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Abstract

A new program to generate a summation formula in terms of 6-j coeflicients for a general
angular momentum recoupling coefficient is described. This algorithm makes use of the graphical
techniques as developed by Yutsis, Vanagas and Levinson [1]. Attention is paid to providing an
appropriate data structure for the graph representing a general recoupling coefficient, and to
reducing the coefficient to summation formula with a minimal number of summation variables.
Our results are compared to those of Bar-Shalom and Klapisch [5], who developed the program
NJGRAF for the same purpose, also using graphical methods.
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PROGRAM SUMMARY
Title of program : NEWGRAPH
Catalogue number :

Program obtainable from : CPC Program Library, Queen’s University of Belfast,

N. Ireland (see application form in this issue)

Computers used (Operating systems) : 486-based PCs (MS-DOS, Linux [13]), Sun Sparc (U-

nix).

Programming language used : C
(Compilers : Turbo C++ [14], GNU CC [15], SPARCompiler C).

No. of lines in source program : 77

Keywords : atomic structure, nuclear structure, scattering, general recoupling coefficient, angular
momentum, Racah coefficient, 3n-j coeflicient, coupling tree, binary trees, recursive search

process, Yutsis graphs, cubic graphs.

Nature of physical problem : A general recoupling coefficient for an arbitrary number of (in-
teger or half-integer) angular momenta is expressed as a multiple sum over products of 6-5
coefficients, including phase factors and square root factors. This summation formula can
then be evaluated for given values of the angular momenta (for this purpose we use the
program NJSUMMATION [10]).

Method of solution : A summation formula for a general recoupling coefficient is obtained by
representing the coefficient by a Yutsis graph, and by performing a number of reduction rules
valid for such graphs. Each reduction rule contributes to the final summation formula either
just by a numerical factor, or else by an additional summation variable. The purpose is to find
an optimal summation formula, i.e. with a minimal number of summation variables. With
this in mind special attention is paid to implementing the graphical rules whereby N-loops

are reduced in the most optimal way.

Typical running time :



LONG WRITE-UP

1 Introduction

In this paper, we describe an efficient C program to calculate a general recoupling coefficient for
an arbitrary number of integer or half integer angular momenta by using the graphical methods
developed by Yutsis, Vanagas and Levinson [1]. A famous program of Burke [2], NJSYV, is dealing
with the same problem. In Burke’s approach, the problem is divided in essentially two parts : first,
the general recoupling coefficient is expressed as a (multiple) sum over a product of 6-5 coefficients
(including phase factors and square root factors); secondly, this expression is evaluated for given
data of the angular momenta. The Burke method to find a summation formula for a general
recoupling coefficient is equivalent to finding a certain path between the two binary trees. A binary

coupling scheme expresses the order in which n angular momenta are being coupled, e.g. (n = 4) :
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Herein, Cf;f;é:;n,, is a vector-coupling (Wigner or Clebsch-Gordan) coefficient [3, 4]. The relation

between such a coupling scheme and a binary tree is clear [2, 4]. A general recoupling coefficient is

then a transformation coefficient between two such coupling schemes, e.g. :

( ((41,72)75, (43, Ja)d6)d7 | (41, ((j2,53) 78, 3a)J0) 57 )-

Here, the m-dependence is dropped since such coefficients are independent of m [3]. Burke’s
method of finding a transformation relating the two binary coupling trees often yields expressions
which are far from optimal. In order to improve NJSYM, Bar-Shalom and Klapisch [5] developed a
new program NJGRAF. Their way of producing a “best formula” (where the number and values of
summation variables are minimal) was to use graphical methods as developed by Yutsis, Levinson
and Vanagas [1] and explained in many books [4, 6, 7, 8]. This graphical method is very powerful,
and for many transformation coefficients it will yield the most optimal expression in terms of 6-j
coefficients.

Our own contributions to the problem are as follows. In the first paper [9], a recursive search
process is used to find a sequence of transformations relating the two binary coupling schemes that
is as short as possible, thus yielding an optimal summation formula. For all the test examples
in literature and for examples which we gave ourselves, our program NJFORMULA [9] produces an
expression which is often better than (and sometimes as good as) the one obtained by means of
NJGRAF. By a better expression, we mean a (multiple) sum over products of 6-j coefficients with
fewer summation variables and fewer 6-5’s.

Our second paper [10] deals with the actual evaluation of such a summation formula. Our
program NJSUMMATION is the equivalent of GENSUM in the programs NJSYM and NJGRAF, and uses a



completely different method viz recursion to calculate the sum over several variables. A general
algorithm for the evaluation of a summation formula with an arbitrary number of summation
variables is developed, in which nested loops of arbitrary depth are ‘simulated’ by means of recursive
programming techniques. The fact that each step in this recursive algorithm basically handles only
one summation variable, also allows to formulate a clear algorithm for the determination of the
range of a summation variable.

In the present paper, we present an efficient C program to calculate the summation formula
using the powerful graphical methods developed by Yutsis, Vanagas and Levinson [1] which are
also used by Bar-Shalom and Klapisch in NJGRAF [5] while the program used for the numerical
evaluation of the formula remains the same i.e. NJSUMMATION.

The general recoupling coefficient is represented by a graph (section 2), and by reducing the
graph according to a number of rules (section 3) a formula for the coefficient in terms of 6-5’s is
found. The graph is reduced by removing loops or cycles in it (section 4). We show that it is
important to make the right choice not only of which loop is to be removed first, but also of how
it is removed (“collapsed”). Another new aspect of the problem is the choice of the datastructure
representing the graph : here, we simply make use of the two coupling trees as originally given
(section 5). Section 6 gives further implementation details, and section 7 discusses our results and
compares them with other programs. The main conclusion is that the present program performs

better than any of the existing programs for the same purpose.

2 Graphical representation of coefficients

The general theory of Yutsis graphs in angular momentum theory is developed and explained in [1],
see also [6, 7, 8]. Here, we only need the graphical representation of a general recoupling coefficient
(this section), and the rules to reduce such a graph (next section).

Consider a general recoupling coefficient, for which the binary coupling schemes in the left and
right bracket have n + 1 leaves. The graph representing this coefficient will be a cubic graph with
2n nodes and 3n lines. Each line is labelled by an angular momentum j;. The lines have a direction,
and the nodes have a sign label (+ or —). For a coupling (j1j2)j3, the node has a + label if the
three lines representing the 71, 72 and j3 are anti-clockwise oriented in the node; otherwise it gets
a — label.

To build the graph representing a general recoupling coefficient, one can start from the binary

coupling trees and use the following steps:

e The tree which represents the coupling scheme on the right hand side of the bracket is drawn
so that the nodes representing the triads have a ‘4’ sign. The lines representing the com-
pounded angular momenta should be directed towards the node while the lines representing

the resultant should be directed away from the node.

e The nodes representing the triads of the tree on the left hand side of the bracket should have
a ‘—’ sign. The direction of the lines and the mutual position of the first and the second line

in a triad should be the reverse of the above.



e After drawing the 2 trees, the corresponding lines are contracted.

The graph thus obtained is invariant under any transformation which conserves the order of
the lines around the nodes. The sign of a node in which j;, jo and j3 meet may be changed
by multiplying the value it represents by (—1)71+72+73, Change of direction of a line labelled by
j involves a multiplication by (—1)%. Thus, directions of lines and labelling of nodes have an
influence on phase factors only.

To illustrate the transition from a general recoupling coefficient to the graph, we give a very
simple example here for ( ((a,b)d,c)f | (a, (b,c)e)f ) (figures 1, 2 and 3).

Figure 2: Direction of lines and signs of nodes

For a general recoupling coefficient, the transformation coefficient between the pair of binary
coupling schemes is equal to the j-coefficient represented by this diagram multiplied by the following
factor ([1] equs. (22.1) and (22.2)) :

n—2
2(J+ > bi+5)
(1) =1 x C,

where S is the sum of all ‘first’ coupled angular momenta, n is the number of leaves, and C is given
by :
n—2 1/2
C = | J] (2a; + 1)(2b; + 1)
=1



Figure 3: Joining the two parts to obtain a graph

Here a;’s are the intermediate angular momenta on the left side of the bracket and b;’s on the right
side and J is the total angular momentum. For example, consider the following transformation

coefficient :

(((71,72) 36, (435 (1, J5)d7)ds)dal (((41,74)d10, (52, 53)511) 312, J5) 9 )

The a;’s are angular momenta, in the binary tree corresponding to the left bracket other than the lea-
ves and the root, i.e. jg, j7 and jg. Similarly, the b;’s are angular momenta in the tree corresponding
to the coupling scheme in the right bracket excluding the leaves and the root, thus : ji9, 711, Jjio-
In the left bracket, the ‘first’ coupled momenta are all those momenta which appear first in a triad
in the binary tree i.e. j1, j3, 74 and jg. For the right bracket these are : 71, j2, j10, and ji12. Thus

the sum of the first coupled momenta, is :

S =2j1+ g2+ j3 + ja+ je + jio + Ji2-

Since J = jg, the external phase factor is : (—1)2Ue+2i1+i2+7s+iatje+2j10+711+2712)

and
C = [(246 + 1)(247 + 1)(2js + 1) (2710 + 1)(2511 + 1) (212 + 1)]'/%.

3 Rules for reducing Yutsis graphs

Once the graph is generated, it can be simplified with the help of the rules developed by Yutsis,
Vanagas and Levinson [1]. These rules describe some possible transformations on the graph and
their effect [5]. The specific rules employed in our program are the location of N-loops in the graph

like a 2-loop or a bubble, 3-loop or a triangle, a 4-loop or a square and their elimination using



the rules given below along with the operation of interchange which comes into play when these
N-loops are not present for N = 2,3, 4.

Rule 1. 2-loop or a bubble.
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4 Method of solution

4.1 General ideas

Each such loop when removed according to the above rules, will give a contribution to the final
formula. The complete formula is said to be generated when after all simplifications of the graph,
it reduces to a ‘triangular delta’ shown in figure 4 which is numerically equal to unity if the three

7’s involved form a triad and zero otherwise.

+

jl Y. j3
J2

Figure 4: The graphical representation of the triangular delta.

In NJGRAF, Bar-Shalom and Klapisch have used three kinds of transformations on the graph :
along with the location of different N-loops and their elimination, they also use a cut on m lines
(m = 1, 2, 3) and the disposal of a zero branch. The N-loops of the lowest order which are
detected are eliminated. They do not consider which loop will be the best choice to be eliminated
given a list of N-loops of the same order present in the graph. The program RECOUP [11] also uses
the ‘elimination of N-element chains or N-loops’ without spending time on this decision making.

In NEWGRAPH, it is first checked if there are any 2-loops or bubbles present in the graph and
they are then disposed of. They correspond to a delta function in terms of the formula along with
some phases and constants. There is no addition of either a 6-5 coefficient or a sum variable in the
formula. The process of the removal of this 2-loop detected actually involves redrawing the graph
without this loop, after having joined the remaining 2 lines of the 2 nodes which do not form the
loop as shown in Rule 1 of section 3. It does not matter if there are one or more 2-loops present,
this process is continued until all of them have been removed and there are no 2-loops left.

The 3-loops are the next to be disposed of, if they are located, because this results in the

addition of only a 6-5 coefficient to the formula ' and not a variable of summation and the aim is

!By addition of a quantity to a formula we mean that the new formula is obtained from the previous one by



to have a formula with the minimum number of sum variables for optimal calculation speeds. The
removal of 3-loops in a graph replaces 3 nodes originally present in the graph by one node and thus
simplifies it. All the 3-loops present are removed in the sequence in which they are detected, there
is no priority decision to be made here since they are equivalent as regards to the simplifications

their removal introduces in the graphs.

4.2 Removal of 4-loops

If no 3-loops are located, the next step is to search for and reduce a 4-loop. The 4-loop can be
reduced as per rules given and this leads to an addition of two 6-j coefficients and one summation
variable k to the formula. It is a powerful tool to simplify the graph if used in the right way. If
there are several 4-loops present, we are now faced with a choice having far-reaching implications.
Not only is it now a question of which 4-loop is to be disposed of first but also in which manner.
This is crucial since the additions to a formula given by the disposal of every 4-loop are the same
and they are substantial, but the changes in the overall graph produced on removal of each 4-loop
are different. The aim is to collapse that 4-loop which will lead to a simpler graph in terms of the
formula i.e. so that it produces a maximum number of triangles in the graph whose subsequent
disposal will not add new sum variables to the formula. The information of other existing 4- and
5-loops can be used to decide which 4-loop should be reduced first so as to get a more simplified
graph.

To illustrate the importance of this decision, consider the following situation where a part of

the graph has been drawn.

d h
al 1c 2 3 le 2g| 3
b f
Kl 2 3 1 k| 3
k k
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Figure 5: Part of a graph with 4-loops

This part of a graph has 3 adjoining 4-loops. The orientations of the nodes and the directions

(multiplicative) concatenation of that quantity.



of the edges have been neglected here since they are to be taken into account only to arrive at the
correct phase factor which is not the issue at this point. Different possible choices are investigated
here to show what kind of a simplification they give in the graph. On the left hand side, the 4-loop
number 1 is decided to be collapsed first and the collapse is carried out on the sides a and c first.
The resulting graph now has two 4-loops remaining as shown. However consider the collapse of the
same loop but now carried out on the sides b and d. This gives a 3-loop along with a 4-loop. Thus,
a collapse on the sides b and d simplifies the graph more because the removal of a 3-loop does not
add a sum variable to the formula. Thus a collapse on the sides b and d is the best choice if one
decides to collapse the loop 1 first. Consider now the diagrams on the right which show the removal
of the loop 2 first in the same graph. This can also be done in the following 2 ways. A collapse
on the sides e and ¢ also leads to a graph with two 4-loops in it whereas a collapse on the sides
f and h gives two triangles or 3-loops. Clearly, collapsing the loop on the sides f and h is most
advantageous since it creates 2 triangles which will not lead to further sum variables. This goes
to show that the loop 2 is the best choice to be removed first among the three 4-loops shown here
only if it is collapsed on the sides f and h. Thus these two considerations are equally important.

Given a list of all 4-loops present, which one of them should be removed first and the choice
of which two sides in that 4-loop will become the new k is made by making use of the following
criteria : find those two sides in a 4-loop which are most common to other 4-loops present i.e. with
sides which have a maximum number of overlaps with other 4-loops. It will then be advantageous
to collapse the 4-loop in a way that this pair of sides disappears altogether. If a decision cannot
be made just by taking into account all other 4-loops present (when the ‘maximum’ occurs several
times), the list of 5-loops is considered. The 4-loop which has sides overlapping with many other
5-loops will be the optimal choice since a 5-loop can be converted into a loop of a lower order
after the collapse of the chosen 4-loop and the more 5-loops which can be reduced to 4-loops as
a side result the better. The decision to remove a particular 4-loop is thus made by taking into
account the list of other 4-loops present and also a list of existing 5-loops. One could at this point
use more information in making this choice, like higher order loops present in the graph and more
sophisticated methods, in making the decision. OQur approach is a compromise between spending
time making the best choice on one hand and generating a possibly more optimal formula on the
other hand.

4.3 Removal of larger loops

If there is no 4-loop present in the graph, the next step is to locate loops of higher order i.e. 5-loops.
A 5-loop (or an N-loop in general) can be converted to a loop of a lower order by an operation
called the interchange also shown in the set of rules.

There is also a choice while performing the operation of interchange as to which 5-loop should
be reduced to a 4-loop or less among a list with a view to get the most simplified graph and finally
a better formula. Consider an interchange in figure 6 here where we have two adjoining 5-loops.
The wrong choice of a and b for the interchange does not lead to any simplification in this diagram.

The 5-loops are different now but they do not reduce to a 4-loop.

10



Figure 7: The correct choice of a and b for an interchange

In this case shown in figure 7, the choice of the two edges in a 5-loop on both sides of e as a
and b gives two 4-loops on doing the interchange. This is the choice which is made once e has been
fixed. Apart from 5-loops, loops of higher order can also be simplified with the help of interchange.

In this part of the algorithm, one has to find a compromise between (a) the time spent in making
this choice of which loop is to be first reduced among a list of loops yielding an optimal formula
that can be computed in a short time, and (b) spending less time on this choice, yielding a formula

that is perhaps less optimal and more time consuming for computation.

4.4 Estimates from graph theory

Since the smallest loop detected is always removed first, it is interesting to study the particular
types of graphs we deal with and get an estimate on the size of graphs that contain no triangles
or squares etc. We would particularly like to know when it is necessary to employ the interchange
rule to reduce a graph i.e. when are we likely to come across a graph which has no 4-loops. The
size of the smallest loop (or cycle) in a graph is called the girth of the graph. A graph is said to
be regular of valency v if each of its vertices has a valency v (i.e. has v edges). A regular graph
with valency v and girth g is called a (v, g)-graph. A (v, g)-graph with the least possible number
of vertices is called a (v, g)-cage. The number of vertices of a (v, g)-cage is denoted by f(v,g). A
theorem in graph theory [12] says that a minimal (v, g)-graph exists only if

e g=>5and v=3,7 or 57,

e g=26,8,12.

11



From the defined graphical representation of a j-coefficient, it follows that all graphs in this par-
ticular problem will be 3-regular or cubic graphs (valency of each vertex can be 3 and 3 only).
Thus from the above theorem, the smallest graph which does not have any 4-loop or ‘square’ is the
(3,5)-cage. This is the Petersen graph with 10 nodes and 15 edges (n = 5). This graph contains
only 5-loops. The minimal (3, 6)-graph, i.e. a cubic graph with a girth of 6 is the Heawood graph
where f(3,6) = 14. This graph has 14 nodes and 21 edges and the smallest loop this graph has is
a 6-loop. The only known cage with a girth of 7 is the (3,7)-cage. This cage has 24 vertices and
36 edges. This information is helpful in deciding for which recoupling coefficients, an interchange
is necessary. Thus the smallest graph without any 5-loops can be constructed for an input file
consisting of 21 j’s and one without any 6-loops can be constructed for 36 j’s. Alternatively, every

graph with less than 10, 21, and 36 j’s has at least one 4-, 5- or 6-loop respectively.

5 Algorithm description and structure of the program
5.1 Datastructure

The input to the program is given in the form of coupling trees where each of the two trees represents
a coupling scheme of angular momenta, which is the same input format as other programs to
calculate a general recoupling coefficient like NJGRAF [5] and NJFORMULA [9]. Once we have the
input, the job on hand is to construct a graph for the purpose of identifying the various types of
loops present in the graph. Once the loops are detected, the graph can be simplifed as per the rules
explained in the previous section.

The task is to look for a datastructure to store the graph which will enable the job of tracing the
loops of different orders. Many algorithms exist in literature to identify loops or cycles in general
graphs. Some of these methods generate a spanning tree for a given general graph. However our
specific problem already involves two coupling trees, from which the graph is constructed. The
trees themselves will never contain a loop or a cycle by definition. Looking carefully at the loops
in such graphs constructed from two given coupling trees, we observe that each loop in this graph
contains parts (or couplings) from both the given trees and that every loop contains two leaves as
two sides. Thus every cycle in this graph is a combination of a path in one tree and a path in the
other tree. A loop can be manually detected by finding the shortest path in both trees between two
leaves, which is done by following the edges up until the nearest common parent node of both leaves
in each tree (taking care that we count both the leaves only once). Proceeding to perform this
calculation for all possible combinations of leaves gives an exhaustive list of all loops present in the
graph. Thus for our purposes, it is possible to represent the graph in terms of a datastructure which
tabulates this information of the distances between any two leaves (or alternatively the different
number of edges joining them) in a coupling tree for both the trees. This has been accomplished
here by making a special table which maintains the distance or depth of the different leaves from
the different coupled nodes for both trees.

Consider the following two coupling trees from the input file f1.dat corresponding to the

12



bracket (F7) (see also section 7) :

(F1) (41, 42)J6, (J3, (Jas 35)37)d8) ol (((J1,7a)d10, (J2, 33)d11) 512, J5) 9 )

fl-left fl-right
1 2 4 5 3 9 l1 4 2 3 5 9
| =mmmm oo e e
1 2 6 | - - - - 1 410 [1 1 - - - -
4 5 7 [- - 1 1 - - 2 311 [- - 1 1 - -
3 7 8 | 2 2 1 - 10 11 12 2 2 2 2 - -
6 8 9 2 2 3 3 1 12 5 9 |3 3 3 3

Here, fi-left is one coupling scheme whereas fi-right is the other. The two tables of
distances for both the trees are given next to them. In the table, the first row represents the
number of different leaves or angular momenta which are themselves not coupled like 1, 2, 4, 5 and
3 (corresponding to ji, j2, j4, Js, j3) and the first column has a list of all coupled nodes 6, 7, and
8 (corresponding to jg, j7 and jg) for this tree which is in fact exactly the last column of the tree
concerned and so is not listed separately again. Notice that the root node 9 has been represented
as both a coupled node as well as a leaf. The other entries in the table then indicate the distance
at which a particular coupled node is from a leaf. e.g. the entry at position (1,1) is 1 showing that
6 is only at a distance ‘1’ from the leaf 1. The leaves 4 and 5 are also at a distance 1 each from the
coupled node 7. The coupled node 8 is at a distance 1 from the leaf 3 but at distance 2 each from
the leaves 4 and 5. The distances between 2 different leaves are not a direct entry in this table.
They can be obtained by making a few simple calculations. Thus if we want to find the (shortest)
distance between the leaves say 3 and 5, we look in the columns of 3 and 5 till we come across the
first non-zero entry in both the columns. This corresponds to the coupled node 8 (the row entry).
This means that these 2 leaves are connected through the coupled node 8. The distance from 8 to
the leaf 3 is 1 and that from 8 to the leaf 5 is 2; adding this gives the distance between the two
leaves 3 and 5 as 3. Following the same procedure for f1-right, we find that the distance between
the same two leaves 3 and 5 in f1-right is 4. Adding the two distances between the leaves 3 and
5 from both the trees and subtracting 2 from it (since both the leaves have been counted twice)
gives us 5 which indicates that there exists a 5-loop in the graph that will be formed from these
two trees which includes the leaves 3 and 5 as its two edges. Thus it is possible to detect all the
loops present in the graph with the aid of this table of distances which is built directly from the

two trees of couplings given as input.

5.2 The removal of loops

One scan of the table gives a list of all loops of all orders present in the graph (by looking at
each different combination of two leaves in both tables). They are not all stored however. As
described earlier, the process of tabulating loops of different orders is immediately disrupted if we
come across a loop of order 2 or 3. When a 2-loop or a bubble is detected, all further search for

loops is immediately suspended since there is no choice to be made at this stage. Every bubble

13



detected is immediately removed since its contribution to the formula is only that of a constant
whereas it simplifies the graph by reducing two nodes in it.

How is a loop disposed of from a graph which has not really been built at all but which exists
in the form of the two trees of couplings and tables of distances? Look at both the graph and the
tree structure of a recoupling coefficient at the same time. Simplify the graph by first removing
this 2-loop from it and redraw it. Now write down the two trees of couplings for this new graph
generated. Comparison of the two original trees and the new trees of couplings shows how one can
effectively work on these coupling trees while indirectly using the graphical methods to simplify
the graph. The advantage here is that we do not need a complicated data structure to store the
graph, which will have to be updated at every step. Instead we have two trees of couplings which
are simple 2-dimensional arrays that can be updated easily. The tables of distances are then rebuilt
from the new updated trees. However, for more complex loops like the 4-loop and the interchange,
updating the trees is not very simple because of the many possibilities that have to be taken into
account. For example for a 4-loop there can be two couplings from each tree involved in the loop,
or one coupling from the first tree and two from the second and vice-versa.

The two couplings which result in the bubble are identified and removed from the trees. We
then proceed to relabel one j in either one of the trees (the delta function) as shown in Rule 1
section 3 and update the formula by adding the appropriate constant square root factor and phase
factors if necessary (this depends on the orientations of the two nodes which form the bubble and
also the directions of the j’s in these nodes). The information of the direction of each edge of
the graph can be extracted from the couplings themselves. Depending on which tree a particular
coupling belongs to, the directions of leaves and coupled nodes are known by definition. Two new
tables of distances are constructed for the new updated trees now and a new scan for all possible
loops present in this new and simplified graph can begin.

When a 3-loop or a triangle is detected in the scan for loops, all search for further loops is also
stopped and one proceeds directly with the removal of this loop in a fashion similar to a 2-loop.
The couplings from the two trees which are involved in this 3-loop are collected and removed from
the respective trees and instead the single coupling that remains on removing the 3-loop (by using
the rules of collapsing a triangle) is put back into the right tree and in the right place. Thus it is
not necessary to reorder the two trees of couplings after such an operation. The formula is updated,
this time it results in the addition of a 6-; coefficient and of course a few phase factors depending on
the directions of the j’s involved in this particular loop and the orientations of the nodes. The new
trees now correspond to a simpler graph and again the new tables of distances can be constructed
and the scan for loops in this different graph can be started.

If a 3-loop is not detected, a list of all loops of higher order encountered (upto a certain pre-
decided limit) is now made. The question now is not only which of the listed 4-loops (if present)
will be most advantageous to remove but also in which way we should proceed in removing the
selected 4-loop. This can make a lot of difference to the final formula generated as described in
subsection 4.2. The decision to remove a particular 4-loop is made by taking into account the list

of other 4-loops present and also a list of existing 5-loops. Once this is decided, the actual process
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of collapsing the 4-loop is carried out according to the Rule 3 of section 3. This involves collecting
the couplings in the two trees which are involved in the 4-loop and removing them from the trees
and instead adding the new couplings along with the new k. The number of nodes in the graph
reduces by 2 on completion of this. The formula is updated and there are two 6-j coefficients which
are added to it along with one new summation variable and some phase factors. Again new tables
of distances are made and a new scan for loops in this reduced graph gets underway.

If no 4-loop is present in the graph, the task on hand is to look at the list of existing 5-loops
with a view of converting one of them into a 4-loop or less using the interchange. That 5-loop
which on its removal converts one or more existing 5-loops in the graph into a 4-loop is the best
candidate for removal given a choice of such loops. This choice is made using similar criteria as
for the 4-loop : find that side of a 5-loop which has the maximum number of overlaps with other
5-loops and this side will be the side e on which the interchange can be made as shown in the
diagram. Edge e has to be a coupled node of one of the trees and this has to be checked before
making the interchange. Then the adjoining two sides in this 5-loop will act as ¢ and b. The
interchange results in the addition of one more 6-j coefficient to the formula along with a new
summation variable (plus phase and square root factors).

Loops of order higher than 5 can also be converted to ones of lower order by means of the
interchange. However, as has been discussed in subsection 4.4, this situation will only occur when
the number of j’s is greater than or equal to 21.

As an example, consider the datafile £2.dat and the graph for it ((F2) of section 7) :

( (1, (G2, 33)37) 38 (da, (45, J6)do)dr0)dnn| (1, (Ja, Js)dr2) 913, 52) 914, (J3, J6)J15) 11 )-

f2-left f2-right
0l2 3 1 5 6 411 014 5 3 6 1 211
e | s
237 7111 - - - - - 4 512 1211 1 - - - - -
17 8 81 - - - - 3 615 15 | - - - - -
5 6 9 9| -1 1 - - 11213 1312 2 - - 1 - -
4 910 10| - - - 2 2 1 - 13 214 14|13 3 - - 2 1 -
8 10 11 11 | 3 3 3 2 1 14 15 11 11 | 4 4 3 2
11
2 2 15

Figure 8: Removal of the 3-loop (4-5-9) and then the 4-loop 2-3-15-14 from the graph for £2.dat
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The left picture in figure 8 is the graph for these two coupling trees. It clearly shows the
presence of a triangle which is the first loop to be removed from the graph. The right picture
in figure 8 shows the graph after the removal of the 3-loop (4-5-9). Apart from phase factors,

the only contribution to the formula is { 1312 ;.6 JJ 101 Now the new trees and their tables of
9 J4 s
distances are :
0l2 3 1 612 11 03 6 112 211
_ | ____________________ | _________________
2 3 7 711 1 - - - - 3 615 15 | 1 - - - -
1 7 8 812 2 1 - - - 11213 13| - - 1 1 - -
6 1210 10 | - - - - 13 2 14 14 | -2 2 1 -
81011 1113 3 2 2 2 1 14 1511 11 | 2 2 3 3 2

The program now detects several 4-loops and 5-loops as follows :

4-loops detected : 5 -loops also detected:
0: 315 14 2 0: 3 610 8 7
1: 6 15 11 10 1: 31511 8 7
2: 112 10 8 2: 6 15 14 13 12
3: 113 2 7 3: 113 14 11 8
4: 12 13 14 11 10
5: 214 11 8 7

The decision is made to collapse the 4-loop (3-15-14-2) just by taking into account the given
list of 4-loops for this particular case because the sides 15 and 2 are present in two more 4-loops and
if the 4-loop is collapsed on 15 and 2 so that these sides disappear altogether, two more triangles

will result in the graph.

12 10 1 10

|6 |u
13 11 Nn

Figure 9: Removing the 3-loops from the simplified graph

The contribution to the formula on removing the 4-loop is :

(—1)kHs a1 (2 4 1) Jr s kfl Jo  Ju {ﬁ _
Jia g3 J2 Jia g3 J1s5
The new diagram on collapsing the 4-loop is shown on the left in figure 9. The diagram now has
many triangles out of which (1-13-7) is removed first as it is detected first. The next graph is what
Jiz k1 Js
Jr 7 g3
One more triangle (12-8-10) is the next candidate to be removed giving an addition to the formula

remains on removal of the 3-loop and the contribution to the formula now is : {

of { fl ;.11 ;.6 . What remains now is just a triangular delta as shown. It is equal to unity if
10 Ji2 J8

16



the three angular momenta form a triad. Thus the total formula generated is :

Z (2K + 1) Ji2 Jeé Jio Jr Jiz ki Je Jin k1
o Jo Ja Js Jia g3 Jo Jia J3  Jis

o J Jiz ki s ki g Je
Ji 7 Jis Jio Ji2 s
The addition of phase factors is a rather technical detail presently ignored, but of course included

in the final program.

6 Implementation details

The main program which joins the two modules NEWGRAPH and NJSUMMATION is newgmain.c.
All different subroutines responsible for generating the formula are present in NEWGRAPH while
NJSUMMATION calculates the formula numerically. The input to the program is given in the form
of coupling trees where each of the two trees represents a coupling scheme of angular momenta.
This is the same input format as other programs to calculate a general recoupling coefficient like
NJGRAF [5] and NJFORMULA [9]. There is one additional value nlps which is added at the end of this
input file of trees. This value indicates the maximum number upto which order a list of detected
loops is collected and stored in memory e.g. nlps=>5 indicates that in the search for the lowest loop
to be reduced/collapsed, all loops upto the order 5 are stored in an array and this information is
used in deciding which loop is to be removed first so as to have a simpler graph after this operation.

6.1 Subroutines

The different subroutines in NEWGRAPH are described here.

e coup() : After reading the two input trees and storing them in the structure TREE t1 and

t2, the subroutine coup() checks if the couplings are correctly ordered.
e arrange() : The tables of distances for the two trees are built in this subroutine.

e ini phase() : The external phase and square root factors are calculated here and added to

the formula.

e cycle() : The subroutine responsible for detecting loops upto the order nlps specified by

the user, making use of the information in the two tables of distances together.
e bubble() : Removal of a 2-loop or a bubble takes place here.

e triangle() : Responsible for the disposal of a 3-loop or a triangle and updating the formula

correspondingly.

e four() : Removes a 4-loop from the graph and updates the formula.
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e which four 4() : Decides which 4-loop should be disposed of first given a list of 4-loops
present in the graph.

e ywhich four 5() : Decides which 4-loop should be disposed of by taking into account the list
of 5-loops present in the graph.

e which five_four() : Decides which 5-loop should be chosen for the operation of interchange
to be performed, given a list of 5-loops, to convert the chosen 5-loop into a 4-loop.

e init(): Initializes the arrays and values of variables in the structure FORMULA.

e directn tr(): Ensures that all the lines involved in the collapse of a 3-loop or a triangle
have the correct directions and updates the phase factors in the formula accordingly.

e directn_sq(): Ensures that all the lines involved in the collapse of a 4-loop or a square have

the correct directions and updates the phase factors in the formula accordingly.

e swap nodes(): Adds the correct phase to the formula when the orientation of a node is

changed which is equivalent to swapping the positions of the two leaves in a coupling.

e rotate(): Performs a cyclic permutation of the elements of a ‘triad’ or a coupling in such
a way that a particular element is in the required place without changing their order i.e.
without a change of orientation of the node. Hence no update to the formula is necessary

here.

These are the main subroutines of the program NEWGRAPH. Different tools described by Yutsis
et al [1] for reducing the graph like a cut on 2 and 3 lines (which may be useful rules when doing
the reduction of a graph by hand) do not need to be implemented explicitly in the program. These
cut-rules do not yield better formulae, they only split the graph in two subgraphs which can be
treated separately. However, since the size of the graphs is so small (the total number of nodes in

a graph is always much less than say 100), there is no need to implement these cut-rules.

6.2 Datastructures

The input to the program is given in the form of coupling trees where each of the two trees
represents a coupling scheme of angular momenta, which is the same for other programs to calculate
a general recoupling coefficient like NJGRAF [5] and NJFORMULA [9]. The two trees of couplings are
2-dimensional arrays which are each represented in a record structure TREE which also contains
other relevant information pertaining to these: ncoups is the number of couplings in each tree, k1
is the number of ‘leaf’ nodes which also includes the root, cp[] [] is the actual array of couplings,
dist[]1[] is the table of distances for each tree. The datastructure used for representing the
generated formula is the record structure FORMULA (see section 4.1 of [9]), to assure compatibility
with the module NJSUMMATION [10] which does the numerical evaluation of the generated summation
formula. The structure GRAPH contains the fields 1ow which has the size of the smallest loop present

in the graph, nol [MNLPS] which is an array which stores the exact number of 4, 5, etc. loops present
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in the graph and loop [MNLPS] [MAXNRLOOPS] [MAXLOOPSIZE] which is a 3-dimensional array storing
lists of 4, 5 etc. loops found in the graph. Here the variables MNLPS, MAXNRLOOPS and MAXLOOPSIZE
are fixed in the beginning of the program and stand for the upper limit for the order of the loops
detected, the upper limit for the number of loops of each order which are stored and the upper

limit for the size of each loop of each order detected.

7 Results and discussion

The program NEWGRAPH has been written in C and can be run on any system providing a C (or
C++) compiler. The test cases used have also been discussed in [9] and [10] while discussing the
performance of NJFORMULA :

(G1) (((Jr,52)d5, (Js, a)de)dz | (Gr, (2. J3)ds Ja)de)dr )
(G2) ( (((41,42)8, (43, 55) 9, (J6,J7)310)11) 12, Ja) J13
| (41, 32)d14, ((J3, (37, J5)15) 16, J6 )J17) 185 Ja) 13 )
(Ga) (((41,J2)d12, (43, (Ja, (Js, ((Je J7)d135 (J8s (o, (J10, J11)J14) J15)J16)J17)J18)I19)520) J21
| (45, (47, ((Je (J11, (o, (410, J8)J22)23) 24) J25, (41, (43, (52, Ja) J26)J27) j28 ) J29) J30) j21 )
(Fo) { (41,3235, (43, Ja)de)dz | (41, 53)ds, (d2,J4)d9)d7 )
(F1) {((J1,J2)d6, (33, (Ja, 35)d7)d8)d0 | (((41,74)d10, (42, 3)11)d12, J5)do )
(F2) {((J1, (2, J3)d7)ds, (Ja, (45, Je)da) dro)dur | (((J1, (Jas J5)d12)d13, 52) 14, (43, J6)J15) 11 )
(F3) ((((1,52)d7, (53, 3a) s )ds, (s, Je)jr0)d11 | (43, Je)dr2, ((J2, Ja)jrs, (31, J5)d14)J15) 11 )
(Fa) {(((G1,52)d7, (53, 3a) 38)ds, (35, J6)d10)d11 | (41, J6)dr2, (43, Js) 13, (52, Ja)d14) J15) 11 )
(Fs) { (((41,72)ds, (J3, Ja)jo)dr0, ((Js, J6)ju1, 57)d12) 13
| ((1,37)5145 (((J3 95)J15, (42, J4) J16) 17, J6 ) J18 )13 )
(Fe) {(((j1,52)ds, (43, 7a)d9)d10, (Js, (Jos J7)J11)d12)J13
| (45, ((J6 (J25 Ja)g1a)ds, (J3, (J1, 57)d16)d17)J18)d13 )
(F7) (41, (42,53)d8)d9 ((Ja, 35 )10, (J6, 47)J11)J12) 13
| (((41,J4)7145J6) J15,> (G5, J2)J165 (37, 43) J17)J18) 13 )
(Fg) ( (((41,72)d95 J3)710, (((Jas J5)d11, J6 )12, (Jr, J8)d1s)iia)dis
| (41, a)d16, J7)d17, (42, 35 )18, (s, 43)19) 20, J6)J21) 715 )
(Fo) { (((41, (Jo, Ja)drr) iz, ((Ja, J5) 413, Je6)dra)dis, (((jr, J8) 16, Jo)Ji7, J10)d18)j1o
| (((J2, Ja) 720, J7)d21, ((((J1, J8)d22, (Jo, J5)J23) 24, J10)J2s, (6, J3) J26 ) J2r) 10 )

To compare the results of the program NEWGRAPH with NJGRAF and NJFORMULA, a table is provided
here. For the above data, it gives the formula generated by these three programs in terms of the
number of summation variables (k’s) and the number of 6-j’s. The smaller the number of &’s,
the better the formula. For NEWGRAPH, there is an additional column which shows the number of
steps in which we arrived at the formula and each step here is either the disposal of a loop or
an interchange. The numbers in the bracket indicate the number of 2-loops, triangles, squares,
interchanges and triangular delta encountered respectively.

The first three test cases listed here are those used by Bar-Shalom and Klapisch [5] for testing
the performance of NJGRAF. (G4 is a complicated case devised by them and for this, NEWGRAPH gives
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NJGRAF NJFORMULA NEWGRAPH
Test case | #7’s | #k’s #6-5’s | #k’s F#6-5’s | #k’s #6-j’s #steps
(Gh) 9 0 2 0 2 0 2 3 (0-2-0-0-1)
(G2) 18 0 2 0 2 0 2 6 (3-2-0-0-1)
(Gy) 18 3 11 3 11 2 10 10 (1-6-2-0-1)
(Fo) 9 1 3 1 3 1 3 3 (0-1-1-0-1)
(F1) 12 2 5 1 4 1 4 4 (0-2-1-0-1)
(F2) 15 1 5 1 5 1 5 5 (0-3-1-0-1)
(F3) 15 2 6 2 6 2 6 5 (0-2-2-0-1)
(Fy) 15 3 7 2 6 2 6 5 (0-2-2-0-1)
(Fs) 18 4 9 2 7 2 7 6 (0-3-2-0-1)
(F%) 18 2 7 2 7 2 7 6 (0-3-2-0-1)
(F7) 18 - - 4 9 4 9 6 (0-1-4-0-1)
(Fg) 21 - - 7 13 6 12 8 (0-1-5-1-1)
(Fy) 27 - - 9 17 8 16 11 (0-2-6-2-1)

Table 1: Results obtained by NJGRAF, NJFORMULA and NEWGRAPH for a range of re-
coupling coefficients.

the best formula that has yet been obtained among all existing programs as the table shows. For
the datafiles Fy to Fg, NEWGRAPH consistently gives a formula which is the same as that given by
our own NJFORMULA and which is sometimes better than if not as good as that given by NJGRAF. For
more complicated datafiles F7 to Fy, NJGRAF crashes while NEWGRAPH performs better than our own
NJFORMULA, which is not surprising. The complexity of this algorithm is also of a lower order than
that used in NJFORMULA since the decision of reduction of a loop (which is one step for this graphical
algorithm) is straightforward while in the case of the method of binary tree transformations, this
involves a recursive search process on a tree which is a brute force method still yielding surprisingly
good results. Every step of removing a loop greatly simplifies the graph, thus the total number
of steps to obtain the complete formula is small. The conclusion is that the graphical method is
superior to the method of binary tree transformations for this particular problem of generating the

summation formula for a general recoupling coefficient.
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