-1/2) (1) 2 |y |28 12 "
the system is in the stationary stgte), is given by|( hy (X)) |x|“*~*e~*". The position

probability distributions for the WQO show deviations wittspect to those of the CQO. For
example, the position probabilities for the ground state- Q) are plotted in Figure 1.
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Figure 1. Position probability distribution for the ground state- 0 fora= 1/4
(full line), for a= 1/2 (the canonical case, grey line) and &+ 1 (dotted line).

Let us next consider the simple case of one patrticle in thireemkions. The general
compatibility conditions (4), witiN = 1, also admit solutions in the context efp(1|6) that
can be seen as deviations of the canonical solutions. Howthe state spaces of general
0sp(1/6) solutions are not easy to describe. Another, and easiss ofassolutions was first ob-
served by Palev [1], and is related to the Lie superalgel§ia3). To describe these, consider
new (unkown) operators as linear combination of the old ¢kes1,2, 3),

T N
A= ZﬁRkil meh_H“ (17)

where we have dropped the indeXsince there is only one = 1). In terms of these operators,
(1) become#d = %fizﬁzl{A;f,A;}, and the compatibility conditions (4) read:

3
z AT A LA = F2AL (18)
The following yields an important family of solutions:

[{AiijA?}aAlj] = 5J'|<Ai+ - (}J'Alj7 [{Aifr?Aji}aAl:] = _dkA; + A {AiivA'i} = (219)

It is easy to verify that (19) implies indeed (18). The mairsetvation of [1] is that the
operators%;t (k=1,2,3), subject to the above relations (19), are odd elementsrgéng the
Lie superalgebral(1|3). They are sometimes referred to as creation and annilrlaperators
(CAOs) ofsl(1]3).

The operator®R = (Ry, Ry, R3) and P = (P, P, P3) of the WQO are interpreted and
referred to as the position and momentum operators. Wednt®one more physical notion,
namely the angular momentum, to be definetilas: (M1, My, M3) with [2]

R 1 3 3

Mj = _ﬁk., eim{RGA} = k;l g {ALA T (20)

wheregjy is the familiar antisymmetric tensor. The compondﬂ;s(j =1,2,3) generate an
s0(3) algebra, and they commute with the Hamiltonian.

In order to investigate physical properties of the WQO, wedrteeconsider state spaces
in which the operators act. According to the postulatessthte spac®V is a Hilbert space,

4



and(A?E)’r = Af. The last condition implies that the operat@ﬁjé act in “unitary” (i.e. star)
representations afi(1/3). Instead of considering all star representations, we shadly only
one class of them, namely the so-called Fock type represamd6] ofs((1|3). The advantage
of these representations is the fact that all operators dau@ple action in a particular basis.
The Fock representatio are characterized by a positive integgrand are determined
by the relationsA; |0) = 0 andA;A;f\O) = pdjk|0), where |0) is some generating vector.
W = W(p) is a finite dimensional covariant irreducible represeatafirrep) with highest
weight(p,0,0). Itis atypical irrep whenp > 3 andatypical whenp < 3 [7]. A basis vector
of W(p) is characterized by a string of 0’s and 1&= (6, 6, 83), with 6 € {0,1}. Then, an
orthonormal basis o (p) is given by the vectors

19i0) = Ipi 6, 62,80 — | P )% ) ), @)

whereq = 2?219, must satisfy: 6< g < min(p,3). The action of the CAOs reads:

A Ip©) = 6(-1%\/p-q+1|p;O); (22)
AT IpO) = (1-8)(-1)¥/p—a|p;e), (23)

wherey; = ¥ ;. 6;, and| p; ©); stands for the state obtained frgmp; ©) after the replacement
of 6 by 6; = (1— 6). Some physical properties can now be deduced from the fitpw
relations [7]:

n hw

HIp©) == (3p-29) |pO), (24)
~o [0 if 6, = 6, = 65

M%1p;©) = { 2|p;©) otherwise ’ (25)
. h

R%p;0) = o ~(3p—20)|p; ©), (26)
A h

Rp:©) = 5~ (p—a+60|p:©) (27)

So the energy levels are equidistant, in stepswf2. The angular momentum of the particle
is 0 or 1. In fact, forp > 2 the decomposition with respect4o(3) is (1) & (3) & (3) & (1).
The most striking differences are a result of the non-coratiuity of the position operatorig,
(and similarly for the momentum operators). Quite surpgbi, however, thesquares of the
position (and momentum) operators do commute (and are iggio the basis considered).
As a consequence of this and of the relations (26)-(27)eifsystem is in a fixed statg; ©),
the particle will be detected on one of the eight “nests” wittordinates(+r,+rp, £r3),

Mk =1/ s/ (P— g+ 6), on a sphere with radiug/h(3p — 2g)/(2mw) [7]. Note that by the
non-commutativity of the coordinates the particle canmobigalised precisely: it is the choice
of coordinates to be measured that leads to the observedsvallne main feature however is
that the spectrum of the operatdgs, Iiﬁ and R is finite (and thus discrete), quite different
from the canonical solution.

It is interesting to compare properties of the canonicaltsmh (in the Fock space) with
the representation spaié = @E’:OW(p) of the WQO. In Table 1, we list (according to in-
creasing values of energy) the energy values (in unitBw), the multiplicity (number of
states with this energy), the angular momentum vaMeand the expectation values (cft2>
in the stationary states (in units lbpf mw).




Table 1. Summary of some physical properties of the WQO compared tC©®®

WQO spacaV: CQO Fock space:

E mult M (R? E mult M (R?)

0 1 0 0 3/2 1 0 3/2
1/2 3 1 12 5/2 3 1 5/2
1 3 1 1 712 6 2,0 712
32 2 0,0 32 9/2 10 3,1 9/2
2 3 1 2 11/2 15 4,2,0 11/2
52 3 1 52 13/2 21 53,1 13/2

2

3 0,0 3 15/2 28 6,4,2,0 15/2

For theN-particle WQO [8] one introduces new operatxgﬁ< (k=1,2,3,a=1,...,N),
with relations similar to (19). These operators generagelile superalgebral(1/3N), and
provide a solution for the compatibility conditions for tNeparticle case. The corresponding
Fock spaces are given by representatddf{p) of s[(1|3N), with basis state$p;®), where
@ is now a string of 8l 0’'s or 1's. The energy spectrum is again equidistant. Eacticfga
has angular momentum O or 1, and the angular momentum of thelete system follows
from the branching rule ofl(1|3N) to so(3). The configuration of the system can be seen as
a superposition of the single particle positions (with thevpusly described properties such
as a discrete spectrum of position operators and the coesegs of non-commutativity). The
atypical representations (those withx 3N) give rise to certain exclusion phenomena.
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