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An explicit construction of all finite-dimensional irreducible representations of the Lie super-
algebra gl(1|n) in a Gel’fand-Zetlin basis is given. Particular attention is paid to the so-called
star type I representations (“unitary representations”), and to a simple class of representations
V (p), with p any positive integer. Then, the notion of Wigner Quantum Oscillators (WQOs)
is recalled. In these quantum oscillator models, the unitary representations of gl(1|DN) are
physical state spaces of the N -particle D-dimensional oscillator. So far, physical properties
of gl(1|DN) WQOs were described only in the so-called Fock spaces W (p), leading to inter-
esting concepts such as non-commutative coordinates and a discrete spatial structure. Here,
we describe physical properties of WQOs for other unitary representations, including certain
representations V (p) of gl(1|DN). These new solutions again have remarkable properties fol-
lowing from the spectrum of the Hamiltonian and of the position, momentum, and angular
momentum operators. Formulae are obtained that give the angular momentum content of all
the representations V(p) of gl(1|3N), associated with the N -particle 3-dimensional WQO. For
these representations V (p) we also consider in more detail the spectrum of the position operators
and their squares, leading to interesting consequences. In particular, a classical limit of these
solutions is obtained, that is in agreement with the correspondence principle.
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1 Introduction

In this paper we construct all finite-dimensional irreducible representations of the general linear Lie
superalgebra gl(1|n) [1, 2]. To this end we introduce a Gel’fand-Zetlin basis (GZ-basis) for gl(1|n)
and write down explicit expressions for the transformation of the basis vectors under the action of
the algebra generators. This is analagous to the GZ-basis for gl(n|1) and the action of its generators
given by Palev [3]. The Lie superalgebra gl(1|n) is a central extension of the special linear Lie
superalgebra sl(1|n). Each finite-dimensional irreducible gl(1|n) representation remains irreducible
when restricted to sl(1|n), and each of the resulting finite-dimensional irreducible representations
of sl(1|n) is either typical or atypical [1, 2].

The motivation for the present work stems from the fact that a set of generating elements of
sl(1|n) satisfies the compatibility conditions of the so called Wigner Quantum Oscillator (WQO) [4]-
[10]. Therefore to investigate the properties of these sl(1|n) WQOs we must consider those rep-
resentations that are of physical relevance, namely the star representations of type I [11]. These
include certain representations W (p) [12] having highest weight Λ = (p; 0, 0, . . . , 0), that have a
Fock space realisation. A study of these in the case n = 3 and n = 3N has revealed WQO models
that have a finite, equally spaced energy spectrum, with discrete values of measurements of both
spatial coordinates and linear momenta, as well as angular momenta [5, 7, 8, 9]. Moreover, the un-
derlying geometry of the model is non-commutative [13, 14], in the sense that coordinate operator
components in general do not commute; thus measurements of two different coordinates, say x and
y, of a single particle cannot be performed simultaneously. As such, the WQO models are to be
compared with other non-commutative models, see for example [15]-[18].

Here the intention is to set up the mathematical machinery enabling these properties to be ex-
plored for WQO models based on any sl(1|n) star representation of type I. The results confirm that
in all such cases there is a finite number of equally spaced energy levels, that spatial coordinates
and linear momenta are discretely quantised, and that the model always exhibits non-commutative
geometry. A detailed analysis is presented for those WQO models based on the sl(1|n) represen-
tations V (p) having highest weight Λ = (1; p − 1, 0, . . . , 0), and also for a representation of highest
weight Λ = (2; 1, 0, . . . 0) that belongs to neither class W (p) nor V (p).

The structure of the paper is as follows. In Section 2 we construct all the finite-dimensional
irreducible representations of the Lie superalgebra gl(1|n), complete with a specification of the GZ
basis vectors |m) and the explicit action of a set of gl(1|n) generators on these vectors. The section
culminates with formulae for the action on an arbitrary vector |m) of all the odd elements, e0j and
ej0, of gl(1|n). These are of importance in Section 4, where for n = DN these odd elements play the
role of certain linear combinations of position and linear momentum operators for the N -particle
D-dimensional WQO. Before this, in Section 3, the formulae of Section 2 are applied to the case
of the gl(1|n) representations V (p) of highest weight Λ = (1; p− 1, 0, . . . , 0). The GZ-basis and the
action of the gl(1|n) generators are given explicitly in a rather more succinct notation than was
possible in the general case.

Returning to Section 4, it is here that the WQO is introduced. The Hamiltonian Ĥ of an
N -particle D-dimensional harmonic oscillator takes the form

Ĥ =
N

∑

α=1

( P̂
2
α

2m
+

mω2

2
R̂2

α

)

, (1.1)

with P̂α and R̂α D-dimensional vector operators corresponding to the momentum and position
of the particle α, each of the same mass m and natural frequency ω. This Hamiltonian can be
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re-expressed in the form

Ĥ =
~ω

DN − 1

DN
∑

j=1

{A+
j , A−

j }, (1.2)

where the operators A±
j are simple linear combinations of R̂αk and P̂αk for some α and k determined

by j. With this notation, the WQO requirement that Hamilton’s equations and the Heisenberg
equations coincide as operator equations leads to compatibility conditions on the operators A+

j and

A−
j that have a non-canonical solution allowing them to be identifed, as stated above, with the odd

generators, ej0 and e0j , respectively, of gl(1|n). This identification is then exploited to determine
the physical properties of WQO models, including their energy spectrum and the eigenvalues of
their spatial coordinate operators, as well as their non-vanishing commutator. The determination
of the angular momentum content of the particular gl(1|3N) modules V (p) is deferred to Section 5,
where it is achieved for all N and all p, by means of a generating function derived from Molien’s
Theorem [19, 20] applied to the case of the embedding of the rotation group SO(3), with Lie algebra
so(3) in the group GL(3N), with Lie algebra gl(3N). The outcome in the cases N = 1 and N = 2
is given in detail.

Section 6 is concerned with an understanding of the position operator spectrum. To this end,
its crucial features are illustrated in the case n = 2, both for a single particle two-dimensional
(N = 1, D = 2) model based on the gl(1|2) representations V (p), and for a two-particle one
dimensional (N = 2, D = 1) model based on the same representations. In both cases a classical
limit is recovered by taking p → ∞ and ~ → 0 in such a way that p~ → C, for some constant C.

A final example of a WQO model, based on a representation belonging to neither the set W (p)
nor the set V (p), is given for illustrative purposes in Section 7. This time the results of Section 2,
that immediately give the allowed energy levels and spatial coordinates, are augmented by the use
of the subalgebra chain gl(3N) → gl(3) ⊕ gl(N) → so(3) ⊕ gl(N) → so(3) to obtain a complete
description of the angular momentum content.

We close with a few brief concluding remarks in Section 8.
Following customary usage in the mathematical physics literature we use in this paper the words

“module” and “representation” more or less interchangeably, and often refer to “simple module”
as “irreducible representation.”

2 The gl(1|n) representations

The Lie superalgebra gl(1|n) can be defined as the set of all squared (n + 1)-dimensional matrices
with rows and columns labelled by indices i, j = 0, 1, . . . , n. As a basis in gl(1|n) we choose the
Weyl matrices eij , i, j = 0, 1, . . . , n, where the odd elements are {ei0, e0i|i = 1, . . . , n}, and the
remaining elements are even. The Lie superalgebra bracket is determined by

[[eij , ekl]] ≡ eijekl − (−1)deg(eij) deg(ekl)ekleij = δjkeil − (−1)deg(eij) deg(ekl)δilekj . (2.1)

Note that gl(1|n)0 = gl(1)⊕gl(n), where gl(1) = span{e00} and gl(n) = span{eij |i, j = 1, . . . , n}.
For elements x of gl(1|n), one defines the supertrace as str(x) = x00 −

∑n
j=1 xjj . The Lie superal-

gebra gl(1|n) is not simple, and one can define the simple superalgebra sl(1|n) as the subalgebra
consisting of elements with supertrace 0. However, the representation theory of gl(1|n) or sl(1|n) is
essentially the same (the situation is similar as for the classical Lie algebras gl(n) and sl(n)), and
hence we prefer to work with gl(1|n). As an ordered basis in the Cartan subalgebra h of gl(1|n),
we choose e00, e11, . . . , enn, and denote by

ǫ, δ1, . . . , δn (2.2)
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the dual basis in the space h∗ of all linear functionals of h.
The finite-dimensional simple modules of gl(1|n) are characterized by their highest weight Λ.

Often, one writes

Λ = m0,n+1 ǫ +
n

∑

i=1

mi,n+1 δi. (2.3)

Then, the finite-dimensional simple modules W ([m]n+1) of the Lie superalgebra gl(1|n) are in
one-to-one correspondence with the set of all complex n + 1 tuples [1, 2]

[m]n+1 = [m0,n+1, m1,n+1, . . . , mn,n+1], (2.4)

for which
mi,n+1 − mj,n+1 ∈ Z+, ∀i ≤ j = 1, . . . , n. (2.5)

Within a given gl(1|n) module W ([m]n+1) the numbers (2.4) are fixed. The possibility of introduc-
ing a Gel’fand-Zetlin basis in any finite-dimensional simple gl(1|n) module W ([m]n+1) stems from
the following proposition.

Proposition 1 Consider the gl(1|n) module W ([m]n+1) as a gl(n) module. Then W ([m]n+1) can
be represented as a direct sum of simple gl(n) modules,

W ([m]n+1) =
∑

i

⊕Vi([m]n), (2.6)

where

I. All Vi([m]n) carry inequivalent representations of gl(n)

[m]n = [m1n, m2n, . . . , mnn], min − mi+1,n ∈ Z+. (2.7)

II.
1. min − mi,n+1 = θi ∈ {0, 1}, 1 ≤ i ≤ n,
2. if for k ∈ {1, . . . , n} m0,n+1 + mk,n+1 = k − 1, then θk = 0.

(2.8)

The decomposition (2.6) and conditions (2.8) follow from the character formula for simple gl(1|n)
modules [21, 22]. If for some k ∈ {1, . . . , n} the condition m0,n+1 +mk,n+1 = k−1 is satisfied, then
the representation is atypical of type k. Otherwise, it is typical.

A GZ-basis for the gl(n) module is well known [23]. A set of basis vectors is given by a triangular
array of numbers satisfying an integral property and the “betweenness conditions”:

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1
... . .

.

m11











. (2.9)

These “betweenness conditions” take the form

mi,j+1 − mij ∈ Z+ and mi,j − mi+1,j+1 ∈ Z+, 1 ≤ i ≤ j ≤ n − 1, (2.10)

and they automatically imply the integral property mi,j −mi+1,j ∈ Z+ for all meaningful values of
the indices.

Using this GZ-basis for simple gl(n) modules and Proposition 1 we have
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Proposition 2 The set of vectors

|m) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m0,n+1 m1,n+1 · · · mn−2,n+1 mn−1,n+1 mn,n+1

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1
... . .

.

m11















(2.11)

satisfying the conditions

1. mi,n+1are fixed and mi,n+1 − mj,n+1 ∈ Z+ 1 ≤ i ≤ j ≤ n,
2. min − mi,n+1 = θi ∈ {0, 1}, 1 ≤ i ≤ n,
3. if for k ∈ {1, . . . , n} m0,n+1 + mk,n+1 = k − 1, then θk = 0,
4. mi,j+1 − mij ∈ Z+ and mi,j − mi+1,j+1 ∈ Z+, 1 ≤ i ≤ j ≤ n − 1.

(2.12)

constitute a basis in W ([m]n+1).

We shall refer to the basis (2.11) as the GZ-basis for gl(1|n). The purpose is now to give the explicit
action of a set of gl(1|n) generators on the basis vectors (2.11). For this purpose, denote by |m)±ij

the pattern obtained from |m) by the replacement mij → mij ± 1. Then this action is given by:

e00|m) =



m0,n+1 −
n

∑

j=1

θj



 |m); (2.13)

ekk|m) =





k
∑

j=1

mjk −
k−1
∑

j=1

mj,k−1



 |m), (1 ≤ k ≤ n); (2.14)

ek−1,k|m) =
k−1
∑

j=1

(

−
∏k

i=1(lik − lj,k−1)
∏k−2

i=1 (li,k−2 − lj,k−1 − 1)
∏k−1

i6=j=1(li,k−1 − lj,k−1)(li,k−1 − lj,k−1 − 1)

)1/2

|m)+j,k−1, (2 ≤ k ≤ n);

(2.15)

ek,k−1|m) =
k−1
∑

j=1

(

−
∏k

i=1(lik − lj,k−1 + 1)
∏k−2

i=1 (li,k−2 − lj,k−1)
∏k−1

i6=j=1(li,k−1 − lj,k−1)(li,k−1 − lj,k−1 + 1)

)1/2

|m)−j,k−1, (2 ≤ k ≤ n);

(2.16)

e0n|m) =
n

∑

i=1

θi(−1)θ1+...+θi−1(li,n+1 + l0,n+1 + 1)1/2

(

∏n−1
k=1(lk,n−1 − li,n+1 − 1)

∏n
k 6=i=1(lk,n+1 − li,n+1)

)1/2

|m)−in;

(2.17)

en0|m) =
n

∑

i=1

(1 − θi)(−1)θ1+...+θi−1(li,n+1 + l0,n+1 + 1)1/2

×
(

∏n−1
k=1(lk,n−1 − li,n+1 − 1)

∏n
k 6=i=1(lk,n+1 − li,n+1)

)1/2

|m)+in. (2.18)

In all these formulas lij = mij − i.
In order to deduce (2.13)-(2.18), we have used the paper of Palev [3] and the isomorphism ϕ of

gl(n|1) onto gl(1|n):

ϕ(En,n+1) = e0n, ϕ(En+1,n) = en0, ϕ(Eij) = eij , i, j = 1, . . . , n, (2.19)
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where Eij (i, j = 1, . . . , n+1) and eij (i, j = 0, 1, . . . , n) are the Weyl matrices of gl(n|1) and gl(1|n)
respectively. As compared with the gl(n|1) case, note that in the right hand side of (2.17)-(2.18)
instead of |m)±in we have |m)∓in. This is because of the conditions 2 and 3 in Proposition 2. Also
the atypicality factor (li,n+1 + l0,n+1 + 1) is different.

For our purposes, it is also necessary to know which of these representations are “unitary repre-
sentations” with respect to some star condition (or Hermiticity condition) on the Lie superalgebra
elements. The star condition of relevance is the antilinear anti-involutive mapping determined by

e†ij = eji. (2.20)

The unitary representations are then those for which there exist a positive definite inner product
〈 | 〉 (in the representation space W ) such that

〈eijv|w〉 = 〈v|ejiw〉, (2.21)

for all v, w ∈ W . These are, in the terminology of [11], the star type I representations. They have
been classified in general for gl(m|n), and for gl(1|n) the conclusion is as follows:

Proposition 3 The representation W ([m]n+1) is a unitary representation if and only if

(a) The highest weight is real and

m0,n+1 + mn,n+1 − n + 1 > 0. (2.22)

In this case, the representation is typical.

(b) The highest weight is real and there exists a k ∈ {1, 2, . . . , n} such that

m0,n+1 + mk,n+1 = k − 1, mk,n+1 = mk+1,n+1 = · · · = mn,n+1. (2.23)

In this case, the representation is atypical of type k.

For those familiar with the terminology, note that the representations under (b) essentially corre-
spond to the covariant and contravariant representations of gl(1|n) [24]. They could also by labelled
by m0,n+1 and a partition λ.

The representations W ([m]n+1) are unitary if the conditions of Proposition 3 are satisfied, for
the inner product corresponding to orthonormal GZ basis vectors, i.e.

〈|m′) | |m)〉 ≡ (m′|m) = δm,m′ , (2.24)

under the action (2.13)-(2.18).
We end this section with a technical result. In principle, it is sufficient to have the action

of the gl(1|n) generators ekk (k = 0, . . . , n), ek−1,k, ek,k−1 (k = 1, . . . , n), and e0n, en0 as given
in (2.13)-(2.18), in order to compute the action of any element eij on the GZ basis vectors (2.11).
For our later application, it is useful to know the explicit action of the odd elements e0j and ej0 of
gl(1|n). It is found that this is given by the following complicated formulae:

e0j |m) =
n

∑

in=1

n−1
∑

in−1=1

. . .

j
∑

ij=1

θin(−1)θ1+...+θin−1(lin,n+1 + l0,n+1 + 1)1/2

×
n

∏

r=j+1

S(ir, ir−1)

(
∏r−1

k 6=ir−1=1(lk,r−1 − lir,r)
∏r

k 6=ir=1(lkr − lir−1,r−1 + 1)
∏r

k 6=ir=1(lkr − lir,r)
∏r−1

k 6=ir−1=1(lk,r−1 − lir−1,r−1 + 1)

)1/2

(2.25)

×





n
∏

k 6=in=1

(lkn − lin,n)

(lk,n+1 − lin,n+1)





1/2
(

∏j−1
k=1(lk,j−1 − lij ,j)

∏j
k 6=ij=1(lkj − lij ,j)

)1/2

|m)−in,n;−in−1,n−1;...;−ij ,j
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ej0|m) =
n

∑

in=1

n−1
∑

in−1=1

. . .

j
∑

ij=1

(1 − θin)(−1)θ1+...+θin−1(lin,n+1 + l0,n+1 + 1)1/2

×
n

∏

r=j+1

S(ir, ir−1)

(
∏r−1

k 6=ir−1=1(lk,r−1 − lir,r − 1)
∏r

k 6=ir=1(lkr − lir−1,r−1)
∏r

k 6=ir=1(lkr − lir,r)
∏r−1

k 6=ir−1=1(lk,r−1 − lir−1,r−1 − 1)

)1/2

(2.26)

×





n
∏

k 6=in=1

(lkn − lin,n)

(lk,n+1 − lin,n+1)





1/2
(

∏j−1
k=1(lk,j−1 − lij ,j − 1)
∏j

k 6=ij=1(lkj − lij ,j)

)1/2

|m)+in,n;+in−1,n−1;...;+ij ,j ,

where j = 1, . . . , n, each symbol ±ik, k attached as a subscript to |m) indicates a replacement
mik,k → mik,k ± 1, and

S(k, l) =

{

1 for k ≤ l
−1 for k > l.

(2.27)

3 A special class of representations

One interesting class of representations of gl(1|n) is that with [m]n+1 = [p, 0, . . . , 0], i.e. with highest
weight Λ = pǫ, where p ∈ Z+. These are covariant representations labelled by the partition (p).
The representation space W ([p, 0, . . . , 0]) is simply denoted by W (p). The GZ basis vectors of W (p)
can be denoted by |p; ϕ1, . . . , ϕn〉, where the relation to the GZ labels is determined by

ϕi =
i

∑

j=1

mji −
i−1
∑

j=1

mj,i−1. (3.1)

The constraints for the GZ labels lead to: ϕi ∈ {0, 1} and
∑n

i=1 ϕi ≤ min(p, n). The representations
W (p) and the basis vectors |p; ϕ1, . . . , ϕn〉 have been constructed by means of Fock space techniques,
and the action of the gl(1|n) generators is very simple, see [12]. This class is referred to as the class
of Fock representations.

In this paper, another special class of representations will be of importance, namely those with
[m]n+1 = [1, p − 1, 0, . . . , 0], i.e. with highest weight Λ = ǫ + (p − 1)δ1, where p ∈ Z+. These are
again covariant irreducible representations, labelled this time by the partition (1, 1, . . . , 1) = (1p).
The representation space W ([1, p − 1, 0, . . . , 0]) will be denoted by V (p). We shall assume that
p > 1, since for p = 1 it is actually a Fock representation. Note that V (p) is atypical of type 2, and
by Proposition 3 it is also unitary.

One can now apply the general GZ-basis construction of the previous section to this special
class. The GZ basis vectors of V (p) are of the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 p − 1 0 · · · 0 0
qn 0 · · · 0 0

qn−1 0 · · · 0
... . .

.

q2 0
q1



















(3.2)

with qn = p − θ ≥ qn−1 ≥ · · · ≥ q1 ≥ 0, where θ = 0, 1 (note that θ = 1 − θ1 in the description
of (2.12)). Since most of the entries in the GZ-array are zero, it will be more convenient to denote
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this vector by

|θ; qn, qn−1, . . . , q1〉 (qn = p − θ ≥ qn−1 ≥ · · · ≥ q1 ≥ q0 ≡ 0). (3.3)

The actions (2.13)-(2.18) and (2.25)-(2.26) imply that

e00|θ; qn, qn−1, . . . , q1〉 = θ|θ; qn, qn−1, . . . , q1〉; (3.4)

ekk|θ; qn, qn−1, . . . , q1〉 = (qk − qk−1)|θ; qn, qn−1, . . . , q1〉, (1 ≤ k ≤ n); (3.5)

ek,k−1|θ; qn, qn−1, . . . , q1〉 =
√

(qk − qk−1 + 1)(qk−1 − qk−2)

× |θ; qn, qn−1, . . . , qk, qk−1 − 1, . . . , q1〉, (2 ≤ k ≤ n); (3.6)

ek−1,k|θ; qn, qn−1, . . . , q1〉 =
√

(qk − qk−1)(qk−1 − qk−2 + 1)

× |θ; qn, qn−1, . . . , qk, qk−1 + 1, . . . , q1〉, (2 ≤ k ≤ n); (3.7)

ek0|θ; qn, qn−1, . . . , q1〉 = θ
√

qk − qk−1 + 1

× |1 − θ; qn + 1, qn−1 + 1, . . . , qk + 1, qk−1, . . . , q1〉, (1 ≤ k ≤ n); (3.8)

e0k|θ; qn, qn−1, . . . , q1〉 = (1 − θ)
√

qk − qk−1

× |1 − θ; qn − 1, qn−1 − 1, . . . , qk − 1, qk−1, . . . , q1〉, (1 ≤ k ≤ n). (3.9)

These formulas become even simpler in yet another notation for the basis vectors. Let us put

rn = qn − qn−1, rn−1 = qn−1 − qn−2, . . . , r2 = q2 − q1, r1 = q1, (3.10)

then all ri are nonnegative integers, with |r| = r1 + · · · + rn = qn. For the vectors with θ = 1,
qn = p − 1, so |r| = p − 1. For the vectors with θ = 0, qn = p, so |r| = p. Thus all vectors of V (p)
are described by:

v(θ; r) ≡ v(θ; r1, r2, . . . , rn), θ ∈ {0, 1}, ri ∈ {0, 1, 2, . . .}, and θ + r1 + · · · + rn = p. (3.11)

In this notation the highest weight vector is v(1; p−1, 0, . . . , 0). The action of the gl(1|n) generators
on the new basis (3.11) is now given by:

e00v(θ; r) = θv(θ; r); (3.12)

ekkv(θ; r) = rkv(θ; r), (1 ≤ k ≤ n); (3.13)

ek,k−1v(θ; r) =
√

rk−1(rk + 1) v(θ; r1, . . . , rk−1 − 1, rk + 1, . . . , rn), (2 ≤ k ≤ n); (3.14)

ek−1,kv(θ; r) =
√

(rk−1 + 1)rk v(θ; r1, . . . , rk−1 + 1, rk − 1, . . . , rn), (2 ≤ k ≤ n); (3.15)

ek0v(θ; r) = θ
√

rk + 1 v(1 − θ; r1, . . . , rk + 1, . . . , rn), (1 ≤ k ≤ n); (3.16)

e0kv(θ; r) = (1 − θ)
√

rk v(1 − θ; r1, . . . , rk − 1, . . . , rn), (1 ≤ k ≤ n). (3.17)

With respect to the inner product

〈v(θ; r)|v(θ′; r′)〉 = δθ,θ′δr,r′ , (3.18)

the representation V (p) is unitary for the star condition (2.20).

4 The N-particle D-dimensional WQO

4.1 The WQO operators

The rest of this paper is devoted to new solutions of the WQO and their physical interpretation.
Let us briefly recall the context of WQOs [5]-[10]. Let Ĥ be the Hamiltonian of an N -particle
D-dimensional harmonic oscillator, that is

Ĥ =

N
∑

α=1

( P̂2
α

2m
+

mω2

2
R̂2

α

)

, (4.1)
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with P̂α and R̂α D-dimensional vector operators corresponding to the momentum and position of
the particle α (α = 1, 2, . . . , N), m the mass and ω the frequency of each oscillator. We proceed to
view this oscillator as a Wigner quantum system: this means that the canonical commutation rela-
tions are not required, but are replaced by compatibility conditions between Hamilton’s equations
and the Heisenberg equations. In other words, Hamilton’s equations

˙̂
Pα = −mω2R̂α,

˙̂
Rα =

1

m
P̂α for α = 1, 2, . . . , N, (4.2)

and the Heisenberg equations

˙̂
Pα =

i

~
[Ĥ, P̂α],

˙̂
Rα =

i

~
[Ĥ, R̂α] for α = 1, 2 . . . , N, (4.3)

should be identical as operator equations. These compatibility conditions are such that

[Ĥ, P̂α] = i~mω2R̂α, [Ĥ, R̂α] = − i~

m
P̂α for α = 1, 2, . . . , N. (4.4)

To make the connection with sl(1|DN) we write the operators P̂α and R̂α for α = 1, 2, . . . , N in
terms of new operators:

A±
D(α−1)+k =

√

(DN − 1)mω

4~
R̂αk ± i

√

(DN − 1)

4mω~
P̂αk, k = 1, . . . , D. (4.5)

The Hamiltonian Ĥ of (4.1) and the compatibility conditions (4.4) take the form:

Ĥ =
ω~

DN − 1

DN
∑

j=1

{A+
j , A−

j }, (4.6)

DN
∑

j=1

[{A+
j , A−

j }, A±
i ] = ∓(DN − 1)A±

i , i, j = 1, 2, . . . , DN. (4.7)

As a solution to (4.7) one can choose operators A±
i that satisfy the following triple relations:

[{A+
i , A−

j }, A+
k ] = δjkA

+
i − δijA

+
k ,

[{A+
i , A−

j }, A−
k ] = −δikA

−
j + δijA

−
k , (4.8)

{A+
i , A+

j } = {A−
i , A−

j } = 0.

Proposition 4 The operators A±
j , for j = 1, 2, . . . , DN , are odd elements generating the Lie

superalgebra sl(1|DN).

This means that one can identify the operators A+
j and A−

j with the sl(1|DN) generators ej0 and
e0j respectively:

A+
j = ej0, A−

j = e0j . (4.9)

With this identification it should be noted that

Ĥ =
~ω

(DN − 1)

DN
∑

k=1

(e00 + ekk) =
~ω

(DN − 1)

(

DN e00 +
DN
∑

k=1

ekk

)

. (4.10)
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To end this subsection, let us also recall that in the case D = 3 it is possible to introduce the
angular momentum operator of each particle α. These single particle angular momentum operators
Ĵαj are defined by [7]

Ĵαj = −3N − 1

2~

3
∑

k,l=1

ǫjkl{R̂αk, P̂αl} α = 1, 2, . . . , N, j = 1, 2, 3, (4.11)

and take the following form:

Ĵαj = −i
3

∑

k,l=1

ǫjkl{A+
3(α−1)+k, A

−
3(α−1)+l}. (4.12)

In terms of these operators the three components of the total angular momentum operator Ĵ are
given by

Ĵj =
N

∑

α=1

Ĵαj , j = 1, 2, 3. (4.13)

It is straightforward to verify that with respect to this choice of angular momentum operator Ĵ the
operators R̂α, P̂α, Ĵα and Ĵ all transform as 3-vectors.

4.2 The WQO representations

The Hilbert space (state space) of the WQO is a representation space W of the Lie superalgebra
gl(1|DN) in such a way that the “observables” (the position and momentum operators R̂α,k and

P̂α,k) are Hermitian operators. This means that (A±
j )† = A∓

j , or e†j0 = e0j . In other words, the state
spaces are unitary representations of gl(1|DN), in the sense of Proposition 3. Since all “physical
operators” in this WQO model are expressed in terms of the A±

j , and their actions are known
by (2.25)-(2.26), all the relevant physical properties can in principle be deduced.

In previous papers, an investigation was made of the physical properties of the gl(1|DN) so-
lutions in the Fock representation spaces W (p), see [5, 8] for D = 3, N = 1 (the single particle
3-dimensional WQO) and [7, 9] for D = 3 and N arbitrary (the last case corresponding to a super-
position of N single particle 3-dimensional WQOs). The most striking properties are as follows:
the energy of each particle has at most four different eigenvalues (equidistant energy levels); the
geometry is non-commutative, in the sense that coordinate operators do not commute; the position
and momentum operators have discrete spectra. In this paper, we shall consider more general
solutions corresponding to arbitrary unitary representations of gl(1|DN), and to the special class
of representations V (p).

Some of these properties will be dealt with in general (arbitrary N and D, arbitrary unitary rep-
resentations); for some others it will be useful to take particular values of N and/or D, or to restrict
oneself to specific classes of unitary representations. In the general case, all unitary representations
of gl(1|DN) are of relevance. In order to simplify notation, we shall use the abbreviation

n = DN (4.14)

throughout this section.

4.2.1 Energy spectrum

The Hamiltonian Ĥ is diagonal in the GZ-basis, i.e. the basis vectors |m) are stationary states of
the system. This follows from the form of Ĥ given in (4.10) and the action of e00 and ekk given
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in (2.13) and (2.14). In each space W ([m]n+1) there is a finite number of equally spaced energy
levels, with spacing ~ω:

Ĥ|m) = Eq|m) (4.15)

with

Eq = ~ω

(

nm0,n+1 + m1,n+1 + . . . + mn,n+1

n − 1
− q

)

, (4.16)

where q =
∑n

j=1 θj . For typical representations, q takes the values 0, 1, . . . , n. For a unitary
representation W ([m]n+1) atypical of type k, q takes the values 0, 1, . . . , k − 1. Recall that in that
case, the representation labels satisfy

m0,n+1 + mk,n+1 = k − 1, mk,n+1 = mk+1,n+1 = · · · = mn,n+1. (4.17)

So for a typical representation, there are n + 1 equidistant energy levels; for an atypical represen-
tation of type k (k = 1, 2, . . . , n) there are k equidistant energy levels. The degeneracy of these
levels is high, and can be determined explicitly from the GZ-basis labels, or equivalently from the
dimensions of the gl(n) representations in the decomposition of W ([m]n+1).

For example, for the special class of representations V (p), atypical of type 2, there are only two
distinct energy levels:

E0 = ~ω(
p

n − 1
) with degeneracy

(

p + n − 1
n − 1

)

,

E1 = ~ω(
p

n − 1
+ 1) with degeneracy

(

p + n − 2
n − 1

)

.

4.2.2 Position and momentum operators

The position operators R̂αk (α = 1, . . . , N , k = 1, . . . , D) of the oscillating particles do not commute
with each other

[R̂αi, R̂βj ] 6= 0 for αi 6= βj. (4.18)

Similarly
[P̂αi, P̂βj ] 6= 0 for αi 6= βj. (4.19)

These relations imply that the WQO belongs to the class of models of non-commutative quantum
oscillators [15]-[18], or to theories with non-commutative geometry [13, 14]. In general, the action of
[R̂αi, R̂βj ] is difficult to describe and interpret, even when acting on GZ basis vectors of particular
unitary representations. For example, for the representations V (p), one finds:

[R̂αi, R̂βj ]v(θ; r) =
~

(n − 1)mω

(

(−1)θ
√

rl(rk + 1)v(θ; r1, . . . , rk + 1, . . . , rl − 1, . . . , rn)

−(−1)θ
√

rk(rl + 1)v(θ; r1, . . . , rk − 1, . . . , rl + 1, . . . , rn)
)

, (4.20)

where k = D(α − 1) + i and l = D(β − 1) + j (and it is assumed that k < l).
However, the squares of the components of position and momentum operators commute:

[R̂2
αi, R̂

2
βj ] = [P̂ 2

αi, P̂
2
βj ] = 0 for αi 6= βj. (4.21)

Furthermore, the GZ basis states |m) are eigenstates of these operators,

R̂2
αi|m) =

~

(n − 1)mω
(m0,n+1 + . . . + mn,n+1 − m1,n − · · · − mn,n

+m1,k + · · · + mk,k − m1,k−1 − · · · − mk−1,k−1)|m), (4.22)
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where k = D(α − 1) + i. Thus the spectrum of the position operator component R̂αi is given by
the set of values

±

√

√

√

√

~

(n − 1)mω
(

n
∑

j=0

mj,n+1 −
n

∑

j=1

mj,n +
k

∑

j=1

mj,k −
k−1
∑

j=1

mj,k−1), (4.23)

where k = D(α − 1) + i and the internal labels mj,l take all possible values allowed by (2.12). For
the special representations V (p), (4.22) becomes

R̂2
αiv(θ; r) =

~

(n − 1)mω
(rk + θ)v(θ; r), k = D(α − 1) + i. (4.24)

This gives rise to a simple spectrum of the operators R̂αi in these representations.

5 Angular momentum content for V (p)

As mentioned before, the case D = 3 allows us to introduce angular momentum operators,
see (4.11)-(4.13). It is easy to verify that in general the stationary states |m) are not eigen-
states of Ĵα3, Ĵα, Ĵ3 and Ĵ2. Thus in order to determine the possible values of the total angular
momentum j for the N -particle 3-dimensional WQO, it is best to use group theoretical methods
rather than the explicit actions of these operators on basis states. The components Ĵk in (4.13)
are the generators of an so(3) subalgebra of gl(1|n) = gl(1|3N), that may be identified by means
of the following chain of subalgebras:

gl(1|3N) → gl(1)⊕ gl(3N) → gl(1)⊕ gl(3)⊕ gl(N) → gl(1)⊕ so(3)⊕ gl(N) → gl(1)⊕ so(3). (5.1)

The first step in the branching rule, from gl(1|3N) to gl(1) ⊕ gl(3N), is just determined by the
GZ-pattern (2.11), where the gl(1) value is given by (2.13). The branching rule for gl(3N) →
gl(3) ⊕ gl(N) required in the second step and that for gl(3) → so(3) required in the third step
are both rather well known and have been implemented for example in SCHUR [25]. Since they
involve coefficients for which there is no known general formula, we content ourselves with giving
the results explicitly just for the special representations V (p).

Before doing this we should remark that the embedding of so(3) in gl(3N) is such that the

defining 3N -dimensional representation V
{1}
gl(3N) of gl(3N) decomposes into a direct sum of N copies

of the defining 3-dimensional representation V 1
so(3) of so(3), so that all states are of angular mo-

mentum j = 1. The pth-fold tensor powers of V
{1}
gl(3N) therefore contain only states whose angular

momentum j is bounded by p. This includes all covariant irreducible representations V
{π}
gl(3N) where

π is any partition of weight p, including the special case V
{p}
gl(3N) of particular interest here.

With respect to the first step of (5.1), the representation V (p) of gl(1|3N) decomposes into just
two symmetric irreducible representations of gl(3N):

V (p) → V 0
gl(1) ⊗ V

{p}
gl(3N) + V 1

gl(1) ⊗ V
{p−1}
gl(3N) , (5.2)

labelled by the partitions {p} and {p − 1} respectively. For symmetric representations labelled by
a positive integer p, the branching from gl(3N) to gl(3) ⊕ gl(N) is determined by the branching
rule [26]:

V
{p}
gl(3N) →

∑

λ,|λ|=p

V
{λ}
gl(3) ⊗ V

{λ}
gl(N), (5.3)
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where the sum is over all partitions {λ} with λ1 + λ2 + · · · = p. Furthermore, the labelling of
representations of gl(3) and gl(N) requires the extra condition that the length of {λ} should be at
most min(3, N).

In the case N = 1, this step is absent, and for the branching gl(3) → so(3) we have immediately

V
{p}
gl(3) → V p

so(3) + V p−2
so(3) + · · ·V 1 or 0

so(3) . (5.4)

Thus, using (5.2), the total angular momentum values are given by j = 0, 1, . . . , p, with no multi-
plicities, so that

V (p) →
p

∑

j=0

V j
so(3). (5.5)

In the case N ≥ 2, it might appear that the second step, (5.3), cannot be avoided. However, if
our intention is simply to identify all possible angular momentum states j and their multiplicities

that arise for V
{p}
gl(3N), then this may be accomplished by exploiting some classical results from

invariant theory. For this purpose, we shall briefly use the Lie group embedding GL(3N) ⊃ SO(3)
rather than the Lie algebra embedding gl(3N) ⊃ so(3). For the current class of representations the
branching rules associated with these two embeddings are identical.

For any compact continuous subgroup G of GL(n), with group elements g and Haar measure
dµ(g), Molien’s function [19] takes the form [20]

M(P ) =

∫

dµ(g)

det(I − P g)
, (5.6)

where I is the unit n× n matrix. The significance of this function in invariant theory is that when
expanded in the form:

M(P ) =

∞
∑

p=0

np P p , (5.7)

the expansion coefficient np is the number of linearly independent invariants of G that are homo-
geneous polynomials in the matrix elements of g of degree p. Equivalently, np is the multiplicity

of the trivial 1-dimensional identity representation of G in the restriction of V
{p}
GL(n) to G. More

generally [27], if the irreducible representation V j
G, specified by some label j, has character χj(g),

with complex conjugate χj∗(g), then

M j(P ) =

∫

χj∗(g) dµ(g)

det(I − P g)
(5.8)

has an expansion of the form

M j(P ) =
∞

∑

p=0

np,j P p . (5.9)

where each coefficient np,j is the multiplicity of the irreducible representation V j
G of G in the

restriction of V
{p}
GL(n) to G.

Specialising this to the case n = 3N and G = SO(3) we immediately have a means of calculating

the angular momentum content of the representation V
{p}
GL(3N) as has been done in the case N = 2

by Raychev et al [27]. To this end it should be noted that each element g of SO(3) ⊂ GL(3N)
arises as the Nth-fold tensor power of a 3×3 matrix which can itself be diagonalised, with diagonal
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elements (z, 1, z−1) where z = exp(iφ) for some real φ. With this parametrisation, taking into
account the diagonalisation process, the relevant Haar measure is given by [27]

dµ(g) =
1

2
(1 − cos φ) dφ , (5.10)

with 0 ≤ φ < 2π. Moreover, the diagonal form of g is such that

det(I − P g) =
(

(1 − P z)(1 − P )(1 − P z−1)
)N

. (5.11)

In addition it is well known that the character of the irreducible representation V j
SO(3) of SO(3) is

given by

χj(g) =
zj+ 1

2 − z−j− 1

2

z
1

2 − z−
1

2

, (5.12)

where it is to be noticed that χj∗(g) = χj(g). In our case, only integer (rather than half-integer)
values of j arise. This allows us to introduce a generating function for SO(3) characters as follows:

char(J, g) =
∞

∑

j=0

J j χj(g) =
∞

∑

j=0

(J z)j z
1

2 − (J z−1)j z−
1

2

z
1

2 − z−
1

2

=
∞

∑

j=0

(

(J z)j

1 − z−1
− (J z−1)j

z − 1

)

=
1

(1 − J z)(1 − z−1)
− 1

(1 − J z−1)(z − 1)
. (5.13)

Hence, we have

M(P, J)N =
∞

∑

j=0

M j(P )J j =

∫

char(J, g−1) dµ(g)

det(I − P g)

=

∮

|z|=1

(

(1 − z−1)−1

(1 − J z)
− (z − 1)−1

(1 − J z−1)

)

(

1 − 1
2(z + z−1)

)

((1 − P z)(1 − P )(1 − P z−1))N

dz

4πiz
, (5.14)

where the fact that z = exp(iφ) has allowed the integral over φ to be re-written as an integral
around the unit circle in the complex z-plane.

In fact, in view of the rather simple dependence on N , we can go even further and introduce
the master generating function:

M(P, J,N ) =
∞

∑

N=0

M(P, J)N NN =
∞

∑

p,j,N=0

np,j,N P p J j NN

=

∮

|z|=1

(

(1 − z−1)−1

(1 − J z)
− (z − 1)−1

(1 − J z−1)

)

(

(

1 − 1
2(z + z−1)

)

1 −N/((1 − P z)(1 − P )(1 − P z−1))

)

dz

4πiz
, (5.15)

where np,j,N is the multiplicity of the angular momentum state j in the irreducible representation

V
{p}
GL(3N) of GL(3N), or equivalently in the representation V

{p}
gl(3N) of gl(3N). This integral may be

evaluated by determining the residues of the integrand at all poles within the unit circle. The result
is

M(P, J,N ) = 1 +
1

2

N (1 − J)

JN − (1 − P )(1 − JP )(J − P )
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+
1

2

N (1 + J)

(JN − (1 − P )(1 − JP )(J − P )

√

N − (1 − P )3

N − (1 − P )(1 + P )2
(5.16)

Although not very illuminating, this formula may readily be used to recover the generating
functions M(P, J)N appropriate to any fixed N by expanding (5.16) in powers of N . In particular
we find:

M(P, J)N=1 =
1

(1 − JP )(1 − P 2)
(5.17)

M(P, J)N=2 =
1 + JP 2

(1 − JP )2(1 − P 2)3
(5.18)

M(P, J)N=3 =
1 + 3JP 2 + P 3 − J2P 3 − 3JP 4 − J2P 6

(1 − JP )3(1 − P 2)6
(5.19)

M(P, J)N=4 =

(J3P 10 + J3P 8 + 6J2P 8 + 4J3P 7 − 4JP 7 + J3P 6 − 10J2P 6 + P 6

−10JP 4 + P 4 + J3P 4 − 4J2P 3 + 4P 3 + 6JP 2 + P 2 + 1)

(1 − JP )4(1 − P 2)9
(5.20)

Finally, it follows from (5.2) that the required generating function for gl(1|3N) is obtained by
including an additional factor of (1+P ) in the numerator of each of these expressions. For example
in the case N = 1, the gl(1|3) generating function is

G(P, J)N=1 = (1 + P )M(P, J)N=1 =
1

(1 − JP )(1 − P )
, (5.21)

whose expansion takes the form

G(P, J)N=1 = 1 + (1 + J)P + (1 + J + J2)P 2 + (1 + J + J2 + J2 + J3)P 3 + · · · . (5.22)

This corresponds of course to our earlier observation (5.5) that in the N = 1 case V (p) contains
states of angular momentum j = 0, 1, . . . , p, without multiplicity.

By way of a more interesting example, in the case N = 2 the complete generating function is
(see also [27])

G(P, J)N=2 =
(1 + P )(1 + P 2J)

(1 − P 2)3(1 − PJ)2
. (5.23)

In the expansion of G(P, J)N=2, the coefficient of P p yields the angular momentum content of the
gl(1|6) representation V (p),

G(P, J)N=2 = 1 + (1 + 2J)P + (3 + 3J + 3J2)P 2 + (3 + 7J + 5J2 + 4J3)P 3

+(6 + 9J + 11J2 + 7J3 + 5J4)P 4

+(6 + 15J + 15J2 + 15J3 + 9J4 + 6J5)P 5 + · · · (5.24)

For example, for V (3) the possible total angular momentum values are j = 0, 1, 2, 3 with multiplici-
ties 3, 7, 5 and 4 respectively. Note that in general for gl(1|6) the total angular momentum values in
V (p) are given, as expected, by j = 0, 1, . . . , p, but each value appears with a certain multiplicity.

To conclude, the complete angular momentum content (including multiplicities) for all repre-
sentations V (p) of gl(1|3N) is resolved by G(P, J)N = (1 + P )M(P, J)N , where M(P, J)N is the
coefficient of NN in the expansion of the master generating function (5.16).
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6 Position operator properties and a classical limit for V (p)

The special class of representations V (p) not only allows a complete analysis of the angular momen-
tum content, it also allows a deeper analysis of the position and momentum operator properties.
Let us consider in more detail the single particle (N = 1) D-dimensional WQO in the Hilbert space
V (p) as representation space. A set of basis vectors is given by

v(θ; r) ≡ v(θ; r1, r2, . . . , rD), θ ∈ {0, 1}, ri ∈ {0, 1, 2, . . .}, and θ + r1 + · · · + rD = p. (6.1)

There are only two distinct energy levels:

Ĥv(θ; r) = ~ω(
p

D − 1
+ θ)v(θ; r). (6.2)

Furthermore, the squares of the position operator components satisfy:

R̂2
i v(θ; r) =

~

(D − 1)mω
(ri + θ)v(θ; r). (6.3)

Similarly, one has

P̂ 2
i v(θ; r) =

~mω

D − 1
(ri + θ)v(θ; r). (6.4)

In order to illustrate some of the spatial properties, let us first assume that D = 2, i.e. we are
dealing with a 2-dimensional one particle WQO. The squares of the position operator components
commute, [R̂2

1, R̂
2
2] = 0, and the 2p + 1 basis vectors v(θ; r1, r2) are common eigenvectors:

R̂2
1v(θ; r) =

~

mω
(r1 + θ)v(θ; r), R̂2

2v(θ; r) =
~

mω
(r2 + θ)v(θ; r),

(R̂2
1 + R̂2

2)v(θ; r) =
~

mω
(p + θ)v(θ; r). (6.5)

Let us consider in Figure 1 a plot of the eigenvalues of R̂2
1 and R̂2

2 with respect to these eigenvectors,
for some values of p.

Figure 1: Eigenvalues of R̂2
1 (on the x-axis) and R̂2

2 (on the y-axis), for p = 5 and p = 50 (in units
of ~

mω ). For each commom eigenvector v(θ; r1, r2) the corresponding eigenvalues are plotted.
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Since R̂1 and R̂2 do not commute, the position of the oscillating particle cannot be determined.
However, if the system is in one of the basis states v(θ; r1, r2), the above implies that the particle can
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be found in four possible positions, with coordinates
√

~

mω (±
√

r1 + θ,±
√

r2 + θ) (independent ±-

signs). If we continue in this interpretation, where the positions are determined through measuring
the eigenvalues of R̂2

1 and R̂2
2 in their common eigenstates, then the possible positions of the particle

in the Hilbert space V (p) consists of a collection of such coordinates
√

~

mω (±
√

r1 + θ,±
√

r2 + θ).

This leads to Figure 2. Thus the particle is situated on one of two circles, one with radius ρ0 =
√

p~

mω

Figure 2: Possible positions of the WQO, for p = 5 and p = 50 (in units of
√

~

mω ).
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and one with radius ρ1 =

√

(p+1)~
mω . The spectrum of the coordinate operators is discrete, however.

The current situation is interesting, since the classical limit of the WQO in this Hilbert space
V (p) can be considered. For this purpose, one should examine the situation where the quantum
numbers of the system become very large (in the limit to infinity) and ~ becomes very small (in
the limit to 0). So let us deal with the situation where

p → +∞, ~ → 0, but p~ → C, (6.6)

for some constant C. We shall examine what happens to the spectrum of the physical operators
Ĥ, R̂1, R̂2 and R̂2

1 + R̂2
2 under this limit. Using (6.6), the energy of the system becomes constant,

Cω, as the two energy levels coincide under the limiting process. The limit of the spectrum of R̂1

and R̂2 is the interval [−
√

C
mω ,

√

C
mω ]. The eigenvalue of R̂2

1 + R̂2
2 becomes C

mω , a fixed constant.

So the particle is situated on a circle with radius
√

C
mω . In the limit, all possible positions on the

circle are possible. This suggests that under this limit the solution of the WQO corresponds to one
of the classical solutions

x(t) = A cos(ωt), y(t) = A sin(ωt) (6.7)

of a 2-dimensional simple homogeneous harmonic oscillator, determined by the differential equations

ẍ(t) + ω2 x(t) = 0, ÿ(t) + ω2 y(t) = 0, (6.8)

where ω2 = k
m (k being the “spring constant”). The classical energy of such a system is mω2A2,

and the classical oscillator moves on a circle with radius A. Under the identification of the constants
C = mωA2, both the energy and position of the WQO (for this solution) are in agreement with
those of the particular solution of the classical oscillator. In other words, the “correspondence
principle” holds for this solution of the WQO.

It should be clear that the above considerations about possible particle positions remain valid
for arbitrary D. For instance, when D = 3, the possible positions of the particle in one of the
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basis states of V (p) consists of a collection of coordinates
√

~

mω (±
√

r1 + θ,±
√

r2 + θ,±
√

r3 + θ)

(independent ±-signs). The collection of such coordinates leads to Figure 3, i.e. a set of points on

two concentric spheres, one with radius
√

p~

2mω and one with radius

√

(p+1)~
2mω .

Figure 3: Possible positions of the 3-dimensional WQO, for p = 5 (in units of
√

~

2mω ). In the left

figure, the set of points is on a sphere with radius
√

p + 1; in the right figure, they are on a sphere
with radius

√
p.
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As far as the position or momentum operators for the WQO is concerned, we have not yet
considered their time dependence. Following [7]-[9], this is given by

R̂k(t) =

√

~

(D − 1)mω
(A+

k e−iωt + A−
k eiωt), P̂k(t) = −i

√

mω~

(D − 1)
(A+

k e−iωt − A−
k eiωt), (6.9)

for the D-dimensional single particle case. For a general mixed state of V (p),

|x〉 =
∑

θ,r

cθ;rv(θ; r),
∑

θ,r

c2
θ;r = 1, (6.10)

one finds that the average value or mean trajectories of the coordinate and momentum operator
components is

〈x|R̂k|x〉 = 2

√

~

(D − 1)mω
Bk cos(ωt), 〈x|P̂k|x〉 = −2

√

mω~

D − 1
Bk sin(ωt), (6.11)

where Bk is the constant
Bk =

∑

r

√
rkc0;r1,...,rD

c1;r1,...,rk−1,...,rD
. (6.12)

If the system is in a stationary state (fixed energy eigenvalue), one has either all c0,r = 0 or else all
c1;r = 0. In that case, all Bk are zero. In other words, for stationary states |x〉 the average values
〈x|R̂k|x〉 and 〈x|P̂k|x〉 vanish.

The analysis given so far was for a single particle D-dimensional WQO in the representation
space V (p) of gl(1|D). One can also consider the same representations V (p) of gl(1|N) as state
spaces of a system of N 1-dimensional WQO’s (N > 1, since a single 1-dimensional WQO does not
have a solution in terms of gl(1|1)). In this second interpretation, the basis states

v(θ; r) ≡ v(θ; r1, r2, . . . , rN ), θ ∈ {0, 1}, ri ∈ {0, 1, 2, . . .}, and θ + r1 + · · · + rN = p. (6.13)
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are the same as in (6.1), and similarly

Ĥv(θ; r) = ~ω(
p

N − 1
+ θ)v(θ; r), R̂2

i v(θ; r) =
~

(N − 1)mω
(ri + θ)v(θ; r). (6.14)

In other words, all the previously obtained formulas remain valid, only the interpretation of the
system is different: now it consists of N one-dimensional oscillating particles, and R̂i is the operator
corresponding to the position of particle i. In the representation space V (p), the spectrum of the
operator R̂2

i is {0, 1, . . . , p} and that of R̂i is {0,±1,±
√

2, . . . ,±√
p}. Let us again assume that

N = 2, so that we are dealing with just two one-dimensional oscillating particles. If the system is
in one of the basis states v(θ; r1, r2), our analysis leads to the interpretation that the position of

the first one-dimensional oscillator is ±
√

~(r1+θ)
mω , and that of the second one-dimensional oscillator

is ±
√

~(r2+θ)
mω . Since θ + r1 + r2 = p, these positions are not independent but “correlated”. To

see this from a different point of view, recall that the positions of the two oscillators cannot be
measured simultaneously, since [R̂1, R̂2] 6= 0. But suppose the system is in an arbitrary state of
V (p), and the position of the first oscillator is measured at time t = 0. This measurement has one

of the eigenvalues ±
√

~r1

mω of R̂1(t) as an outcome, with r1 ∈ {0, 1, . . . , p}. As a consequence of the

measurement, the system is then in an eigenstate of R̂1 for this eigenvalue. It is easy to verify that
this eigenstate is unique, given by (we assume r1 > 0)

1√
2
v(0; r1, r2) ±

1√
2
v(1; r1 − 1, r2), (6.15)

with r2 = p − r1 (the plus sign for the positive eigenvalue, and the minus sign for the negative
eigenvalue). The time evolution of this system is then described by

|x〉 =
eiωt/2

√
2

v(0; r1, r2) ±
e−iωt/2

√
2

v(1; r1 − 1, r2). (6.16)

Note that |x〉 is an eigenstate of R̂1(t) for the eigenvalue ±
√

~r1

mω . The state (6.16) can be rewritten

as follows:

|x〉 =
1

2
√

2
[eiωt/2v(0; r1, r2) + e−iωt/2v(1; r1, r2 − 1)]

+
1

2
√

2
[eiωt/2v(0; r1, r2) − e−iωt/2v(1; r1, r2 − 1)]

± 1

2
√

2
[eiωt/2v(0; r1 − 1, r2 + 1) + e−iωt/2v(1; r1 − 1, r2)]

∓ 1

2
√

2
[eiωt/2v(0; r1 − 1, r2 + 1) − e−iωt/2v(1; r1 − 1, r2)]. (6.17)

The four linear combinations in square brackets are four eigenvectors of R̂2(t), with eigenvalues
√

~

mω

√
p − r1, −

√

~

mω

√
p − r1,

√

~

mω

√
p − r1 + 1 and −

√

~

mω

√
p − r1 + 1 respectively. This implies

that a measurement of the position of the first oscillator, i.e. of R̂1 at time t = 0 with outcome
√

~r1

mω , imposes strong restrictions on the position eigenvalues of the second oscillator, measured at

time t. The two one-dimensional oscillators are not free but correlated in some sense.
Let us also examine the classical limit (6.6) for this second interpretation. In fact, the limit of

the spectrum of the operators Ĥ, R̂1, R̂2 and R̂2
1 + R̂2

2 is the same as before. So the total energy
of the system becomes constant, Cω. The limit of the spectrum of R̂1 and of R̂2 is the interval
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[−
√

C
mω ,

√

C
mω ], and the eigenvalue of R̂2

1 + R̂2
2 is fixed, C

mω . Thus, under this limit the solution of

the 2-particle 1-dimensional WQO corresponds to the classical solution

x1(t) = A cos(ωt), x2(t) = A sin(ωt). (6.18)

This simply describes a system of two uncoupled identical 1-dimensional harmonic oscillators, but
with a fixed phase difference in their oscillations. In other words, the initial conditions of the two
oscillators are related: also here there is a correlation. So the “correspondence principle” also holds
for this interpretation of the WQO.

7 Analysis for a general example

The results of the previous sections were mainly devoted to the special representations V (p). How-
ever, the computations of Section 2 allow us to make an analysis of the WQO properties for any
unitary representation. As an example, we consider a representation W ([m]3N+1) which belongs
to neither the set W (p) nor the set V (p), namely the representation corresponding to the gl(1|3N)

irreducible representation V
{2,1}
gl(1|3N) with highest weight Λ = 2ǫ+ δ1. This can be identified with the

gl(1|3N) module W ([m]3N+1) with [m]3N+1 = [2, 1, 0, . . . , 0].
The branching from gl(1|3N) to gl(1) ⊗ gl(3N) is given by

V
{2,1}
gl(1|3N) → V 2

gl(1) × V
{1}
gl(3N) + V 1

gl(1) × V
{2}
gl(3N) + V 1

gl(1) × V
{1,1}
gl(3N) + V 0

gl(1) × V
{2,1}
gl(3N) . (7.1)

The four terms arising here are associated with the four sets of states:
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(7.2)
with the entries ∗ taking values determined by the various betweennness conditions. For all states
within each of these four sets the corresponding values of (θ1, θ2, . . .) are given by (0, 0, 0, . . . , 0),
(0, 1, 0, . . . , 0), (1, 0, 0, . . . , 0) and (1, 1, 0, . . . , 0), respectively. In the notation of (4.17) we have

Eq = ~ω

(

6N + 1

3N − 1
− q

)

(7.3)

with q = 0, 1, 1 and 2, for our four sets of states. It follows that we have just three distinct energy
levels with degeneracies as shown below:

E0 = ~ω
6N + 1

3N − 1
, d0 = 3N ;

E1 = ~ω
3N + 2

3N − 1
, d1 = 9N2 ;

E2 = ~ω
3

3N − 1
, d2 = N(9N2 − 1) .

(7.4)

These correspond precisely to the three gl(1) representations, V 2
gl(1), V 1

gl(1) and V 0
gl(1) appearing in

(7.1). The degeneracies, dq have been obtained by using N -dependent formulae for the dimensions
of the irreducible representations of gl(3N) that appear in (7.1).
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The spectrum of R̂2
αi may be obtained from (4.22) by setting n = 3N and applying the formula

to the above states (7.2). One finds that for states of these four types the factor (m0,n+1 + . . . +
mn,n+1) − (m1,n + · · · + mn,n) takes the values 2, 1, 1 and 0, respectively, while the second factor
(m1,k + · · ·+ mk,k)− (m1,k−1 + · · ·+ mk−1,k−1) lies in the sets {0, 1}, {0, 1}, {0, 1, 2} and {0, 1, 2},
respectively. It follows that for each of the possible energy levels Eq the eigenvalues of R̂2

αi are
given by

R2
αi =

~ r2
αi

(3N − 1)mω
with r2

αi =

{ 2, 3 for q = 0 ;
1, 2, 3 for q = 1 ;
0, 1, 2 for q = 2 .

(7.5)

Note that, unlike all the V (p) cases with p > 0, there exists a configuration with r2
αi = 0, namely

one of the q = 2 ground state configurations.
To determine the angular momentum content of these states, we can extend (7.1) by considering

the chain of subalgebras:

gl(3N) → gl(3) ⊕ gl(N) → so(3) ⊕ gl(N) → so(3). (7.6)

The corresponding branchings take the form:

V
{1}
gl(3N) → V

{1}
gl(3) × V

{1}
gl(N)

→ V 1
so(3) × V

{1}
gl(N)

→ N V 1
so(3) (7.7)

V
{2}
gl(3N) → V

{2}
gl(3) × V

{2}
gl(N) + V

{1,1}
gl(3) × V

{1,1}
gl(N)

→ (V 2
so(3) + V 0

so(3)) × V
{2}
gl(N) + V 1

so(3) × V
{1,1}
gl(N)

→ 1

2
N(N + 1)V 2

so(3) +
1

2
N(N − 1)V 1

so(3) +
1

2
N(N + 1)V 0

so(3) (7.8)

V
{1,1}
gl(3N) → V

{2}
gl(3) × V

{1,1}
gl(N) + V

{1,1}
gl(3) × V

{2}
gl(N)

→ (V 2
so(3) + V 0

so(3)) × V
{1,1}
gl(N) + V 1

so(3) × V
{2}
gl(N)

→ 1

2
N(N − 1)V 2

so(3) +
1

2
N(N + 1)V 1

so(3) +
1

2
N(N − 1)V 0

so(3) (7.9)

V
{2,1}
gl(3N) → V

{3}
gl(3) × V

{2,1}
gl(N) + V

{2,1}
gl(3) × (V

{3}
gl(N) + V

{2,1}
gl(N) + V

{1,1,1}
gl(N) ) + V

{1,1,1}
gl(3) × V

{2,1}
gl(N)

→ (V 3
so(3) + V 1

so(3)) × V
{2,1}
gl(N) + (V 2

so(3) + V 1
so(3)) × (V

{3}
gl(N) + V

{2,1}
gl(N) + V

{1,1,1}
gl(N) )

+V 0
so(3) × V

{2,1}
gl(N)

→ 1

3
N(N2 − 1)V 3

so(3) +
1

3
N(2N2 + 1)V 2

so(3) + N3 V 1
so(3) +

1

3
N(N2 − 1)V 0

so(3) .(7.10)

Combining these results with (7.1) we can write down the generating function

G(Q, J)N =
∞

∑

q,j=0

nq,j(N)Qq J j

= N J Q0 + N2 (1 + J + J2)Q1

+

(

1

3
N(N2 − 1) + N3 J +

1

3
N(2N2 + 1)J2 +

1

3
N(N2 − 1)J3

)

Q2 (7.11)

where the coefficient nq,j(N) gives the multiplicity of states of angular momentum j and energy
Eq as a function of N . To recover the degeneracy of each energy level one replaces each J j by the
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corresponding dimension 2j + 1 of V j
so(3) to give

G(Q)N = 3N Q0 + 9N2 Q1 + N(9N2 − 1)Q2, (7.12)

in agreement with (7.4). Similarly, the full angular momentum content for specific values of N may
be obtained from (7.11) by setting Q = 1. For example, we obtain

G(1, J)N=1 = 1 + 3J + 2J2; (7.13)

G(2, J)N=2 = 6 + 14J + 10J2 + 2J3. (7.14)

Although this example is not very remarkable, it illustrates how the methods constructed here
can be used, and it shows that the material developed in this paper can in principle be applied to
any unitary representation or class of unitary representations.

8 Conclusions

The theory of WQOs has a deep connection with representation theory of Lie superalgebras. So-
lutions of WQO systems can be considered not only for the Lie superalgebra sl(1|n), but also for
other Lie superalgebras. As typical examples, we mention the osp(3|2) WQO [28] and the recently
studied sl(3|N) WQO [29]. The physical properties of the WQO depend on the Lie superalgebra,
and on the class of representations considered.

This paper has made a contribution to the study of physical properties of WQOs of type
sl(1|n), initiated in [5] and performed in detail for the 3-dimensional WQO in [7]-[9]. First of all,
our current approach is slightly more general by considering the D-dimensional N -particle WQO
of type sl(1|n). Secondly, in earlier papers only the solutions corresponding to Fock representations
W (p) were investigated. Here, we have initiated the study of solutions related to all (unitary)
representations of sl(1|DN). This requires the construction of a proper basis (the GZ-basis) for
these representations, with explicit actions of the sl(1|DN) generators, as given here in Section 2.

In order to emphasize the difference with the previously considered Fock spaces W (p), we have
paid particular attention to another special class of representations V (p). These representations are,
once again, weight multiplicity free, so they are easy to describe explicitly. The energy spectrum
and the spectra of position and momentum operators in these representations have been obtained
without much effort. Among the special features we mention: there are only two different energy
levels (the difference being ~ω); the position operator components are non-commuting operators
and have a discrete spectrum, leading to spatial properties that are quite different from those of a
canonical quantum oscillator.

In addition, for these representations V (p) the complete angular momentum content has been
obtained in the form of a generating function using powerful group theoretical methods.

Another particularly nice result is that, for those solutions related to V (p), a classical limit has
been obtained, showing that the behavior of the WQO solution reduces to a classical solution of
the harmonic oscillator. For the previously considered Fock space solutions based on W (p), such a
limit does not exist.

Wigner Quantum Oscillators, belonging to the class of non-canonical quantum systems, possess
many attractive and fascinating properties, both for mathematicians and physicists. We believe
that the correspondence principle observed here makes them even more interesting for physics.
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