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Abstract

Recently, a new definition for a Wigner distribution function for a one-dimensional finite
quantum system, in which the position and momentum operators have a finite (multiplicity-
free) spectrum, was developed. This distribution function is defined on discrete phase-space (a
finite square grid), and can thus be referred to as the Wigner matrix. In the current paper, we
compute this Wigner matrix (or rather, the pre-Wigner matrix, which is related to the Wigner
matrix by a simple matrix multiplication) for the case of the su(2) finite oscillator. The first
expression for the matrix elements involves sums over squares of Krawtchouk polynomials, and
follows from standard techniques. We also manage to present a second solution, where the
matrix elements are evaluations of Dyck polynomials. These Dyck polynomials are defined in
terms of the well known Dyck paths. This combinatorial expression of the pre-Wigner matrix
elements turns out to be particularly simple.

1 Introduction

In a previous paper [1], a new definition of a Wigner distribution function for a finite quantum
system [2–4] was developed, in particular for a quantum system in which the position operator
q̂ has a finite multiplicity-free spectrum {q0, q1, . . . , qN} and the momentum operator p̂ also has
a finite multiplicity-free spectrum {p0, p1, . . . , pN}. When the system is in a stationary state |n〉
(i.e. the eigenstate of some Hamiltonian operator Ĥ; n = 0, 1, . . . , N), the corresponding Wigner
function W (n; p, q) is defined on a square grid (p, q) ∈ {p0, p1, . . . , pN} × {q0, q1, . . . , qN}, so it can
be considered as an (N+1)× (N+1) matrix (the Wigner matrix). The assumption in [1] is that —
as in the continuous case [5–8] — the distribution averages for all “physical observables” of the form
paqb (a, b = 0, . . . , N) coincide with their quantum state averages for the corresponding operator
form (following Weyl’s association scheme). This approach led to a procedure to compute Wigner
matrices, involving Vandermonde matrices and their inverses. The Wigner matrices or discrete
functions thus defined also satisfy a number of properties similar to those of continuous Wigner
distribution functions.

One of the simplest examples of a finite quantum system is the so-called su(2) finite oscillator
model, introduced by Atakishiyev et al [9,10]. For this oscillator, the physical operators (Hamilto-
nian, position, momentum) are elements of su(2), acting in a finite (irreducible) su(2) representation
of dimension 2j + 1 (where j is a nonnegative integer). The position and momentum operators
have as spectrum the set {−j,−j + 1, . . . ,+j}, and the corresponding discrete wavefunctions are
given in terms of Krawtchouk polynomials. For j → ∞, these wavefunctions (after rescaling) tend
to the common continuous wavefunctions of the harmonic oscillator in terms of Hermite functions.

In [1], the discrete Wigner function for the su(2) oscillator was computed for some particular
values of j, and the matrix plots of these functions were considered. This led to quite remarkable
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observations, in particular when compared to plots of continuous Wigner functions for the canonical
oscillator.

The su(2) finite oscillator model is so simple that we cannot be satisfied just with some numerical
computations and plots of the discrete Wigner functions. Instead, one should be able to give explicit
values W (n; pk, ql) for the elements of the Wigner matrix (as a function of j, n, k and l). This
problem is the topic of the current paper, and turns out to lead to interesting mathematics. In fact,
we have more than one solution for it. One approach is based on special functions (hypergeometric
series), and follows in a rather straightforward way from “basis transformations”. The second
approach is combinatorial. We shall see that the elements of the Wigner matrix (or, more precisely,
the pre-Wigner matrix, to be defined in the following section) coincide with (the evaluation of)
Dyck polynomials. A Dyck polynomial is a multi-variable polynomial “counting” all Dyck paths of
a certain type. These Dyck paths themselves are simple combinatorial objects appearing in many
contexts.

In the following section we recall the definition of the Wigner function for a finite quantum
system and for the su(2) finite oscillator. In section 3 we shall compute the matrix elements of
the pre-Wigner matrix using basis transformations, and obtain an expression in terms of 2F1-
series or Krawtchouk polynomials. In section 4, we introduce Dyck paths (which are known) and
the corresponding Dyck polynomials (which are new). We illustrate these combinatorial objects
with some examples, which help to understand them. In section 5 we resume the computation of
the pre-Wigner matrix for the su(2) finite oscillator, and see that this is indeed related to Dyck
polynomials.

2 The Wigner function for the su(2) finite oscillator

For a one-dimensional quantum system, let Ĥ, q̂ and p̂ denote the Hamiltonian, the position and
the momentum operator. For a finite quantum system, one assumes that Ĥ, q̂ and p̂ are self-
adjoint elements of some algebra (with a ⋆-operation), and that the unitary representations of this
algebra are finite-dimensional. When these operators moreover satisfy the Hamilton-Lie equations
[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, and when Ĥ has an equidistant spectrum, the quantum system is referred
to as a finite quantum oscillator [9–12].

We shall recall some general notation and concepts, introduced in [1]. Consider a representation
space V of dimension N + 1, and denote the (normalized) eigenvectors of Ĥ by |n〉, with Ĥ|n〉 =
En|n〉 (n = 0, 1, . . . , N). V is a Hilbert space, and 〈n′|n〉 = δn′,n. These eigenvectors are referred
to as the stationary states. In the basis |n〉 (n = 0, 1, . . . , N), the operators q̂ and p̂ are represented
by Hermitian matrices, whose eigenvalues are real and correspond to the finite spectrum of these
operators, or the “possible position and momentum values”. Let us denote the eigenvalues of q̂ by
qk (k = 0, 1, . . . , N), and the corresponding (orthonormal) eigenvectors by |qk〉. We shall assume
that all eigenvalues are different and simple (i.e. non-degenerate spectra). So we have the following
situation:

q̂|qk〉 = qk|qk〉 (k = 0, 1, . . . , N). (1)

The expansion of the (orthonormal) q̂ eigenstates in the basis |n〉 (n = 0, 1, . . . , N) is denoted by

|qk〉 =
N
∑

n=0

φn(qk)|n〉 (k = 0, 1, . . . , N), (2)

and the inverse relation reads

|n〉 =
N
∑

k=0

φ⋆n(qk)|qk〉 (n = 0, 1, . . . , N). (3)
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The discrete function φn(q), defined for q ∈ {q0, q1, . . . , qN}, can be interpreted as the position
wavefunction when the system is in the nth stationary state [9].

Completely similar, we shall assume that the eigenvalues of p̂ are given by the mutually distinct
values pk (k = 0, 1, . . . , N), and denote the corresponding (orthonormal) eigenvectors by |pk〉. So
p̂|pk〉 = pk|pk〉 (k = 0, 1, . . . , N), and we denote |pk〉 =

∑N
n=0 ψn(pk)|n〉 (k = 0, 1, . . . , N).

In the continuous case, the Wigner function Wn(p, q) is a distribution function in (p, q)-phase
space such that the expectation value for a classical phase space function G(p, q) coincides with
the quantum mechanical expectation value of the suitably ordered operator expression Ĝ(p̂, q̂) for
the nth stationary state. In the discrete case, the Wigner function W (n; pk, ql) is (for every n) a
function of the discrete values (pk, ql) such that [1]

〈n|Ĝ(p̂, q̂)|n〉 =
N
∑

k=0

N
∑

l=0

W (n; pk, ql)G(pk, ql), (4)

where G(p, q) is supposed to be a polynomial expression in p and q, and Ĝ(p̂, q̂) is the corresponding
operator expression according to Weyl’s association.

It will be convenient to represent the Wigner distribution function as an (N + 1) × (N + 1)
matrix W(n)0≤k,l≤N with matrix elements

W(n)k,l ≡W (n; pk, ql). (5)

Recall that for a monomial function G, denoted by Ga,b(p, q) = paqb (a, b = 0, 1, . . .), the
corresponding operator function would be given by

Ĝa,b(p̂, q̂) =
1

(

a+b
a

) (λp̂+ µq̂)a+b
∣

∣

∣

λaµb
. (6)

The last notation stands for taking the coefficient of λaµb in the expansion of (λp̂ + µq̂)a+b. The
technique to construct the discrete Wigner function or matrix was then analyzed in [1]. First, one
should determine a pre-Wigner matrix Z(n)0≤a,b≤N by

Z(n)a,b = 〈n|Ĝa,b(p̂, q̂)|n〉 (a, b = 0, 1, . . . , N). (7)

Then, the actual Wigner matrix W(n)0≤k,l≤N is given by

W(n) = V(p0, p1 . . . , pN )−TZ(n)V(q0, q1 . . . , qN )−1. (8)

Herein, V(x0, x1 . . . , xN ) stands for the (N+1)×(N+1) Vandermonde matrix corresponding to the
values x0, x1 . . . , xN , A−1 for the inverse of a matrix A, and A−T for the inverse of the transpose
of a matrix A. Since the inverses of Vandermonde matrices are known explicitly [1, Lemma 1], it
is sufficient to compute the pre-Wigner matrices Z(n).

Let us now turn to the example for which we wish to compute the pre-Wigner matrices Z(n)
explicitly, the su(2) oscillator model [9, 10]. In terms of the standard su(2) basis J0, J+, J− (with
commutation relations [J0, J±] = ±J±, [J+, J−] = 2J0), and working in the representation space
V = Vj labeled by a nonnegative integer of half-integer j (2j ∈ Z+), the Hamiltonian, position and
momentum operators are defined by

Ĥ = J0 + j +
1

2
, q̂ =

1

2
(J+ + J−), p̂ =

i

2
(J+ − J−). (9)

The basis states of Vj in the “angular momentum” notation are |j,m〉 (m = −j,−j + 1, . . . ,+j),
with the well known action

J0|j,m〉 = m|j,m〉, J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉. (10)
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Thus also the matrices of p̂ and q̂ in this basis are clear from this action. Following the earlier
notation, we have N = 2j, and the Hamiltonian eigenstates are denoted by

|n〉 = |j,m〉 with n = j +m (n = 0, 1, . . . , N = 2j). (11)

The eigenvalues and eigenvectors of q̂ (and p̂) have been determined in [9]. One has

qk = pk = −j + k (k = 0, 1, . . . , N),

with (following the notation of (2))

φn(q) =
(−1)n

2j

√

(

2j

n

)(

2j

j + q

)

Kn(j + q;
1

2
, 2j). (12)

Herein, Kn is the Krawtchouk polynomial [13–15]:

Kn(x; p,N) = 2F1

(−n,−x
−N ;

1

p

)

. (13)

So the discrete position wavefunctions are symmetric (i.e. with p = 1/2) Krawtchouk polynomials.
For some plots of these discrete wavefunctions, we refer to [9, 10]. In [1], we have computed
(numerically) some examples of Wigner matrices W(n) for this su(2) case, and given some matrix
plots of these discrete Wigner functions. These plots are interesting, and the shapes of the discrete
plots are reminiscent of the shapes of the continuous plots for the canonical oscillator.

Given the importance of this example, it would be interesting to find general expressions for
the matrix elements of the Wigner matrix W(n) or of the pre-Wigner matrix Z(n). This is the
purpose of the current paper. The first solution is presented in the next section. Surprisingly, there
is also a combinatorial solution, related to Dyck paths. This will be discussed in sections 4–5.

3 Computation of the pre-Wigner matrix

The purpose of this section is the explicit calculation of Z(n)a,b, given by (7) and (6), for the
su(2) oscillator model with p̂ and q̂ given by (9) with action (10) in the representation space Vj of
dimension 2j + 1 = N + 1. Note that, using the notation (11) for the basis of the representation
space, we have

J+|n〉 =
√

(n+ 1)(N − n)|n+ 1〉, J−|n〉 =
√

n(N + 1− n)|n− 1〉. (14)

Following (6) and (7), we need to compute diagonal entries of powers of λp̂+ µq̂. Note that

λp̂+ µq̂ = αJ+ + βJ− (15)

where

α =
1

2
(µ+ iλ), β =

1

2
(µ− iλ). (16)

Consider (αJ̃+ + βJ̃−)
r|n〉 for some positive power r. Due to the simple action (14), comparing

terms with the same ordered string of J+’s and J−’s in the expansion of (αJ+ + βJ−)
r and of

(J+ + J−)
r it is easy to see that

〈n+ r − 2a|(αJ+ + βJ−)
r|n〉 = αr−aβa〈n+ r − 2a|(J+ + J−)

r|n〉, (17)
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for a = 0, 1, 2, . . . (and 0 ≤ n + r − 2a ≤ N). Since we only need diagonal elements of powers of
αJ++βJ−, we can restrict to even powers (the odd powers having zeros on the diagonal, by (17)).
For even powers, (17) yields

〈n|(αJ+ + βJ−)
2r|n〉 = αrβr〈n|(J+ + J−)

2r|n〉

=
1

4r
(λ2 + µ2)r〈n|(J+ + J−)

2r|n〉

=
r
∑

i=0

(

r

i

)

λ2iµ2r−2i〈n|
(

J+ + J−
2

)2r

|n〉

=
r
∑

i=0

(

r

i

)

λ2iµ2r−2i〈n|q̂2r|n〉. (18)

So using (6), (7) and this expansion, one can see that Z(n)a,b is nonzero only for even values of the
indices a and b, and that

Z(n)2a,2b =

(

a+b
a

)

(

2a+2b
2a

)〈n|q̂2a+2b|n〉. (19)

Hence the computation is reduced to calculating diagonal entries of even powers of q̂ in the |n〉-basis.
Performing the basis transformation (3), this gives (for r ∈ Z+):

〈n|q̂2r|n〉 =
N
∑

k=0

N
∑

l=0

φn(ql)φ
⋆
n(qk) 〈ql|q̂2r|qk〉,

and thus by the action (1) and orthogonality:

〈n|q̂2r|n〉 =
N
∑

k=0

q2rk |φn(qk)|2. (20)

Since φn(qk) is a Krawtchouk polynomial and qk = −j + k, one can use (12) and (13) to find the
following equivalent expressions:

〈n|q̂2r|n〉 =
2j
∑

k=0

(−j + k)2r
1

22j

(

2j

n

)(

2j

k

)(

Kn(k;
1

2
; 2j)

)2

=

2j
∑

k=0

(−j + k)2r
1

22j

(

2j

n

)(

2j

k

)(

2F1

(−n,−k
−2j

; 2

))2

=

2j
∑

k=0

(−j + k)2r
1

22j

(

2j

n

)(

2j

k

)





min(n,k)
∑

i=0

(

n
i

)(

k
i

)

(

2j
i

) (−2)i





2

. (21)

So this gives us explicit expressions for the matrix elements (19) of the pre-Wigner matrix Z(n).
As a simple example, let us consider the pre-Wigner matrix Z(0) for the ground state, that

gives rise to the ground state Wigner matrix using (8). Using (21) yields: Z(0)a,b is nonzero only
for even values of the indices a and b and

Z(0)2a,2b =
1

22j

(

a+b
a

)

(

2a+2b
2a

)

2j
∑

k=0

(

2j

k

)

(−j + k)2a+2b. (22)

Eqs. (19) and (21), together with the explicit expressions of the Vandermonde matrix inverses,
give an explicit expression for the Wigner matrix W(n) for the su(2) finite oscillator. Next to
this solution in terms of multiple sum expressions, we can present a second solution in terms of
combinatorial quantities. This is the subject of the following sections.
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4 Dyck paths and polynomials

A Dyck path p of size r is a lattice path from (0, 0) to (2r, 0) in the integer plane consisting of
r up steps of the form (1, 1) and r down steps of the form (1,−1) which never passes below the
x-axis [16–20]. An example of a Dyck path of size 5 is given in figure 1. Clearly, one can encode
such a Dyck path by a Dyck word describing the up steps by the letter u and the downs steps by
the letter d. So the Dyck path of figure 1 has uududduudd as Dyck word. Formally, a Dyck word
of size r is a word consisting of r letters u and r letters d in such a way that (counting from the
left) the u count is always greater than or equal to the d count.

We will denote by Dr the set of all Dyck paths of size r (and by D0 the set consisting of the
empty path only). In figure 2, we have listed all elements of D3; alternatively, these could be
described by the words [19]

uuuddd, uududd, uuddud, uduudd, ududud. (23)

It is well known that the number of Dyck paths of size r is equal to the Catalan number Cr.
Various parameters can be defined for Dyck paths [19, 20]. The height of a Dyck path p is the

largest i for which p touches the line y = i. In figure 1, the height is 2. In figure 2, the heights are
given by 3, 2, 2, 2 and 1 respectively. Clearly, all elements of Dr have height less than or equal to r.

We denote by Dr|h the subset of Dr consisting of all elements with height at most h. The
notation Dr|h refers to “restricting” to certain elements of Dr. So Dr|r = Dr. From figure 1, one
can see that |D3|3| = 5, |D3|2| = 4 and |D3|1| = 1.

We need to consider one further extension (with elements corresponding to a subset of Dr|h).
For a given r, and integer values a, b with 0 ≤ a, b ≤ r, let us consider the Dyck paths starting with
at least a up steps and ending with at least b down steps. In figure 3 we list the Dyck paths of size

r = 5 with a = 3 and b = 2. We denote by D(a,b)
r|h the set of all Dyck paths of size r and of height

at most h, starting with at least a ups and ending with at least b downs. So the elements of D(3,2)
5|5

are given in figure 3. Note that, clearly, D(0,0)
r|h = D(1,1)

r|h = Dr|h and D(0,0)
r|r = Dr|r = Dr.

Now we shall introduce a new notion for a Dyck path p, namely the weight w(p) of p. An up
step of a Dyck path having end points at the integer coordinates (l, k − 1) and (l + 1, k) is said to
be at level k. It is convenient to label the integer intervals on the y-axis by variables u1, u2, . . . , ur,
where the index k in uk refers to the level. In fact, this has been done already in figures 1–3. The
weight of a path p is the product over all variables ui, in such a way that each up step at level k
in p contributes a factor uk. For example, for the path p in figure 1, w(p) = u21u

3
2, since there are

in total two up steps at level 1 and three up steps at level 2. The weights of the paths in figure 2
are, respectively:

u1u2u3, u1u
2
2, u21u2, u21u2, u31. (24)

The weights of the paths in figure 3 are

u1u2u3u4u5, u1u2u3u
2
4, u1u2u

2
3u4, u1u

2
2u3u4, u1u2u

2
3u4,

u1u2u
3
3, u1u

2
2u

2
3, u1u

2
2u

2
3, u1u

3
2u3, u21u

2
2u3. (25)

Clearly, each Dyck word as in (23) corresponds to a weight as in (24). In principle, one could extend
the notion of weight by introducing next to the “up variables” u1, u2, . . . also “down variables”
d1, d2, . . .. Then each Dyck word would correspond to a monomial in the variables ui and in the
variables di. This extension would not give extra information, however, since “what goes up must
come down”. For this reason, we shall not consider this extension here and work with “up variables”
ui only.
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Finally, we define the Dyck polynomial P
(a,b)
r|h as the sum of the weights of all elements of D(a,b)

r|h :

P
(a,b)
r|h ≡ P

(a,b)
r|h (u) ≡ P

(a,b)
r|h (u1, . . . , uh) =

∑

p∈D
(a,b)
r|h

w(p). (26)

For convenience, we shall use a simpler notation for those polynomials corresponding to non-
restricted Dyck paths (i.e. with no restriction on height and/or on the start and end):

P (a,b)
r ≡ P

(a,b)
r|r , (27)

Pr ≡ P (0,0)
r . (28)

From the previous examples, one can see:

P3 = P
(0,0)
3|3 = u1u2u3 + u1u

2
2 + 2u21u2 + u31,

P
(0,0)
3|2 = u1u

2
2 + 2u21u2 + u31,

P
(3,2)
5 = P

(3,2)
5|5 = u1u2u3(u4u5 + u24 + 2u3u4 + u2u4 + u23 + 2u2u3 + u22 + u1u2).

Let us list some properties of these polynomials. First of all, the elements of Dr|h are those of
Dr|r = Dr of height at most h. The weights of the elements of Dr|r\Dr|h have factors uh+1, uh+2, . . ..

So by putting uh+1 = . . . = ur = 0 in P
(0,0)
r|r , one obtains P

(0,0)
r|h :

P
(0,0)
r|h = P

(0,0)
r|r (u1, u2, . . . , uh, 0, . . . , 0) = Pr(u1, u2, . . . , uh, . . . , 0). (29)

Clearly, this is also valid for

P
(a,b)
r|h = P (a,b)

r (u1, u2, . . . , uh, 0, . . . , 0). (30)

For this reason, it will be sufficient to study P
(a,b)
r , and thus work with Dyck paths of size r that

are not restricted in height.
Secondly, we can give a recurrence relation for these polynomials. Consider first the standard

Dyck paths of Dr, with |Dr| = Cr, the Catalan number. These Catalan numbers satisfy

Cr+1 =
r
∑

i=0

Ci · Cr−i. (31)

One proof of this recurrence is as follows: the Dyck paths of size r + 1 are obtained by “raising”
a Dyck path of size i by one level and concatenating with a Dyck path of size r − i. (In terms of
the Dyck word, raising means adding one letter u in front and one letter d at the end.) This same
proof gives rise to:

Pr+1 =
r
∑

i=0

u1Pi(u2, u3, . . . , ui+1) · Pr−i(u1, u2, . . . , ur−i). (32)

So in this relation the indices of the variables in Pi are raised by 1. The first few polynomials are
given by

P0 = 1, P1 = u1 , P2 = u21 + u1u2, P3 = u1
3 + 2u1

2u2 + u1u2
2 + u1u2u3,

P4 = u1
4 + 3u1

3u2 + 3u1
2u2

2 + 2u1
2u2u3 + u1u2

3 + 2u1u2
2u3 + u1u2u3

2 + u1u2u3u4,

P5 = 2u1
2u2u3u4 + 2u1u2

2u3u4 + 2u1u2u3
2u4 + u1u2u3u4

2 + 4u1
4u2 + 6u1

3u2
2 + 4u1

2u2
3 + u1u2

4

+ u1
5 + 3u1

3u2u3 + 6u1
2u2

2u3 + 2u1
2u2u3

2 + 3u1u2
3u3 + 3u1u2

2u3
2 + u1u2u3

3 + u1u2u3u4u5.
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In a similar way, one obtains a recurrence relation for P
(a,b)
r . First of all, note that obviously

P (a,b)
r = 0 for r < 0 or a < 0 or b < 0, (33)

P (a,b)
r = 0 for a > r or b > r. (34)

Furthermore, since all Dyck paths start with at least one up step and end with at least one down
step, one has

P (0,0)
r = P (1,0)

r = P (0,1)
r = P (1,1)

r = Pr (r > 0). (35)

The previous concatenating procedure then gives rise to, for (a ≥ 2, b ≥ 1) or (a ≥ 1, b ≥ 2):

P
(a,b)
r+1 =

r−1
∑

i=0

u1P
(a−1,1)
i (u2, u3, . . . , ui+1) · P (1,b)

r−i (u1, u2, . . . , ur−i)

+ u1P
(a−1,b−1)
r (u2, u3, . . . , ur+1). (36)

Note that the sum over i in (36) runs in fact from a−1 to r−b (for i from 0 to a−2, P
(a−1,1)
i = 0 due

to (34); for i from r− b+1 to r− 1, P
(1,b)
r−i = 0 for the same reason). The recurrence relations (32)

and (36), together with the boundary conditions (33), (34) and (35), can easily be used to compute

the Dyck polynomials P
(a,b)
r by means of a computer algebra package.

We close this section with another relation between the Dyck polynomials, which will be useful
in the following section.

Lemma 1 For 2 ≤ a ≤ r and 0 ≤ b ≤ r, one has

P
(a,b)
r+2 − P

(a+2,b)
r+2 = ua−1uaP

(a−2,b)
r + (ua + ua+1)P

(a,b)
r+1 . (37)

Proof. Consider first the left hand side (lhs) of (37). As obviously D(a+2,b)
r+2 ⊂ D(a,b)

r+2 , the lhs is

precisely the sum of the weights of all elements of D(a,b)
r+2 \ D(a+2,b)

r+2 . Hence, this consists of the
weights of all Dyck paths of size r + 2 that end with at least b down steps and start with at least
a but at most a+ 1 up steps.

Now it suffices to note that the sum of the weights of the elements of D(a,b)
r+2 \D(a+2,b)

r+2 can also be

computed in another way. A path in D(a,b)
r+2 \ D(a+2,b)

r+2 has to start with a up steps. If the next step
is also an up step we have a path starting with a + 1 up steps, which necessitates the subsequent
step to be a down step. This leaves — removing the up step starting at (a, a) and the down step
starting at (a + 1, a + 1), and putting the loose ends together — a remaining path of size r + 1
starting with at least a up steps and ending with at least b steps down. The sum of the weights of

the corresponding paths in D(a,b)
r+2 \ D(a+2,b)

r+2 is then exactly equal to

ua+1P
(a,b)
r+1 .

If we have a path with a up steps followed by a down step, the subsequent step can be either up
or down. If this last step is up, this leaves a remaining path of size r + 1 starting at with at least
a ups and ending with at least b downs. The sum of the weights of all paths of this type is

uaP
(a,b)
r+1 .

In a similar way, the sum of the weights of all the remaining paths is equal to

ua−1uaP
(a−2,b)
r ,

which completes the proof. 2

Note that the relation (37) remains valid for 0 ≤ a ≤ r + 1 and 0 ≤ b ≤ r + 1, provided one
takes into account (33)-(34) and u−1 = u0 = 0.
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5 Combinatorial expression for the pre-Wigner matrix

Let us now turn to a combinatorial computation of Z(n)a,b for the su(2) oscillator model in the
representation space Vj of dimension 2j+1 = N+1. For this purpose, it will be helpful to generalize
the operators J+ and J− in (14) and to introduce new operators denoted by a tilde:

J̃+|n〉 =
√
un+1|n+ 1〉, J̃−|n〉 =

√
un|n− 1〉, (38)

where ui are variables with boundaries u0 = uN = 0. So under the substitution

ui → i(N + 1− i) (i = 1, . . . , N = 2j) (39)

the tilde-operators become the genuine operators that we need to use. We can think of all these
operators as (N + 1) × (N + 1)-matrices relative to the ordered basis |0〉, |1〉, . . . |N〉 of the repre-
sentation space Vj . We now consider the extension of the other operators, also denoted by a tilde.
Thus, as in (9), q̃ = 1

2(J̃+ + J̃−) and p̃ =
i
2(J̃+ − J̃−),

X̃ = λp̃+ µq̃, G̃a,b(p̃, q̃) =
1

(

a+b
a

) X̃a+b
∣

∣

∣

λaµb
, (40)

and following (6) and (7)

Z̃(n)a,b = 〈n|G̃a,b(p̃, q̃)|n〉 (a, b = 0, 1, . . . , N). (41)

Just as in section 3, we need to compute diagonal entries of powers of X̃, where

X̃ = λp̃+ µq̃ = αJ̃+ + βJ̃− (42)

with α and β given in (16). The same argument as in (17) leads to

〈n+ r − 2a|(αJ̃+ + βJ̃−)
r|n〉 = αr−aβa〈n+ r − 2a|(J̃+ + J̃−)

r|n〉, (43)

for a = 0, 1, 2, . . . (and 0 ≤ n+ r − 2a ≤ N). The diagonal elements of odd powers of X̃ are zero,
and for the diagonal elements of even powers we find, as in (18):

〈n|X̃2r|n〉 = αrβr〈n|(J̃+ + J̃−)
2r|n〉

=
1

4r
(λ2 + µ2)r〈n|(J̃+ + J̃−)

2r|n〉

=
1

4r

r
∑

i=0

(

r

i

)

λ2iµ2r−2i〈n|(J̃+ + J̃−)
2r|n〉. (44)

By using (40) and (41), one can see that Z̃(n)a,b is nonzero only for even values of the indices a
and b, and that

Z̃(n)2a,2b =
1

4a+b

(

a+b
a

)

(

2a+2b
2a

)〈n|(J̃+ + J̃−)
2a+2b|n〉. (45)

In this case, the problem is reduced to computing diagonal elements of even powers of the tridiagonal
matrix

Y ≡ J̃+ + J̃− =



















0
√
u1 0√

u1 0
√
u2

0
√
u2 0

. . .
. . .

. . .

0
√
uN√

uN 0



















. (46)
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Our main result is that diagonal elements of (even) powers of Y are precisely given by Dyck
polynomials:

〈n|Y 2r|n〉 =
P

(n,n)
r+n|N

u1u2 · · ·un
. (47)

This follows from the following theorem, which makes a connection between all matrix elements of
even powers of the matrix Y and Dyck polynomials.

Theorem 2 Let Y be the matrix (46) and r a positive integer. For 0 ≤ a, b ≤ N and a+ b even,

we have

〈a|Y 2r|b〉 =
(

Y 2r
)

a,b
=

P
(a,b)
r+(a+b)/2|N√

u1 · · ·ua
√
u1 · · ·ub

(48)

whereas for a+ b odd we have 〈a|Y 2r|b〉 = (Y 2r)a,b = 0.

Taking all material together, we arrive at the following expression for the matrix elements of the
pre-Wigner matrix:

Z(n)2a,2b =
1

4a+b

(

a+b
a

)

(

2a+2b
2a

)

P
(n,n)
a+b+n|N (u)

u1u2 · · ·un

∣

∣

∣

∣

∣

∣

ui→i(N+1−i)

, (49)

using the substitution (39).

Proof of Theorem 2. We shall prove (48) by induction on r. Let us first consider the case r = 1.
The matrix Y 2 has a banded form:

Y 2 =



























u1 0
√
u1u2

0 u1 + u2 0
√
u2u3√

u1u2 0 u2 + u3 0
√
u3u4

√
u2u3 0 u3 + u4 0

. . .
. . .

. . .
. . .

. . .
√
uN−1uN

. . . 0 uN−1 + uN 0√
uN−1uN 0 uN



























. (50)

These are the matrix elements in the left hand side of (48) for r = 1. In the right hand side of (48),

we should consider the polynomials P
(a,b)
1+(a+b)/2|N , where a + b is even. By (34), this polynomial is

zero if |a− b| > 2. When |a− b| ≤ 2 we distinguish between the possible cases. For b = a ≥ 1 there
are two possible Dyck paths of size a+1 starting with at least a up steps and ending with at least
a down steps. The weights of these paths are respectively u1 · · ·ua−1u

2
a and u1 · · ·uaua+1. Hence,

we find
P

(a,a)
a+1|N

u1 · · ·ua
= ua + ua+1 (1 ≤ a ≤ N − 1) and

P
(N,N)
N+1|N

u1 · · ·uN
= uN ,

so these match with the entries in (50). For b = a+ 2 ≥ 2, there is only one possible Dyck path of
size a + 2 starting with at least a up steps and ending with at least a + 2 down steps, which has
associated weight u1 · · ·ua+2. This leads to

P
(a,a+2)
a+2

u1 · · ·ua
√
ua+1ua+2

=
√
ua+1ua+2,

matching with the corresponding entries in (50). Finally, the case b = a− 2 is handled similarly.
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Now we can use the induction hypothesis, and assume that (48) holds for r ≥ 1. Next, we prove
it then holds for r + 1. The general matrix elements of Y 2r+2 are computed as follows:

〈a |Y 2r+2 | b〉 = 〈a |Y 2 Y 2r | b〉

=
N
∑

n=0

〈a |Y 2 |n〉〈n |Y 2r | b〉

= 〈a |Y 2 | a− 2〉〈a− 2 |Y 2r | b〉+ 〈a |Y 2 | a〉〈a |Y 2r | b〉+ 〈a |Y 2 | a+ 2〉〈a+ 2 |Y 2r | b〉

=

√
ua−1ua P

(a−2,b)
r+(a+b)/2−1|N√

u1 · · ·ua−2
√
u1 · · ·ub

+
(ua + ua+1)P

(a,b)
r+(a+b)/2|N√

u1 · · ·ua
√
u1 · · ·ub

+

√
ua+1ua+2 P

(a+2,b)
r+(a+b)/2+1|N√

u1 · · ·ua+2
√
u1 · · ·ub

=
(

ua−1ua P
(a−2,b)
r+(a+b)/2−1|N + (ua + ua+1)P

(a,b)
r+(a+b)/2|N + P

(a+2,b)
r+(a+b)/2+1|N

)

/
√
u1 · · ·ua

√
u1 · · ·ub.

Using (37) (which is obviously also valid after restriction to N variables), this gives

〈a |Y 2r+2 | b〉 =
P

(a,b)
r+(a+b)/2+1|N√

u1 · · ·ua
√
u1 · · ·ub

.

The “boundary” matrix elements of Y 2r+2 are computed similarly. 2

6 Conclusions and remarks

In a previous paper [1], the notion of Wigner function for a finite quantum system was approached
in a new way. It was illustrated by the (numerical) computation of the discrete Wigner function
for the so-called su(2) finite oscillator. Plots of these discrete Wigner functions (over discrete
phase-space) led to appealing pictures and interesting observations [1].

The su(2) finite oscillator model is simple, and our goal was to compute the discrete Wigner
function explicitly for this model. This goal has been achieved in this paper, by computing the
entries of the pre-Wigner matrix explicitly. The first solution is given by (19) and (21), in terms of
special functions (or multiple sums). The second solution is given by (49), in terms of the newly
introduced Dyck polynomials.

Note that the second approach transcends in fact the su(2) model. Indeed, also for other finite
oscillator models in which the q̂ operator has a shape of the form (46) in the |n〉 basis of stationary
states (for example [11] or [12]), the solution is given in terms of Dyck polynomials.

A natural question that arises is whether the discrete Wigner function W (n; pk, ql) has a
continuum limit. For this purpose, recall that the discrete position wavefunction φn(q) with
q = −j,−j + 1, . . . ,+j, as given in (12), satisfies the limit relation [10]

lim
j→∞

j1/4φn(j
1/2x) =

1

2n/2
√
n!π1/4

Hn(x)e
−x2/2 ≡ ψn(x), (51)

where Hn is the Hermite polynomial and ψn(x) is the normalized position wavefunction for the
canonical oscillator. In other words, after a proper rescaling of the finite discrete spectrum, the
discrete wavefunctions tend to the continuous wavefunctions of the canonical oscillator when the
representation parameter j tends to infinity. In a similar fashion, one should consider the discrete
Wigner function W (n; p, q), with p and q in {−j,−j + 1, . . . ,+j}. Using the marginal [1, eq. (30)]

+j
∑

p=−j

W (n; p, q) = |φn(q)|2, (q = −j,−j + 1, . . . ,+j),
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and making the replacement p = j1/2y, q = j1/2x, one finds
∫

W(n; y, x)dy = |ψn(x)|2,

where
W(n; y, x) = lim

j→∞
j W (n; j1/2y, j1/2x). (52)

Similarly, using the marginal [1, eq. (31)] one obtains:

∫

W(n; y, x)dx = |ψn(y)|2.

So the limit to consider is limj→∞ j W (n; j1/2y, j1/2x), and on the basis of the above marginals one
can expect that this limit will be the Wigner function for the canonical oscillator, i.e.

Wn(y, x) =
(−1)n

π
e−x2−y2Ln(2x

2 + 2y2),

where Ln is the Laguerre polynomial. This is also confirmed by our plots based on numerical values
of the discrete Wigner function, see [1]. Of course, the marginals alone do not uniquely fix the
Wigner functions, so the above argument is not a proof that W(n; y, x) =Wn(y, x). Note that even
with the current explicit expressions for W (n; pk, ql) obtained in this paper, the computation of
the limit (52) is still not feasable. The reason is that one should have some ‘functional’ expression
like (12) for W (n; p, q) with p, q ∈ {−j,−j + 1, . . . ,+j}, before one can make the replacements
p = j1/2y, q = j1/2x. In our formulas, this is obstructed by the Vandermonde matrix inverses
in (8), for which there is an expression as matrix elements but not as functions of p and q.

Let us conclude with some remarks that are of mathematical nature. First of all, note that
others have also considered polynomials associated with the set of Dyck paths Dr. A particular
interesting polynomial – let us denote it here by Qr – was introduced and studied in [21] (in a
more general setting). Herein, a u-segment of a path p in Dr is defined as a maximal sequence of
consecutive up-steps in p. Let αi(p) be the number of u-segments of length i in p, and

Qr =
∑

p∈Dr

∏

i≥1

t
αi(p)
i . (53)

For example, for r = 3, consider the five Dyck paths given in Figure 2. The first path has one
u-segment of length 3, the second path has one u-segment of length 2 and one of length 1, etc. So
the five terms in (53) are, respectively, t3, t1t2, t1t2, t1t2 and t31, or:

Q3 = t31 + 3t1t2 + t3.

Clearly, the polynomials Qr are not the same as our Dyck polynomials Pr. Both are in a way
generating functions, but counting quite different statistics: in Pr the height of each up-step is the
crucial characteristic, whereas in Qr the length of consecutive up-steps is determinative. So the
two polynomials are very different in nature, and we cannot expect them to be related. Note that
for Qr there is an expression in terms of partial Bell polynomials [21]. For Pr there is – as shown
in this paper – a relation with powers of a particular tridiagonal matrix Y .

Secondly, for the standard Dyck polynomials introduced in section 4, one can consider the
generating function

G(t;u1, u2, . . .) ≡
∞
∑

r=0

Prt
r =

∞
∑

r=0

Pr(u1, u2, . . . , ur)t
r.
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Multiplying the recurrence relation (32) by tr+1 and summing over all r ≥ 0 then gives:

G(t;u1, u2, . . .)− 1 =
∞
∑

r=0

r
∑

i=0

u1Pi(u2, u3, . . .)Pr−i(u1, u2, . . .)t
r+1

= tu1

(

∞
∑

i=0

Pi(u2, u3, . . .)t
i

)(

∞
∑

r=i

Pr−i(u1, u2, . . .)t
r−i

)

= tu1G(t;u2, u3, . . .)G(t;u1, u2, . . .).

So

G(t;u1, u2, . . .) =
1

1− tu1G(t;u2, u3, . . .)
,

and repeated use of this leads to

G(t;u1, u2, . . .) =
1

1− tu1

1− tu2

1− tu3
1− · · ·

. (54)

Clearly, for Dyck paths restricted to height N and the corresponding Dyck polynomials restricted
to N variables, the generating function

G(t;u1, u2, . . . , uN ) =
N
∑

r=0

Prt
r +O(tN+1)

becomes

G(t;u1, u2, . . . , uN ) =
1

1− tu1

1− tu2

1−
. . .

1− tuN

. (55)

As a third remark, note that in this context the symmetric matrix Y in (46) appears naturally.
But of course, one can write Y ′ = DYD−1, with D = diag(1,

√
u1,

√
u1u2,

√
u1u2u3, . . .) and

Y ′ =



















0 1 0
u1 0 1
0 u2 0

. . .
. . .

. . .

0 1
uN 0



















. (56)

In this way, one gets rid of the square roots, and for a+ b even it follows from (48) that the matrix
elements of even powers of Y ′ are essentially Dyck polynomials:

(Y ′)2ra,b =
P

(a,b)
r+(a+b)/2|N

u1 · · ·ub
.
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Examining the shape of Y ′ leads to an obvious extension to more general tridiagonal matrices,
namely

M =



















h0 1 0
u1 h1 1
0 u2 h2

. . .
. . .

. . .

hN−1 1
uN hN



















. (57)

This is related to extensions of Dyck paths to Motzkin paths [22], where apart from up and down
steps also horizontal steps are allowed. One can define the corresponding Motzkin polynomials in
a similar way as in (26), and then identify matrix elements of powers of M to specific Motzkin
polynomials. This study will be developed elsewhere.

References

[1] J. Van der Jeugt, J. Phys. A: Math. Theor. 46 (2013) 475302 .

[2] W.K. Wootters, Ann. Phys. 176 (1987) 1–21.
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Figure 1: Example of a Dyck path of size r = 5.
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Figure 2: All Dyck paths of size r = 3.
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Figure 3: All Dyck paths of size r = 5 with a = 3 and b = 2, i.e. starting with at least three up
steps and ending with at least two down steps.
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