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Abstract

We consider the compatibility conditions for a N-particle D-dimensional
Wigner quantum oscillator. These conditions can be rewritten as certain
triple relations involving anticommutators, so it is natural to look for solutions
in terms of Lie superalgebras. In the recent classification of “generalized
quantum statistics” for the basic classical Lie superalgebras [1], each such
statistics is characterized by a set of creation and annihilation operators plus
a set of triple relations. In the present letter, we investigate which cases of
this classification also lead to solutions of the compatibility conditions. Our
analysis yields some known solutions and several classes of new solutions.

aE-mail: Neli.Stoilova@UGent.be; Permanent address: Institute for Nuclear Research and Nu-
clear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria
PE-mail: Joris.VanderJeugt@UGent.be



In a previous paper [1] we made a classification of all generalized quantum statis-
tics (GQS) associated with the basic classical Lie superalgebras A(m|n), B(m|n),
C(n) and D(m|n). Each such statistics is determined by M creation operators z;"
(¢=1,..., M) and M annihilation operators x; (i = 1,..., M), which generate the
corresponding superalgebra GG subject to certain triple relations R. This leads to a
Z-grading of G of the form

G=G 280G 1DGy BG4 & Go, (1)
with G4, = span{zy, i = 1,..., M} and G}, = [G}, G|, where [-,-] is the Lie

superalgebra bracket. The known cases, namely para-Bose and para-Fermi statis-
tics [2], and A-(super)statistics [3]-[6] appear as simple examples in the classification.

In the present letter we are dealing with a different problem, namely finding
solutions of the compatibility conditions (CCs) of a Wigner quantum oscillator sys-
tem. These compatibility conditions take the form of certain triple relations for
operators. So formally the CCs appear as special triple relations among operators
which resemble the creation and annihilation operators of a generalized quantum
statistics. One can thus investigate which formal GQSs also provide solutions of
the CCs. It turns out that the classification presented in [1] yields new solutions of
these compatibility conditions.

The concepts of Wigner quantization [7] and of a Wigner Quantum System
(WQS) [8] were introduced by Palev, inspired by [9]. WQSs are noncanonical gener-
alized quantum systems for which Hamilton’s equations are identical to the Heisen-
berg equations and for which certain additional properties, valid for any quantum
system, are also fulfilled. For more examples of WQSs and physical aspects, see [10]-
[18].

Let us briefly describe a WQS consisting of N D-dimensional isotropic harmonic
oscillators. The Hamiltonian of this N-particle D-dimensional (D = 1,2,3) har-
monic oscillator system is given by

il ].S2 mw2
A=y (P ey, )

with m the mass and w the frequency of each oscillator. The Hamiltonian H depends
on the 2DN variables R,; and Pal-, witha=1,...,Nandi=1,...,D. In practice,
the cases D = 1,2,3 will be the most interesting, but we shall treat the general
situation here.

In a Wigner quantum system, the operators Rl, e ,f{N and ].51, e ,f’N have to
be defined in such a way that Hamilton’s equations
P, = —mw’Ra, ﬁa = %Pa for a=1,2,..., N, (3)
and the Heisenberg equations
ﬁa:%[ﬁ,Pa], f{a:%[ﬁ,f{a} for a=1,2...,N, ()



are identical as operator equations. These compatibility conditions (CCs) are as
follows

[H,P.] = ilmw’Ra, [H, Ry =——P, for a=12,...,N. (5)
m

To make the connection With basic classical Lie superalgebras we write the operators
P, and R, (@ =1,2,. ) in terms of new operators (or vice versa):

Cw -~
= /g7 Bas Finy 1 Pay. a=1,...,N;j=1,...,D 6
J tp CL)h J J ) ()

where p1 = +1 or —1 and ¢ is an arbitrary positive constant (which can be chosen
as an integer). The Hamiltonian H is then

=SS adan), @

a=1 i=1

with {-,-} an anticommutator. The compatibility conditions (5) take the form:

ZZ Qpis on} aﬁj] ,U/CCZB], (621,,N,j:1,,D) (8)

a=1 i=1

In the present form, the compatibility conditions are expressed as certain triple
relations for a set of odd operators a;. Thus it is natural to look for solutions of (8)
in the framework of Lie superalgebras. The classification of GQSs [1], also expressed
by means of certain creation and annihilation operators (CAOs) zi° (i = 1,..., M)
satisfying triple relations R, can thus be used to investigate solutions of (8). In the
classification list of [1], we should now restrict ourselves to cases where all CAO’s of
R consist of odd elements only. Therefore G_; and G, are odd subspaces, and the
grading (1) is consistent with the Zs-grading of the Lie superalgebra. Then, after
identifying the xf with the operators aij (eventually up to an overall constant), it
remains to verify whether (8) is satisfied. We shall now perform this investigation
for the basic classical Lie superalgebras.

For the Lie superalgebra sl(m|n) = A(m — 1|n — 1) there are two GQSs with all
CAOs odd elements [1]. The first of these corresponds to a grading of length 3 (i.e.
G2 =01n (1)). In this case, the CAOs are given by:

- _ + _ _ o
T = €hrimtls  LTpp = Crtmtl ks r=1,...,n; k=1,...,m, 9)

where e;; is a (m + n) X (m + n) matrix with zeros everywhere except a 1 on the
intersection of row ¢ and column j (corresponding to the defining si(m|n) represen-
tation). These operators satisfy the triple relations (we write in this paper only the
relations from R that are needed here; r,s,t =1,...,n; 4,5,k =1,...,m)

[{I;:, x;}7 xtk] 0i 58t$rk 5jk57’sx:;'a
{af, 25}, v = —0i50may, + dindrsy;, (10)



and thus
D K an} 28] = £(m — n)ad. (11)

r=1 k=1

It is clear that such systems provide solutions for the CCs (as long as m # n). First
of all, taking m = D and n = N yields the sl(D|N) solution of the CCs (8) for the N-
particle D-dimensional oscillator, by taking a;tj = a:fj (o=1,....N;5=1,....D).
This is (at least for D = 3) a known solution: see [19] for a discussion and some
properties corresponding to this si(3|N) case.

Secondly, one can take m = 1 and n = DN, yielding the sli(1|DN) solution of
the CCs. In this case, one takes afj = x;'l:+(a—1)D,1 (e =1,....,N; j=1,....D).
This is again a known solution: see [7], [20]-[22] for an investigation of the physical
properties of the sl(1|3N) solution of the Wigner quantum oscillator.

Observe that one can always interchange the operators a; with Qi

Note that the cases (m = N,n = D) or (m = DN,n ~ 1) also provide so-
lutions, but these are not considered because of the isomorphism of sli(m|n) and
sl(nlm). More generally, it is clear that by repartitioning the mn operators zf
(r=1,...,n; k =1,...,m) into N sets of D operators (and analogously for the
z,;), (11) still yields a solution of (8). This means that all Lie superalgebras si(m|n)
with mn = DN provide a solution to the compatibility conditions for the N-particle
D-dimensional Wigner quantum oscillator.

The second type of GQS for the Lie superalgebra sl(m|n) with all CAOs odd
elements corresponds to a grading of length 5 [1]. In this situation there are several
inequivalent GQSs, all of them leading to solutions of the CCs. Since the description
is somewhat more complicated than the other cases, we shall give it in the Appendix.

Next, we turn our attention to the Lie superalgebras B(m|n) = osp(2m + 1|2n).
We know from [1] that there is one GQS with odd elements only. In terms of the
defining (2m + 2n + 1)-dimensional representation of B(m|n), the corresponding
CAOs are given by:

+ _ -
Tpi = Cmii2m+1+r — C2mA-14ntri, Tri = € 2mt14ntr + Com4-1+4r,mis
+ -
xn_‘ - ei,2m+1+r - 62m+1+n+r,i+m7 xr’_z‘ - €m+i,2m+1+n+r + e2m+1+r,i;
+ _ - _
Lo = €2m+12m+14+r — €2m+1+n+r2m+1; Lo = €2m+1,2m+14n+r + €o2m+14r,2m+1,
withr=1,...,nand i =1,...,m. If we introduce the notation

1 if j=1,....m
(y=4 =1 if j=-m,...,—1 (12)
0 if j=0

the triple relations needed can be written as follows:

[{x:k7x;k}7x;5] - i<k><]>5|k||j| x;l;':Férs x;‘:ja (Ta s = 17 -y Ny k7.] =—-m,... 7m)'



This implies

S Hahornbabl =F@m+Dal,  (s=1,...,n; j=—m,...,m). (14)

r=1 k=—m

Again it is clear that this provides solutions for the CCs. For D = 2m + 1 and
N = n, one obtains the osp(D|2N) solution of the CCs (8) for the N-particle D-
dimensional oscillator, by taking afj = xfj (e =1,...,N; j=—m,...,m). This
is a new class of solutions of WQSs. Note that even the simplest case (D = 3 and
N =1, or 0sp(3]2)) is different from the osp(3]2) solution of [23], since in the current
case the operators aaij correspond to root vectors of 0sp(3|2) (which was not the case
in [23]).

Alternatively, one can also take N = 2m + 1 and D = n in (14). This yields
the osp(NN|2D) solution of the CCs for the N-particle D-dimensional oscillator, by
taking afj = :E;-ta (e =—-m,...,m;j=1,...,D). More generally, it is clear that by
repartitioning the (2m + 1)n operators =, (r = 1,...,n; k = —m,...,m) into N
sets of D operators (and analogously for the z, ), (14) still yields a solution of (8).
This means that all Lie superalgebras osp(2m+1|2n) with (2m+1)n = DN provide
a solution to the compatibility conditions.

Finally, one can have m = 0 and n = DN, yielding the B(0|DN) = osp(1|2DN)
solution of the CCs. In this case, one obtains a solution for the N-particle D-
dimensional oscillator, by taking a;fj = xji—o—(a—l)D,O (o =1,....,N; j=1,...,D).
This solution is not new; in fact it is (up to a constant) the known para-Bose
solution [7], [24]. Indeed, let us put

b;r = \/§x;r07 b, = _\/Ex;m (15)
forr=1,..., DN. Then these operators satisfy
{85, 023, 5] = (€ — €)8,:b7 + (€ — n)dl, (16)

&ne=xor +£1; rs,t=1,...,DN.

These are the para-Bose operators of [2]. For osp(1|6N), it was observed in [19] that
this yields a solution of the CCs for the N-particle 3-dimensional Wigner quantum
oscillator.

Let us now consider the Lie superalgebras D(m|n) = osp(2m|2n). From [1] it
follows that there are two GQSs with odd elements only. In terms of the defining
(2m + 2n)-dimensional representation of D(m/|n), the CAOs of the first system are
given by:

+ _ -
Ly = Cm+i2m+r — €2m4ntri, Tpi = €i2m4n+r + €2m—+r,m-+i»
+ -
xr,—i = €i2m+r — €2m—4ntritm, xr,—i = €m+i2m+n+r + €2m+r,iy (17)

withr=1,...,nand i =1,...,m. It is easy to verify that these satisfy

[{x:mx;k}:xi] = i<k><-7>5|k||3| qutj:F(srs xfgtja (Ta §= 17 sy T ka] = ila R im)
(18)



Thus it follows that

Z Z [{xfk,x;k},x;tj] = F2m x;';-, (s=1,...,n; j==£1,...,£m). (19)
r=1 0#k=—m

For D = 2m and N = n, this yields the osp(D|2N) solution of the CCs (8) for
the N-particle D-dimensional oscillator, by taking aﬁj = [L’i:j (o =1,...,N; j =
+1,...,4+m). This is a new class of solutions for the WQSs.

Alternatively, one can take N = 2m and D = n in (19). This yields the
0sp(N|2D) solution of the CCs (8), by taking afjj = x;-—La (j =1...,D; a =
+1,...,£m). As before, one can more generally repartition the 2mn operators
zh (r=1,...,n;k=+1,...,4+m) into N sets of D operators (and analogously for
the x_, ); then (19) still yields a solution of (8). This means that all Lie superalgebras
osp(2m|2n) with 2mn = DN provide a solution to the compatibility conditions for
the N-particle D-dimensional Wigner quantum oscillator.

The Lie superalgebra D(m|n) = osp(2m|2n) also admits a different GQS with

odd elements only [1]. The CAOs of this second system are given by:

+ o -
L = Co2m4n+ir — Cmtr2m+is Ly = €r2m4n+i + €om+ti,m+r;
Jr . - j—
xﬁ—i = Cm+r2m—4n+i + €om+i,rs ‘rr,—i = €r2m+i — €2m4n+im+r, (20)

withr=1,...,mandi=1,...,n. Although this looks similar to the first system,
observe that it is essentially different. In (17), the subalgebra Gy = [G_1,G41] is
sl(n)@so(2m), whereas in (20), it is sl(m)@sp(2n) [1]. In this case the operators (20)
satisfy

Hato ooyl = 2R G) 0wy o5 Foms ooy, (ros=1,...,m; k,j==£1,... %n).
(21)
Now we have

SN Kefhoanb ol =F2may,  (s=1,...,m; j==+1,...,4n). (22)
r=1 0#k=—n

For N = 2m and D = n, this yields the second osp(IN|2D) solution of the CCs (8),
by taking ai:j = xfj (j=1,...,D;a==1,...,£m). As for the other cases, one can
more generally repartition the 2mn operators z, (r = 1,...,m; k = £1,...,+n)
into N sets of D operators (and analogously for the ) and still obtain a solution
of (8). Hence all Lie superalgebras osp(2m|2n) with 2mn = DN provide a second
type of solution to the compatibility conditions for the N-particle D-dimensional
Wigner quantum oscillator.

The solutions presented here for D(m|n) remain valid also when m = 1. In that
case, the Lie superalgebra is usually denoted by C(n + 1): C(n+ 1) = D(1|n) =
0sp(2]2n). In particular, C'(N + 1) yields solutions for the N-particle 2-dimensional
Wigner quantum oscillator.



To conclude, our analysis of the compatibility conditions (8) using the formal
classification of GQS in [1] has given rise to several classes of new solutions for the N-
particle D-dimensional Wigner quantum oscillator. The most interesting solutions
are those with D = 1,2,3. For example, for D = 1 there are solutions in terms of
the Lie superalgebras sl(1|N) and osp(1|2N); for D = 2 there are solutions in terms
of sl(1|12N), sl(2|N), osp(2]2N) and osp(2N|2); for D = 3 there are solutions in
terms of sl(1|3N), sl(3| V) and osp(3|N) (apart from other types of partitioning).

In order to study physical properties of the new Wigner quantum systems (energy
spectrum, position and momentum operators, etc.) one is lead to representation
theory of the corresponding Lie superalgebra. The class of representations should
be “unitary”, in the sense that (afj)T = aj; must hold (by the Hermiticity of the
position and momentum operators, see (6)). For interesting examples with intriguing
physical properties, see the sl(1|3) [7],]21] (or sl{(1|3N)) solution for the (N-particle)
3-dimensional Wigner quantum oscillator [22]. With the current list of new solutions
obtained in this letter, we hope to investigate the physical properties of some of these
in the future.
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Appendix

We describe here the remaining GQSs for the Lie superalgebra si(m|n) with odd
CAOs only. According to [1], there are two classes. For the first class, [ can be any
index between 1 and m — 1, so assume that [ is fixed (1 <1 < m). The CAOs are
then described by the root vectors of [1, eq. (3.9)], but in order to deduce solutions
for the CCs we need to multiply them by some overall constant. This gives, for
k=1,....mandr=1,...,n:

_n <
n _{ VI2m —n—2l] epyry for k<1 (23)

Trk = |n — 21| ek mtr for k>1

and

_ {E 12m —n — 2| ey for k<1 (24)

Trk = VIn =2l emirk for k>1

where € = sgn((n — 20)(2m — n — 2l)). Of course, we have to assume that [ is such
that these factors do not vanish, ie. (n — 20)(2m —n — 2l) # 0. Then, one can
deduce that

> Ut o) = Fvnlm —n)x (25)
r=1 k=1

where v = sgn(2m — n — 2l). Clearly, for m # n such systems provide solutions for
the CCs for the N-particle D-dimensional oscillator whenever mn = DN.

7



For the second class, [ can be any index between 1 and n—1. Now the CAOs are
described by the root vectors of [1, eq. (3.8)], again multiplied by some appropriate
constant. This gives, for k=1,...,mandr=1,... n:

n { 12n —m — 2l| epyrp for r <1

26
Trk VIm =2l e mtr for r>1 (26)

and

o 12n —m — 2l| eg sy for r<I (27)
Tk e/ |m — 2l epgr i for r>1

where € = sgn((m — 20)(2n — m — 21)). Again we assume that [ is such that these
factors do not vanish, i.e. (m — 20)(2n —m — 2l) # 0. Now one can deduce that

n m

> Hefoan} el = Fvmn —m)a (28)

r=1 k=1

where v = sgn(2n — m — 2l). For m # n such systems provide another class of
solutions for the CCs for the N-particle D-dimensional oscillator whenever mn =
DN.
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