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Abstract

The study of invariance groups associated with two term transformations between (basic)
hypergeometric series has received its fair share of attention, and indeed, for most two term
transformations between (basic) hypergeometric series, the underlying invariance group is
explicitly known. In this article, we study the group structure underlying some three term
transformation formulae, thereby giving an explicit and simple realization that is helpful in
determining whether two of these transformation formulae are equivalent or not.
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1 Introduction

This article deals with transformations between basic hypergeometric series, and we use the
(standard) notation of [5] when working with such series. The g-shifted factorial is

n—1
(a;9)o =1, and (a;q)n = H(l —aq"), forn=1,2,...,00,
k=0
and (a1,...,am;q)n = (a1;@Q)n - - (@m; @)n. The basic hypergeometric series we will be working

with are all of the form

(o)
a1, az,...,ar41 (a17a27"'5a7‘+1;q)k k
+1¢ 4,2 | = Z.
' ( bbb, ) D PR s i

The series appearing in this article are non-terminating, meaning that in general none of the
numerator parameters a; equals ¢~", with n a nonnegative integer. We will assume that the
convergence conditions are always satisfied. A basic hypergeometric series is called of type I
whenever z = ¢ and of type II when z = biby---b,/ajas - --ar+1. A basic hypergeometric series
is called very-well poised if the following relations between its parameters hold:

1/2 1/2
qai = agby = asby =--- =a,41b, and ay = qal/ , ag = —qal/ ,
and one uses the more compact notation ,11W;(a1;aq4,as,...,ar+1;¢q, z) to denote such a series.

Each basic hypergeometric series has so called trivial transformations, since one can permute
both the numerator parameters a; and the denominator parameters b; without changing the
series. We immediately remark that this can destroy the very-well poised property of a series. If
one wants to preserve this property, one has to restrict oneself to permutations of the parameters
a4 up to ar4+1, and the denominator parameters have to be permuted accordingly.



Besides these trivial transformations, for some basic hypergeometric series, there are also
non-trivial transformations, and if such a transformation connects two series with the same
number of numerator and denominator parameters, satisfying the same “boundary” conditions
(e.g. being very-well poised), then the transformation can be iterated (and composed with the
trivial transformations) to yield a so-called invariance group H for the series in question. As an
example, the well known Heine transformation [5, Formula (1.4.1)]

(a,b2;q) 0

(C Zq) 2¢)1(c/a, Z;bz;Qa CL), (1)

201(a, b;c;q,2) =
together with permutations of a and b, yields a group H of order 12 which is isomorphic with the
symmetry group of a regular hexagon [11]. The study of these invariance groups enables whole
lists of known transformation formulae to be summarized as elegant one-line statements [11].
They can also be used for other purposes, e.g. to detect which expansion formulae are essentially
different [8].

The following three term identity is an example of the sort of identities that we will be
studying in this article, see [5, Appendix (II1.31)]:

a,b
2¢1< ;q,Z)
C

_ (bc/a,az,q/azq) s a,aq/c cq +(a70/b,bz,Q/b2;q)oo s b,bg/c cq
(e.b/a,2,q/2 Q) (c;a/b, 2 q/z 000 -\ bg/a T abz)
(2)

aq/b D abs

Of course, the group G associated with such a three term identity will not be an invariance
group in the same sense as it is for two term transformations. This is because, if one would
apply this transformation to one of the series on the right hand side, the resulting identity would
(in general) no longer be a three term identity (although it would be in this simple case), but
would involve four series. Repeated application would cause the identity to expand to a multi
term identity. In the cases we will consider however, as we will show, there will be an upper
bound on the number of series that can occur, provided one groups series that are connected
through a two term transformation.

What we will do however is interpret the arguments of the series on the right hand side as
group element transforms of the arguments of the left hand side series. In this case, we thus have
group elements mapping (a, b, ¢, q, z) on to (a, aq/c, aq/b, q, cq/abz) and on to (b, bq/c,bq/a, q,cq/abz).

To study the groups generated by these elements, we used the GAP [4] program, thereby
presenting the group elements as matrices, acting on vectors from the left. Stated otherwise, we
use group representations, although in this article the explicit calculations and representations
are left out as they are quite trivial. The first of the previously mentioned group elements for
instance would be represented by the matrix:

1 0O 0 0 0 1 0 0 0 0 a a
1 0 -1 1 0 1 0 -1 1 0 b aq/c
1 -1 0 1 0], and 1 -1 0 1 0 Jolc|= aq/b
0 0 0 1 0 0 0 0 1 0 q q
-1 -1 1 1 -1 -1 -1 1 1 -1 z cq/abz

The action of this matrix on the five-dimensional vector is thus ordinary matrix multiplication
with addition replaced by multiplication, and multiplication by exponentiation. Note that this



matrix in principle acts on a column vector. To ease notation however, in the following we will
not be too strict about the use of column or row vectors, as the context will make clear what is
meant.

We will realize these groups as (signed) permutation groups acting on certain variables x;.
We will denote permutations by their cycle notation [6, Chapter 1]. For instance, the element h
of the symmetric group Sg for which

is denoted as (0,4)(1,6,3,5,2,7). A signed permutation is equivalent to a permutation matrix
(i.e. a matrix in which on each row and each column there appears exactly one “1”, while the
other elements of the matrix are “0”) in which each non-zero element is “£1” (instead of just
“17).

Throughout this article x will be a shorthand for the vector (:fcg,:cl, ..., Ty), where n will

always be clear from the context. The action of the permutation h on x is simply to permute
the indices as dictated by the permutation, e.g.:

hox = ho (xo, 1, 22,73, T4, T5, 76, T7) = (T4, T, T7, T5, T0, T2, T3, T1).

The action of a signed permutation on x is the same as that of a permutation but for the fact
that if the ith column of its matrix representation contains a —1, then x; is replaced by z% Note

that by our convention the application of a permutation h followed by a permutation g on the
indices of z; is realized by the matrix action ho Jjox.

In this article we will study three different cases of three term identities that appear in the
literature, namely for o¢1-series, for 3¢o-series of type II, and for very-well poised g¢7-series. The
main result can briefly be described as follows. For each term of a three term identity, there is
a “local” invariance group H whose action leaves this term “invariant” (i.e. H is the invariance
group of a two term transformation). Besides this, there exists the “invariance group” G O H
of the three term identity. Each term in the three term identity is characterized by a coset of H
in G. Our analysis shows that conversely for each triple of cosets there is a three term identity.
Using the group theoretical context, all three term identities between the series can thus be
unified as a single statement.

For the 5¢1-series, we will find that the group G underlying the three term identities is the
full group of symmetries of the cube; for s¢s-series the group G is Sg; and for the very-well poised
so7-series G is the group of signed permutations on six elements that have an even number of
—1 signs in their representation. Each of them will be treated in a different section. When
appropriate, we will refer to known results concerning hypergeometric series, using a notation
very similar to that in [10]. It should be mentioned that the first paper introducing this notion
of “invariance group of a three term identity” is [1]. Some of the ideas are already present in
the papers of Whipple [12, 13], however Whipple did not characterize the groups nor did he use
any group theory arguments to unify the identities.

As a final remark for the introductory section, we stress that although in principal the order
of the numerator and denominator parameters in basic hypergeometric series is immaterial, in
this article we consider them to be fixed in the order given in the formulae, especially when
considering permutations that are associated with the transformations dictated by these series.



2 Transformation formulae between basic ;¢;-series

Two term transformation formulae. Heine’s two term transformation formula for o¢;-
series is well known, see e.g. [5]:

(a,b2;¢) s

(C 2 q) 2¢1 (C/a7 <3 bz, q, a). (3)

Q(bl(a‘a ba ¢ q, Z) =

Using the following rescaling of the basic 2¢; series

d(a, byc;q, z) = (¢, 2:9)o0 201 (a, b ci q, 2), (4)

the transformation (3) is rewritten as:
o(a, b;c;q,2) = d(c/a, z;bz;q,a).
This transformation corresponds to the group element
ho(a,b,c,q,2z) = (c/a,z,bz,q,a).

Denote by p the group element corresponding to the trivial permutation of the numerator pa-
rameters:

po (a’? b’ C’ Q’ Z) = (b7 a/’ C’ q’ Z)'

The invariance group H is generated by these elements: H = (h,p). This invariance group H
(of the rescaled series) is of order 12 and is isomorphic to the dihedral group Djg [11].

Three term transformation formulae. Since it is the rescaled series that has the nice
invariance property, we rewrite the three term identity (2), which is also formula T2162 from [7],
using these rescaled series:

(b/a,a/b,qa/b,qb/a,q/z, qc/abz; q)s O(a, b;c; q, 2)
— (¢/a,b,az,q/az,a/b,qb/a; q)e0 ¢(a, qa/c; qa/b; q, qc/abz) (5)
— (¢/b,a,bz,q/bz,b/a,qa/b; q)0e ¢(b, qb/c; qb/a; q, gc/abz) = 0.

In order to construct the group G, we need to consider also the group elements that map the
first term of (5) to the other terms. Consider the element

to(a,b,e,q,2) = (b,qgb/c,qb/a,q,qc/abz).

This element corresponds to the third and last series in (5). Now G is the group generated by
h, p and t, i.e. G = (h,p,t). Note that we don’t need the second series in (5) to generate the
group, as it is already contained in G since topo (a,b,c, q,2) = (a,qa/c,qa/b,q, qc/abz).

We will show that G is isomorphic with the full group of symmetries of the cube [2, Chapter
17]. In Figure 1 there is a drawing of a three dimensional cube together with a labelling of
its vertices. This labelling is such that the sum of the labels on the corners of each of the six
squares that make up the cube is 14 and such that the absolute value of the difference of the
labels on opposite vertices equals 4. (Up to isomorphism there is only one way in which this can
be done, a fact easily checked either by hand or with a simple computer program.)

Lemma 1 The group G generated by the transformations h, p and t is isomorphic to the full
group of symmetries of the cube.



Figure 1: The cube with a specific labelling of its eight vertices.

Proof: In this proof we use the specific labelling of the cube as shown in Figure 1. Let zg
up to x7 be 8 variables, satisfying the condition that the product of each set of four variables
that make up one of the faces of the cube equals 1. This gives 6 conditions, only 4 of which are
independent from each other:

TOL1XeL7 — TQX2IX5X7 — TOX3X5TLE — L1XQXAX7 — X1X3TX4Te — XLQAXZX4XLE — 1.
The 8 variables x; now have 4 degrees of freedom left. Next, we let

ToT Tox Tox T4T
= gt2208  p = g 220 o PO and = gl/2ERS (6)

a
T5T6 zex7’ ToZg 123

These four equations can be inverted and solved for the variables x;. Together with the previously
mentioned constraints we get a unique solution, a fact easily verified by taking the logarithm of
all equations involved to yield a system of linear equations in the variables log(z;).

We now determine to which permutation of the cube vertices each of the group elements h,
p and t corresponds. Since

= PTTE apTaTe 0T g Tt

T2T3 173 327 T5T6
the transformation h corresponds to the permutation & = (0,4)(1,6,3,5,2,7). This is an element
of the group of full symmetries of the cube since it can be seen as a rotation over 27 /3 radians
around the 04 axis (permutation (1,2,3)(5,6,7)), followed by a reflection through the centre of
the cube (permutation (0,4)(1,5)(2,6)(3,7)).

The transformation p (the swapping of the numerator parameters) corresponds to the per-
mutation p = (1, 3)(5,7), which can be realized as a reflection about the plane 0624.

It is easily verified that the transformation ¢ corresponds to the permutation ¢ = (0, 1,2, 3)(4, 5,6, 7)
which can be seen as the permutation (0,5,2,7)(1,6,3,4) (a rotation around the axis through
the centre and perpendicular to the plane 0725 over 37 /2 radians) followed again by a reflection
through the centre of the cube. Since the transformations h, p and ¢ generate a group of order
48, and since each of them corresponds to a symmetry of the cube, of which the full symmetry
group has order 48 as well, the statement is proved. a
Transformation of the three term identity. We will now write the identity (5) in terms of
the variables z;. To this end, we first define the following function of eight variables, which is a
translation of the rescaled basic hypergeometric series (4):

B(x) = (g2, gHP L g T g g2 20, (7)
T5T reT7  ToTg 173
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For any element g of the group H = <B, p) it holds that qz(x) = <;~5(§] ox). Since h only swaps
the labels 0 and 4, and p keeps them both in place, the numerator of the third argument of the
series in <Z~>(§ o x) always equals qroxy.

Since the order of H = (h,p) (the invariance group of ¢(x)) is 12, and since the full group
G of symmetries of the cube has order 48, there are four cosets of H in G. The following four
elements are simple representatives of these four cosets: t° = () (the identity), ¢, 2 and 3. It is
thus the image of xy that determines the coset to which a particular group element belongs. For
instance, the permutation (0,3)(1,2)(4,7)(5, 6) belongs to the coset of #3, since the image of 0 is
3. (It is readily seen that this permutation corresponds to the group action dictated by the first
series on the rhs of (2).) As a second example, if the permutation is (0,6)(1,7)(2,4)(3,5) then
it follows from the previous paragraph that it belongs to the coset £2. Generally, if the image of
0 is k then the corresponding coset is £¥l with [k] = k mod 4.

We introduce the following abbreviation:

di(x) = ¢(I" 0 x).
The identity (5), ‘when rewritten in terms of the eight variables z¢ up to x7, thus involves the
functions ¢g(x), ¢1(x) and ¢3(x). It is more elegant to have an identity involving ¢o(x), ¢1(x)
and ¢o(x), and this is why we apply the permutation (2,3)(6,7) (a member of the full group of
symmetries of the cube!) to this identity, resulting in the following:

a(x) do(x) + B(x) p1(x) +7(x) ¢2(x) = 0, (8)
with
o 15 T2Xg ToX¢ 51 1/2 Tr1T2 1/2 56‘5336‘
a(x) - I bl ) bl ) 9 )
T2Teg T1x5 T1T5 T2Te TaT7 o3
Tely X1x5 TOT4 T2T6 ToT2 T4Tg
ﬂ(x) = - I ’ 9 9 1/2 9 1/2 ; )OO (9)
ToT4 T2Te T2Teg T1T5 T5T7 r1r3

y(x) = B(xo, x2, 21, T3, T4, T, T5, T7).

Let § be an element of the group G = (h, ,1). Applying § to the identity (8) transforms it
(trivially) in the following way:

a(gox)do(§ox)+ B ox)d1(§ox)+7(gox)pa(jox) =0.

Let k, [ and m be three different elements of {0,1,2,3,4,5,6,7}, and let Gy, denote the
subset of G containing elements that map xg to xx, 1 to x; and x2 to x,,. Note that the set
G1,m either consists of just one element (if {k,[,m} is a subset of {0,1,2,3} or {4,5,6,7}) or
is empty (otherwise). To see this is easy, remembering that the full group of symmetries of the
cube is isomorphic to the group Sy x Cy [2]. For k, there are thus 4 x 2 = 8 possibilities; when &
is fixed, there are just 3 possibilities for [, and once k and [ are fixed, there are only 2 possibilities
for m. In this way, we have considered the 48 elements of the full group of symmetries of the
cube.

We introduce the notation oy m(x) = a(gox) for each element g of Gy, and analogously
for 3 and v. Considering the earlier remark about the size of Gy, this is rather trivial, but an
analogous notation will prove its use in the later sections of this article. It is easy to see that
Qg 1,m(X) = Q) 1),jm] (%), and analogously for 3 and v. For any element g of Gy 1, acting with
g on the identity (8) transforms it into:

1, (%) (1) (%) + Bretm (%) P11y (%) + V1. (X) Py (%) = 0,

6



so to describe the distinct relations it will be sufficient to consider indices from {0, 1,2, 3} only.
We can now summarize the result as follows.

Theorem 1 Let G be the group of symmetries of the cube (of order 48), and H = (h,p) its
subgroup of order 12. The series gg(x) satisfies (;NS(Q ox) = (j;(x) for each g € H. The 48
series ng(f; ox), with g € G, can be divided according to the four cosets of H in G, each coset
being represented by éi(x), with i € {0,1,2,3}. For any three different elements k, | and m of
{0,1,2,3} the following identity holds:

ak,l,m(x)ék(x) =+ ﬂk,l,m(x)él(x) + 'Yk,l,m(x)q;m(x) =0.

We thus have found (g) — 4 three term identities between the four functions ¢;(x) (or among

the four cosets). These identities are already known in the literature, and an instantiation of
each of them is listed in [3, Eqs. (34),(37),(39),(41)]. Since, in fact we have already found all
three term identities between the four functions qgi(x), there is no point in trying to find new
identities by an elimination procedure.
Remark. In [9] the group associated with the Kummer solutions is studied, i.e. a group
associated with ordinary o Fj-series. Is is shown that this group of order 48 is isomorphic with
the full group of symmetries of the cube, which is a clear resemblance with what we have just
seen. There are however some important differences:

e The invariance group of the 2F}(a, b; c; z) series generated by the Euler and Pfaff trans-
formations is only of order 8, whereas the group generated by the Heine transformation is
of order 12. In the former case there are thus 6 cosets, each of size 8, which is different
from the 4 cosets of size 12 in the basic case.

e When the mirror symmetries are removed, one gets in both cases a group of order 24, which
are however non-isomorphic. In the ordinary case, it is the group of direct symmetries of
the cube, while in the basic case it contains elements of order 6 (and hence cannot be
isomorphic with Sy).

3 Transformation formulae between basic 3¢s-series

Two term transformation formulae. Just as in the case of the basic o¢1-series, we start
off with a known two term transformation formula for which an interesting transformation group
exists. This is the case for non-terminating 3¢o-series of type II, and the transformation group
H involved follows from iterating

s a,bc de (b, de/ab, de/bc; q) o d/b,e/b,de/abc b (10)
2\ de Tabe) T (d,e,de/abe; @)oo 2 de/ab,de/bc AR

together with permutations of the numerator and denominator parameters. Using the rescaling

a,b,c  de
b,c; d,e;q) = (d,e,de/abc; q) oo g, — 11
bl docia) = (dedefabcia)son ) i 5 ) (1)
the transformation (10) is rewritten as:
¢(a,b,c; d,e; q) = ¢(d/b, e/b,de/abe; de/ab, de/bc; q). (12)

The invariance group H of ¢(a,b,c; d,e) is isomorphic to the group S5 [11] .



Three term transformation formulae. There exist three term transformation formulae
connecting three 3¢9 series of type II, e.g. [5, I11.33] (which is also [7, T3261] apart from a slight
typo). Using the rescaling (11) this identity reads:

(cq/d,q/a,e/be,d/q,bq/d,beq/e, % /d; @) d(a, b, c; d, €; q)
— (e/b,e/c,q/d,d/q,d,de/abe, ¢* /d; @)oo B(c, d/a, cq/e; cq/a,beg/e; q) (13)
+ (g/d,b,d/a, de/bcg, beg? /de, ¢, d; q) o Plag/d, bg/d, cq/d; ¢*/d, eq/d; q) = 0.

It is then natural to consider the following group actions:

ho(a,b,c,d e, q) = (d/b,e/b,de/abc,de/ab,de/be,q)
p1o(a,b,c,d,e,q) = (ba,c.d e, q)
p2o(a,b,c,d,e,q) = (b,c a,d e, q)
p3o(a,b,c,d,e,q) = (a,b,c,e,d, q)

to(a,b,c,de q) = (c,d/a,cq/e,cql/a,beq/e, q).

The group H = (h, p1, p2, p3) is isomorphic to Ss, and adding ¢ as a generator to this group yields
a group G of order 720, which we will show, by giving a simple realization, to be isomorphic to
the group Sg. We note that the group element corresponding to the last series in (13) is not
necessary as it is already contained in the group generated by the given elements.

Lemma 2 The group G generated by h, pi, p2, p3 and t is isomorphic to the group of permu-
tations on siz elements, denoted Sg.

Proof: Let zy up to x5 be six variables satisfying the constraint xgxixoxsxsxs = 1, and let

ToT1T2 ToT23 ToT13
SVt e S g VUi P V Bl s L S QR

a
T3T4T5 T1T4X5 ToT4xs i

75

e= qxg. (14)
It is then easy to see that transformations h, p;, po and ps respectively correspond to the
permutation h = (5,3,4,2,1), p1 = (1,3), p2 = (1,2,3), and p3s = (4,5). Note that none of these
permutations involve the index 0. The transformation ¢ on the other hand corresponds to the
permutation ¢ = (5,4,2,0,3). The given five permutations indeed generate the group Se. O

We now proceed as before, and define the rescaled 3¢o-series in terms of the variables x;
using the realization (14):

2

2
~ o 1 21‘03}1%2 1 2x0$2x3 1 2%0.%‘1:(}3' .’L‘O xo'
T3X4T5 L1X4T5 ToT 4Ty Ty l‘5

It is known that for any element § of the group H = (h, py1, 2, P3) it holds that ¢(x) = ¢(§o x).
As already mentioned, all permutations of this group keep g in place, and hence xy will be
present in the numerators of each of the five arguments of the series appearing in ¢. The
invariance group H has index 6 in the bigger group G that is associated with (13), and hence
there are 6 cosets of H in G. Simple representatives of these six cosets are given by ¢ = (),
¢=1(0,1,2,3,4,5), up to & = (0,5,4,3,2,1). As before we introduce the notation

(ZEZ(X) = g?)(él o x),



and we see that the identity (13), if rewritten in terms of the variables z;, would involve the
functions ¢g, ¢3 and ¢4. We apply the permutation (1,3)(2,4) to this identity and we get:

a(x)o(x) + B(x)d1(x) +7(x)da(x) =0, (16)
with
2 2 2 2
_(1/2%3T1L2 19 X1X2L5 g /9 X1X2LY4 T2~ Lo~ T2~ GT1
Oé(X)— i ’ ’ 29 27 2 27Q)oo
TOT4Ts ToT3T4 ToT3xTs 17 T2 Xo Z2
. 1/200X2X3  1/9L0T2L4  1/9LOL2T5 1322 xOQ q$02 qx22‘
/B(X)__( } 9 9 2 2 2 2 )OO
T1X4T5 IT5X1T3 341 To° X2 ) x

v(x) = az2, 21, 20, T3, T4, T5).

As in the case of 2¢1-series, we introduce the notation Gy, to stand for the subset of Sg
containing the elements which map x¢ onto xx, x1 to z; and x9 to x,,, for any three different
elements of {0,1,2,3,4,5}. In this case each set G}, consists of six elements.

One sees immediately that each of the three coefficients «, 8 and ~ is symmetric in the
variables x3, 4 and x5, allowing us to introduce the notations ay, j m (x), Br.1,m(x) and vy m(x)
for three arbitrary, yet different, elements from {0,1,2,3,4,5}. Hereby oy, (x) stands for the
resulting coefficient after acting on «(x) with an arbitrary element from G .. In all, after
acting with all 720 permutations, there will be (g) = 20 three term relations, each connecting
three 3¢o-series of type II. This can be summarized as:

Theorem 2 Let G = S and H = Sy as described. The series ¢(x) satisfies ¢(§ox) = ¢(x) for
each g € H. The 720 elements qNS(g ox), with § € G, can be divided according to the six cosets of
H in G, each coset being represented by ¢i(x), with i € {0,1,2,3,4,5}. For any three different
elements k, I and m from {0,1,2,3,4,5} the following identity holds:

Qe 1,m (X) Pk (X) + B 1,m (X)01(X) + Vi 1m (X) @ (x) = 0.

For example taking (k,l,m) = (0,5,2) gives [7, T3263].

Remark. In 1987, Beyer et al. [1], already studied the group underlying the three term trans-
formations between ordinary non-terminating hypergeometric series of unit argument, i.e. 3 F5(1)-
series. The group they obtain is of order 1440 and is isomorphic to Sg x C3. The reason they
obtain a larger group lies in the fact that both basic hypergeometric series of type I and II
reduce to ordinary hypergeometric series of unit argument when taking the (formal) limit ¢ T 1,
and thus there are other three term relations to start with, which can be seen as limiting rela-
tions from three term relations connecting basic hypergeometric s¢o-series of both type I and
I1, e.g. [5, I11.34].

In the g-case, we cannot use this type of identity, as there is no known interesting invariance
group for s¢s-series of type I. One could argue that a series that is balanced is both of type I
and II, but for such a series the relation [5, II11.34] reduces to a sort of “summation” formula,
since one of the series involved becomes summable.

On the other hand, the realization given in Lemma 2 is, with the usual modification of re-
placing ¢ by 1 and multiplication resp. division, by addition resp. subtraction, directly applicable
to the case of the ordinary hypergeometric 3F5(1)-series. The first series on the right hand side
of the resulting identity after taking the limit ¢ T 1 in [5, II1.34], namely

d—a,b,c
F ) ‘1
5 2<d,1—|—b—|—c—e’ >
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corresponds to the signed permutation p that sends x to (—x4, —z2, —x1, —25, —x0, —23), and
thus this will yield (like in the following section, and as in [1]) the introduction of series with
“starred” indices, giving twelve different functions in all.

4 Transformation formulae between very-well poised g¢p7-series

Two term transformation formulae. Again, we start with a well known two term trans-
formation formula ([7, T8704] or [5, II1.23]):

¢’ )
abede f
__(@q.q/ef, ¢ /bede, ¢ [bcdf o o 0d q g a4
(aq/e,aq/f,aq?/bcd, % /abedef; q) oo bed’ cd’ bd be’
Using the following rescaling of the gWW7-series:
w(a; b, c,d, e, f)

2.2 ) 2 2 18
(aq/b,aq/c,aq/d,aq/e,aq/ f,a*q* /bedef; q) s Wlabe.de fiq 20 (18)
(aq;Q)oo bede f

8W7(a2; (lb, ac, (Id, ae, afa q,
(17)

a/f7a’€ Q7 q.](')'

or more explicitly

w(a?; ab, ac, ad, ae, af)
(ag/b,aq/c, aq/d, aq/e, aq/f, ¢* /abedef; q) oo ¢ (19)

2
= ;ab d ;
(azq; q)oo 8W7(a ;ao,ac,a 7a67af7q’ (Lde@f)’
equation (17) is written as:
w(a®; ab,ac, ad, ae, af) = w(z=o; L L L af, ac). (20)

This is a two term transformation formula for very-well poised g¢v-series, and it is known
that transformation (20) together with permutations of (b, ¢, d, e, f) generates a group H of order
1920, and that this group is in fact the group W D5 (the Weyl group of Ds, see [11, Section V]).
Three term transformation formulae. The first three term transformation formula be-
tween very-well poised g¢r7-series listed in [7] is transformation T8762. Using the rescaling (19)
it reads:

(adef,bd,be,bf,a/b,q/ac, q/ade f,bq/a; ¢)oo w(a®; ab, ac, ad, ae, af)
+ (bdef,ad,ae,af,b/a,q/bc,q/bdef,aq/b; @)oo w(b*; be, bd, be, bf, ba) (21)

— (b/a,a/b.a/de,a/df afef, aav,baja. ¢ abede : oo w( "L L L cf ac,ap) =0,

One can apply (20) to the third series to write the relation in a “nicer” form, e.g. one can write:

acf
<c

Next, we consider the group elements associated with the two term transformation (17)
or (20):

)(qqqqqq)

49 4q
sef,ae,a
f f 2’ cd’ ce’ cf’ ca’ ch

¢’ cd

g © (a27 a’b7 ac? ad? ae? a’f? ) (bach C(ii chl b ) f? ae Q)
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and

2

p1 o (a?,ab,ac,ad, ae,af,q) = (a*, ac,ad, ae,af,ab,q),

2

p2 o (a%,ab, ac, ad, ae,af,q) = (a?, ac,ab, ad, ae, af, q).

One sees that p; and ps together allow any permutation of the parameters in the positions 2 up
to 6; moreover, the elements g, p; and po together generate a group H of order 1920, and this
is exactly the invariance group of the transformation (20).
We also consider the group elements associated with the three term identity (21):
t1 o (a®,ab, ac, ad, ae,af,q) = (b, be, bd, be, bf, ba, q),
ty o (a®,ab, ac, ad, ae,af,q) = (a/¢*,q/cd,q/ce,q/cf,q/ca, q/cb, q).
The five elements g, p1, p2, t1 and t2 generate together a group G = (g, p1, p2, t1, t2) of order
23040, a fact easily verified using GAP [4]. We remark that the same group is already generated

by g, p1 and t1, since both ps and t3 can be expressed in terms of g, p; and £;. One possibility
(which is by no means guaranteed to be the simplest one) is the following:

P20 (CL2, CLb, ac, ad) ae, af7 Q) = p411 o tl Op? ° t% ° (a27 ab) ac, (Zd, ae, le, Q)
and
la 0 (a27aba ac, a‘dv a‘€7af7 Q)
=gopiogopiotiopiogopiotso(a® ab,ac,ad,ae,af,q).

In [11] it was already shown that the invariance group H of (20) is isomorphic to the group of
signed permutations on five elements with an even number of —1 signs in their representation.
Since |(g,p1,t1)| = 23040 = 6! x 2° = 6! x ((8) + (g) + (Z) + (g)), we may suspect that this
group is isomorphic to the group of signed permutations on six elements, with an even number
of —1 signs in their representation. This is in fact the subject of the next lemma.

Lemma 3 The group G generated by the elements g, p1 and t1 is isomorphic to the group of
stgned permutations on siz elements with an even number of —1 signs in their representation.

Proof: Let zg, z1, z9, T3, T4 and x5 be six arbitrary variables, and let:

T1T2X3L4X5 T2T3T4T5
ol = q1/2 ab = ql/2 275 do

z} Tox1
T1T3T4T5 L1T2X4T5
ac = q1/27 ad = q1/24 (22)
Tox2 o3
T1T2T3T5 T1T2XT3T4
ae:q1/27 af: 1/2+~1+424344
0Ty ToTs

this is, we write the six arguments of the series on the left hand side of (20) in terms of the
variables x;, with i € {0,1,2,3,4,5}. We note that, as before, this rewriting is invertible.
It is easily verified that the arguments of the series on the right hand side of (20) become

1/2 12223 1/2 T2I3
ag/bed = 1?5222 gfed = P20
TpT4ls TOL1X4T5

1/2 T1T3 1/2 T1T2
q/bd = ¢ —=— gq/bc=q'?——
TOL2T4T5 TOT3T4T5
T1X2X3T4 T1T2X3T5
afquﬂi aequmi.

ZoTs ToT4
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This means that the action of g on (a2, ab, ac, ad, ae, af, q) translates into the signed permutation

- 1 1
go (x07x17x27x37x47x5) - ($07x17x27x37 D) _)
T4 Ty

In the same way one verifies that the actions of p; and ¢; translate into:

]51 o (ZEO,$1,IE2,1’3,1’4,$5) = ($07 132,1‘3,!174,.175,1’1),

tl o ($0,$1,$2,l’3,l’4,l’5) = (.’El, $2,$3,$4,CL’5,CL’0).

Since the signed permutations §, p; and ¢; together generate the already mentioned subgroup
of the group of signed permutations on six elements, this identifies the group G involved in the
three term transformation formula for gWr-series. O

Since the index of the subgroup H = (g, p1, p2) in the group G = (g, p1,t1) is 23040/1920 =
12, there are 12 cosets of the invariance group H in G, each of size 1920. The signed permutations
g, p1 and po = (1,2) all leave the first element of their argument vector intact, while the other
five arguments form a signed permutation with an even number of —1 signs. Let

cox = (x1,x9,x3,T4,T5,29) and Tox=(—,—,—, —, —,—).

It is then easy to see that the following twelve signed permutations are representatives of the 12
cosets: & and ¢, =70, with j € {0,1,2,3,4,5}.
We next define the following function of six arguments:

’lf)(x(), x1,x2,T3, T4, 1’5)
_ w(ql/z T1X2TITALS 1/2 T2X3T4Ts 1/2 T1X3T4T5 1/2 T1X2T4T5 1/2 T1X223T5 1/2 T1X2T3%4
o x% ’ oLl ’ Tox2 ’ Tox3 ’ T4 ’ ZToxs

(23)

which is (19), but rewritten in terms of the variables x;. For each element i from {0,1,2,3,4,5},
we define ‘ '
wi(x) = w(c' ox), and Wi (x)=w(c; ox).

Using the realization (22), one then rewrites the identity (21) as:

a(x)wo(x) + B(x)w1(x) + v(x)wax(x) = 0, (24)
with
a(xo, x1, T2, T3, T4, Ts5)
9 0 1 qa:% l’% q1/2960332334$5 q1/2£603623?3965 q1/21130332$3564 q1/2$0362
:(qxlx27ﬂ7—27_27 ) ) 14 )0,

rixy’ x w 123 T124 125 " rix32475

B(xo, x1, 2, 23, T4, T5)

(25)
= a(x1, x0, T2, T3, T4, T5),

Y(xo, 1, T2, T3, T4, T5)

2 2 2 2 1/2
—( 2° 2 91 2> ) ) ) 7q) o0
Ty $0 1‘0 X TOIX1X2X5 TOIX1X2X3 TOIX1X2L4 TOL1X2L3ITATS

1/2 1/2

1/2
T4Zs g / T3T5 q

12



Transformation of the three term identity. As usual, let H = (g, p1,p2) denote the
invariance group of W, and let G = (g,1,p1) denote the group associated with the three term
transformation. If g; is an arbitrary element of G, then is trivial from (24) that

(g1 0 x)wo(g1 ©x) + B(g1 © x)w1(g1 0 X) + (g1 0 X)W+ (g1 0 x) = 0. (26)

For any h € H it holds that w(x) = w(h o x), this is in fact the result of Section V of [11].
In all, there are 23040 possible arguments to w, corresponding to the 23040 signed permutation
matrices on six elements with an even number of —1 signs. These 23040 series are classified into
12 cosets of 1920 elements each, all elements of a coset being equal to each other. It is the image
of zp that determines the coset to which a group element belongs. Hence for w;(g; 0 x), it is the
image of z; that determines the resulting coset, and likewise for w;« (g1 o x).

For (24) the series that appear in the transformed equation (26) are determined by the
images of g, 1 and z9. Let k, [ and m be three different elements of {0,1,...,5,0%,...,5%}
and denote by G}, the subset of the elements of G that map zg to xy, z1 to x; and x3 to zy,.
Here we use the convention that xp+ = 1/x, whenever k € {0,1,2,3,4,5}, and thus zj = xx.

The element
g = ( —1 —1 ) (27)
ox = (x9,T1, —, —, T4, T 7
g1 0,21 22 73 4, T5

for instance is an element of G 12+. Each set Gy, contains 24 elements (if it is non-empty,
Le.if {k,I,m}N{k* I*,m} =0), and there are 12 x 10 x 8 = 960 such sets in all. We next look
at how the coefficients «, 3 and v transform under elements of G}, ;.

Lemma 4 Let k, I, and m be three different elements from {0,...,5*}, then it holds that:

a(grox) =a(gzox), B(gox)=p(g20x), and (g1 0x)=(g20x), (28)
for any two elements g1 and g2 of G 1.m-

Proof: We prove the lemma for «, immediately implying the result for 5. For -, the lemma is
proved analogously. Since the first four arguments of the infinite product in « do not involve
T3, T4 OF x5, we only have to concentrate on the last four arguments:

1/2

1/2 1/2 1/2
q " ToT2T4T5 ( / TOT2T3T5 g / TOT2X3T4 g / ToT2

’ ) ) ; (29)
T123 T1T4 I1Ts5 L1T3T4L5
If there are zero or two “starred” elements under k, [ and m, then there are also an even number of
“starred” elements under the images of z3, x4 and x5. It is clear that the product (29) is invariant
under any permutation of x3, x4 and x5. Moreover, the signed permutation (x3,x4,x5) —
(1_137 é, x5) leaves the same product invariant, since it swaps the first with the second and the
third with the fourth argument. This proves the statement in this case.
If there are one or three “starred” elements under k, [ and m, then one has an odd number
of “starred” elements under the images of x3, x4 and x5. Since the image of the product (29)
under any permutation of x3, x4 and x5 with an odd number of —1 signs in their representation
equals,

1/2 1/2 1/2 1/2
q / ToT2T3 g / ToT2T4 4 / ToT2T5 g / TOL2L3LALS | )
) [o.o}]

T1T4T5  T1X3T5 | T1T3T4 1

the lemma is proved. O
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This means that one can again introduce the notation oy, (x), to stand for a(g; o x) with
g1 an arbitrary element of Gy, and likewise for 8 and . For any element g of G, the
identity (24) transforms into

ozk,l’m(x)u?k (X) + ﬂk,[,m(X)UN)l(X) + ’yk,hm(x)ﬁ)m* (X) = 0.

For instance, using the transformation (27), which is an element of G 2+, transforms the
original three term identity into:

ag,1,2¢ (X)Wo (%) + Bo,1,2+ (X)W1 (X) + 70,12+ (x)W2(x) = 0.

Translating this back into variables a, b, ¢, d, e and f, using the inverse relations of (22) for
the factors in front of the various series, and using an easy representative for each of the series
gives:

(b, a/b,b/c, qb/a, qe/b,q/ad, q/ae, q/af; q)oo w(a®; ab, ac,ad, ae, af)
+ (ac,b/a,a/c,qa/b,qc/a, q/bd, q/be, q/bf; @)oo w(b*; be, bd, be, bf, ba) (30)
— (ab,b/a,a/b,qa/b,qb/a,q/cd, q/ce, q/cf; @)so w(c*; cd, ce, cf, ca, cb) = 0.
This identity contains the same three series as transformation T8764 in Krattenthaler’s list [7],
and the factors in front can be rewritten to match those in [7].
Identities obtainable by transformation and elimination. Let k, [ and m be three

different elements from {0, 1,2,3,4,5}. From (24) we can, using transformations with elements
from G, deduce three term identities of the following forms:

Qe t,m (X) Wk (%) + B 1,m (X)W1 (X) + Vi 1,m (X)Wimx (x) = 0, for § € Grm

Qe e (X)W (X) + Brex 1 o (X)W (X) + Yer 1 (X)W (x) = 0, for § € G p=
Ak = (X) Wk (X) + B m= (X)W1 (X) + Vi im* (X)W (x) =0,  for g € G g m
Qg 1o (X)Wex (X) + B 1% m (X) W= (X) + Yior 12 m (X)W (x) = 0, for § € Gie 1= m,

This gives (g) + (g) + (g) (;l) + (g) (‘11) = 160 three term identities between the various coset
elements. However, one would expect that there exist (132) = 220 such relations, and indeed this
is the case, as the remaining 60 relations can be obtained by a simple elimination process.

Let k, [ and m be three different elements from {0, 1,...,5}, and eliminate wy,(x) from the

following two relations:

ak,l,m(x)wk(x) =+ ﬂk,hm( ) ( ) + 'Yk,l,m(x)wm* (X) = 07
et m (X)W (X) + B () Wi (X) + Vi 1 (X)W (%) = 0,

and one gets:

vk m () Vi1 (%) =t (%) Vi, (X)) 0 (%) 31)

+ Bre,1,m (3) V1% m (X)W1 (%) — Bt () Vi, 1,m (%)W (%) = 0.

This yields another 6 x 5 = 30 relations. Replacing k& by k* in (31) yields the identity:
(ak*yl’m(x)ﬂykw*’m(x) — ak*,l*,m(x)fyk*’hm(x))ﬁ)k* (X) (32)

+ B 1,m () Vi 1, (X)W1 (X) = B 1 m (X) Ve 1,m (X) Wy (%) = 0,

yielding another 30 relations. In all we thus have 220 relations.
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Theorem 3 Let G (resp. H) be the group of signed permutations on six (resp. five) elements
with an even number of —1 signs, as described. The series w(x) satisfies w(g o x) = w(x), for
each g € H. The 23040 series w(g o x), with § € G, can be divided according to the twelve
cosets of H in G, each coset represented by w;(x), with i € {0,...,5*}. For any three different
elements k, I and m from {0,...,5%} there is a three term identity between wy(x), W;(x) and
W (x). If {k,1,m} N {E*, 1*,m*} = 0, the identity is given by

Ok m* (X) Wk (X) 4 B ,m (X)Wi(X) + Vi t,me (X)W (x) = 0;
otherwise it is given by (31) or (32).

Remark. The three term identities between very-well poised g¢7-series are g-analogues of
three term identities between well-poised 7 Fg-series of unit argument. One of them is e.g. men-
tioned in [10, (4.3.7.8)], and with the realization given in Lemma 3 one sees that this identity
connects the ordinary equivalents of the series wp(x), W= (x) and w;i«(x). Although the realiza-
tion [10, (4.3.7.9)] is very similar to the one given in Lemma 3 this is not mentioned explicitly.
Also, the underlying group is not mentioned nor identified explicitly.
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