The “odd” Gelfand-Zetlin basis for
representations of general linear Lie
superalgebras
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Abstract We introduce a new Gelfand-Zetlin (GZ) basis for covariant representa-
tions of gl(n|n). The patterns in this basis are fixed according to a chain of subal-
gebras, all of which are Lie superalgebras themselves. The basic generators consist
of odd elements only. This GZ basis is interesting because the limit when n goes
to infinity becomes clear. This could be used in the description of systems with an
infinite number of parabosons and parafermions.

1 Introduction and motivation

The generalization of bosons and fermions to so-called parabosons and parafermions
was initiated by Green in 1953 [1]. In this process, the (anti-)commutation relations
for the boson and fermion operators were replaced by certain triple relations [1, 2].
This allows more freedom when it comes to representations: where the standard
bosons and fermions (with certain conditions such as a unique vacuum vector) al-
low only one irreducible unitary representation (namely the Fock space), parabosons
and parafermions allow several such representations each characterized by a num-
ber p, the order of statistics. For the case p = 1, the relations for parabosons and
parafermions reduce to those for standard bosons and fermions.

The above generalization is especially interesting because of the underlying
mathematical structure. A system consisting of k parafermions fji (G=1,...,k)
is known to correspond to the defining relations of the Lie algebra so(2k+ 1) [3, 4].
Similarly, a system consisting of n parabosons bf (j=1,...,n) corresponds to the
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defining relations of the Lie superalgebra osp(1|2n) [5]. When it comes to a com-
bined system of k parafermions and n parabosons (referred to as the parastatistics
operators), there is some choice for the mixed triple relations [2]. The most natural
choice implies that such a combined system corresponds to the defining relations of
the Lie superalgebra osp(2k + 1|2n) [6].

The construction of the corresponding parastatistics Fock space of order p, which
corresponds to an infinite-dimensional unitary representation of osp(2k + 1|2n), is
far from trivial. This construction, including the explicit action of the parastatistics
operators in an appropriate basis, was completed only recently [7].

For people working in quantum field theory, the main interest is in such systems
with an infinite degree of freedom, i.e. where k,n — oo. In order to consider this,
recall that the main ingredient in the construction of the parastatistics Fock space of
order p is the branching osp(2k + 1|2n) D gl(k|n), and the use of Gel’fand-Zetlin
(GZ) patterns of covariant representations of gl(k|n) to label the states of this Fock
space. The GZ-basis for covariant representations of gl(k|n) was constructed in [8],
and proceeds according to the subalgebra chain

gl(kln) D gl(kln—1) D --- D gl(k|1) D gl(k) Dgl(k—1) D --- D gl(2) D gl(1).
The labels of the GZ-basis vectors for gl(k|n) follow similar rules as those of the
classical GZ-basis for the Lie algebra gl(n) [9]. For example, a basis vector for a
covariant representation of gl(4/3) is given by

Hi7 H27 H37 N47;M57 He7 H77
Hie Hoe H36 IJ46:IJ56 Hee

His Hos M3s Has\Hss
Hig Hog4 H34 Hag

M3 po3 33

Hiz U2 I

M1 f

In such a p-triangle, all y;; € Z, satisfying conditions such as

e betweenness conditions (1 <i<j<k—lork+1<i<j<k+n-—1)
Wij+1 = Mij 2 Wit1,j+1

e 0O-conditions or 0-1-conditions (1 <i<k, k+1<s<k-+n)
His _,ui,sfl = ei,sfl € {07 1}

For a complete description of the conditions, see [8]. Note also that the top row of
the above p-triangle corresponds to the highest weight of the covariant represen-
tation. A GZ-basis also includes the explicit action of a set of generators on the
basis vectors: for the standard GZ-basis given above, this set consists of the Cheval-
ley generators of gl(k|n) [8, Theorem 7] (corresponding to the distinguished set of
simple roots).

Although this GZ-basis is perfectly well suited for the finite rank case of gl(k|n),
the problem is that it cannot be extended to a class of irreducible representations
(irreps) of the infinite rank Lie superalgebra gl(eo|oo). In order to solve this, one
needs to use a different GZ-basis according to a different chain of subalgebras:
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gl(nn) Dglinln—1)Dglln—1n—1) D glln—1n—-2) > --- D gl(1|1) D gl(1).
This can then be “reversed” in order to give a GZ-basis for gl(eo|oo):
al(1) = gl(1]0) € gl(1]1) C gl(2]1) C gl(2[2) C gl(3]2) C gl(3[3) C --- C gl(ee]oo).
Thus, first we need to construct a new GZ-basis (the “odd” GZ-basis) for gl(n|n)
according to the above subalgebra chain. A striking property is that the generators
for which the action takes its simplest form is now different: they are the (positive
and negative) root vectors corresponding to a non-distinguished simple root system
of gl(n|n) consisting of odd roots only (justifying the name “odd” GZ-basis).

All results of the current proceedings contribution have been given in [10]. Here
we shortly review the problem and list some additional properties and remarks.

2 Overview of the main results

The Lie superalgebra g = gl(k|n) is defined by [11]:
A B
st = (= (¢ )

with A € Mk, B € My, C € My and D € My, The even subalgebra gl(k|n);
has B =0 and C = 0; the odd subspace gl(k|n); has A =0 and D = 0. It is

convenient to use the ordered set {—k,...,—2,—1;1,2,...n} as index set for the
rows and columns of the above matrices. The Weyl basis is given by elements E;;
(i,j=—k,...,—2,—1;1,2,...,n), with Lie superalgebra bracket

HEabaEcdH = 5bcEad - (71)deg<E“b)deg(ECd>6adEcb-
The Cartan subalgebra § of g is span(E;;) with j = —k,...,—2,—1;1,2,...,n. The
dual space h* (or weight space) is spanned by the forms & (i = —k,...,—2,—1;

1,2,...,n). For A € b*,
A= Z:’=_k (i0) mi &,
the components are written as (r = k+n)
m]" = [m_gpy...,m_ppym_y 3 Moy, My

The roots of gl(k|n) are the elements & — €; (i # j); the positive roots consist of & —
€ (i < j), and the positive odd roots of & — &; with i < 0 and j > 0. The distinguished
set of simple roots [11] is:

E k=€ k41 Ettl —E 42,1 —EL,EL — &2y, 1 — &

In general, an integral dominant weight A corresponds to a finite-dimensional
irrep V(A) and vice versa. Here, we are only dealing with covariant representations:
these are labelled by a partition A = (41,4, ...,4;) such that A is inside the (k,n)-
hook: Ay < n [12]. The corresponding highest weight: A* = [m]” is determined
by [13]

Mip = Myiv1, —k<i<—1,
miy = max{0,A/ —k}, 1<i<n,

where A’ is the partition conjugate to A. Conversely, if [m]" is integral dominant and
m_y, > #{i:mj >0, 1 <i<n} then this corresponds to covariant module with
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Ai=mi1, 1<i<k,
Mpi=#{jmj<i, 1<j<n}, 1<i<n.

The main property of covariant representations is that their character is known to be
a supersymmetric Schur function [12]. With x; = €% (i < —1) and y; = €% (1 < i),

charV([A}”]) = Sl(x]}a sy X9, X7 |ylay23' .. 7yn)'

(For convenience, we sometimes write ] instead of — j, as in the indices of the x’s).

Using properties of these supersymmetric Schur functions [14], one can “peel
off” a variable y, or a variable x;. This allows the decomposition of a covariant
representation of gl(n|n) according to the subalgebra chain gl(n|n) D gl(njn—1) D
gl(n— 1|n—1). Labelling the highest weights of the respective covariant represen-
tations as follows:

g[(n|n) A [m]r: [m—n.rw~~7m—2,rvm—1,r;m1r7m2ra~~~7mnr]
glinjn—1) < [m]’_1 = [M_p 1y M| 13 1y M1 p—1)
gl(n—1n—1) < [m]rizz[m*ﬂJrl.era--~amfl,r72;ml,r727--'7mnfl,r72]a

the decompositions gl(n|n) — gl(n|n — 1) and gl(njn — 1) — gl(n — 1jn— 1) are
given by, respectively,

V(im)") = @Vellml™),  V(im™") = DVil[m]"?)
k k

according to the rules

my—mj,—1 =0;,1 €{0,1} (—n<i<—1)

miyy —mj,—y and m; 1 —mip1, €Ly (1<i<n—1)
miyp—mi,—1=06,_2€{0,1} (1<i<n-—1)
4)miry—mip1 2 and miyy 0 —mip1,1 €Ly (—n<i< =2).

This process can now be repeated, and thus one obtains a new GZ-basis for covariant
representations V ([m]") of gl(n|n). The m-patterns of these vectors take the form

1
My m =i, © m3, mi, My may e Mp2y Mp_1, My

M1 M= g o0 M5, mi,r71:ml,r7] M1+ My—2 1 Mp_1,—1
My g M3 MY 0 M p—2 M2 p—2 " Mp—2 -2 Mp—],r-2
My 3" M3, 3 mi,r73:m1,r—3 My ,_3 - Mp_2,_3

Im)” = RO R

msy miy 'mi4 ma4

My miz o mi3
mi, mpp
mi; !
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where the inbetweenness conditions and 0-conditions to be satisfied for the integers
m;; follow from the above rules (1)-(4), and we have followed the same notational
convention as before: j stands for —j. The set of all vectors |m)" satisfying these
conditions constitute a basis in V ([m]") [10].

Recall that in the standard GZ-basis the action of the Lie superalgebra is deter-
mined by the (diagonal) action of the Cartan subalgebra elements E;; and the explicit
action of the Chevalley generators, i.e. the root vectors

E nnity- E o 1,E_11,E12,.. ., Eqn_1p,

corresponding to the simple roots (in the distinguished basis) and those correspond-
ing to the negatives of the simple roots. In this distinguished choice for the simple
roots, there is only one odd simple root, depicted by a cross in the Dynkin diagram:

o—0—--—0—®—0—-.-—O0— 0.

In the “odd” GZ-basis, the situation is different. For the GZ-patterns |m)”, one
can again give the (diagonal) action of the Cartan subalgebra elements E;;. The set of
positive root vectors for which an explicit action can be computed is now different
and given by

E i, E 01, E00,E 32,E 33,....,E_pny 1,E_yp,

consisting of odd roots only. (Similarly, there is the action of the corresponding set
of negative root vectors.) Thus the root vectors E correspond to the following
choice of simple roots (with only odd roots):

€1 —€,81 € 2,6 2—8,6—E3,..., 8 pt1 —E—1,E—1 —Ep, € — &
with a Dynkin diagram of the form
—R—R—R—R— —R—R—QR.
The main result of [10] is the determination of the explicit action of the above gen-
erators on the new GZ basis vectors. We shall not repeat these formulae here, but

just note that the action of the Ej; is a simple diagonal action on |m)", whereas the
action of the remaining generators takes the form

i—1
—i z‘m Z Alklm (k,2i—1) + ZAik|m)i<k-,2i*1)
k=—i k=1

E_iylm)” Z Bielm)” i +Zsz|m (k,20)
k=—i

i—1

E;_i|m)" Z Cix|m)” (k,2i—1) +Zczk|m (k,2i—1)
k=—i

Ei i 1|m Z le‘m (k,2i) +Zl)lkvn +(k,2i)°
k=—i
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Herein, |m):t(ij) is the pattern obtained from |m)" by replacing the entry m;; by
m;; & 1; the actual expressions for the matrix elements A, Bj, Cik, Dj can be found
in [10, Theorem 4]. Observe that the action of a generator makes changes in only
one row of the pattern of |m)".

The major advantage is that the “odd” GZ basis for gl(n|n) can easily be ex-
tended to the infinite rank Lie superalgebra gl(co|e0), defined as the set of matrices
withindexset {...,—3,-2,—1;1,2,3,...} =Z* =Z\ {0} with only a finite number
of nonzero elements, and with the appropriate bracket. A highest weight is an infi-
nite sequence [m] = [...,m_g,...,m_p,m_y;my,my,...,my,...|, and provided these
numbers satisfy certain conditions, the corresponding highest weight representation
V([m]) is a covariant representation. The basis vectors of V ([m]) consist of “infinite
GZ-patterns”: similar to those of gl(n|n), but with the above sequence as top row
and consisting of an infinite set of rows in a triangular pattern. These GZ-patterns
should — apart from inbetweenness conditions and 8-conditions — also satisfy a sta-
bility condition. The set of infinite stable GZ-patterns |m) form a basis of the irre-
ducible representation V ([m]), and the transformation of the basis under the action
of the gl(eo|e0) generators is easily obtained from the finite rank case [10].
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