
Transactions of NAS of Azerbaijan, 2014, vol. XXXIV, No 1, pp. 147-156. 147
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THE HUSIMI DISTRIBUTION FUNCTION AND
SUPERPOSITION OF Q-HARMONIC OSCILLATOR

STATIONARY STATES

Abstract

We study a superposition of four stationary states of the q-deformed quan-
tum harmonic oscillator in phase space, through the Husimi quasi-distribution
function. This function is analytically computed and it consists of 16 parts,
which are explicitly given in terms of q-shifted factorials. Our results are con-
sistent with the known observation that the smoothing of the Wigner quasi-
probability distribution through a filter of a size larger than ~ restricts the
appearance of any sub-Planck structures when q → 0.

1. Introduction
Quasi-probability distribution functions are known to play an important role in

the study of quantum-classical transition properties of quantum dynamical systems.
Although it is possible to get sufficient information about the dynamics of the quan-
tum system through examining its properties in the configuration representation,
to understand its behaviour completely one however needs to know them in phase
space too. To this end only the quasi-probability distribution functions are helpful,
because phase space in the quantum approach is constructed through them. The
construction of the correct phase space and the computation of an explicit form of a
certain quasi-probability distribution function enables one to understand what is the
correspondence between the quantum and classical dynamics of the problem under
study [1].

The first definition of the quasi-probability distribution functions in the quantum
approach goes back to the 1930s, when the famous Wigner function was proposed
to study quantum corrections in classical statistical mechanics [2]. The Wigner
function satisfies almost all properties of the probability distribution, but due to
the uncertainty principle in quantum mechanics, distributions defined by this func-
tion are capable of both negative and positive values. Due to such a behaviour
of the Wigner function, Gauss smoothing of this distribution has been proposed;
this allowed researchers to consider various smoothed quasi-probability distribution
functions, not coincident with the Wigner function [3]. Nowadays, there are many
papers that study evolution of the quantum dynamical system comparing them in
terms of the various quasi-probability distribution functions [4]-[9].

Recently, a q-deformed quantum harmonic oscillator model has been studied
in phase space by employing the Wigner and Husimi quasi-probability distribution
functions [10]. It was shown that, depending on the values of q-parameter within
the condition 0 < q < 1, this q-oscillator model behaves in phase space as a usual
non-relativistic harmonic oscillator if q → 1 and becomes a coherent-like dynam-
ical system if q → 0. Such behaviour was valid for both the Wigner and Husimi
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quasi-probability distribution functions. As a next step, the new kind of superposi-
tion based on q-oscillator stationary states was proposed and was studied in detail
in phase space by employing Wigner quasi-probability distribution functions [11].
The main goal for such proposal for a new kind of superposition was to observe an
appearance of sub-Planck structures during evolution of this dynamical system as
functions of the q-parameter values. The reason for this expectation comes from
Zurek’s seminal paper [12], where he shows that phase space structures for a quan-
tum system associated with sub-Planck structures exist and they can be observed
through the superposition of four minimum-uncertainty Gaussians (so-called ‘com-
pass states’) [13]-[16]. Then, it has been shown that the Wigner function of the
proposed superposition based on q-oscillator stationary states, behaves as the stan-
dard non-relativistic quantum harmonic oscillator if q → 1, whilst one observes an
appearance of the compass states and sub-Planck structures similar to [12] in the
limit as q → 0.

Therefore an interesting question arises on what kind of picture one will have if a
superposition of q-oscillator stationary states is constructed on phase space in terms
of the Husimi function. As already mentioned in [10], the behaviour of the Husimi
function is similar in general to that of the Wigner function for the q-oscillator,
i.e., it is the standard non-relativistic harmonic oscillator for q → 1 and a Gaussian,
similar to the quantum harmonic oscillator coherent states, for q → 0. Then it seems
that the evolution of the Husimi function for the proposed superposition, based on
q-oscillator stationary states, gives the same pictures for sub-Planck structures as
in the case of the Wigner function. However, the definition of the Husimi function
is based on smoothing of the Wigner function to scales larger than ~, which allows
one to obtain completely positive distribution function for the dynamical system
under consideration. Also, it is necessary to mention that the Husimi function, even
though positive, fails to enjoy the marginalitiy properties. Then, taking into account
these controversies it becomes interesting to compute an explicit form of the Husimi
function for a superposition of four stationary states of the q-oscillator, and then
to analyze what kind of differences will such a superposition exhibit in the case of
a completely positive distribution. In this paper we investigate this problem and
compute an explicit expression of the Husimi function for a superposition of four
stationary states of the q-oscillator.

Our paper is organized as follows: in Section 2 we recall common information
about the Wigner and Husimi quasi-probability distribution functions in the quan-
tum approach. Section 3 is devoted to defining the q-deformed quantum harmonic
oscillator and the superposition of its four stationary states. Finally, the computa-
tion of the Husimi function for such a superposition and a discussion of the derived
results are given in Section 4.

Throughout this exposition we employ standard notations of the theory of special
functions (see, for example, [17]).

2. The Wigner and Husimi distribution functions

The Wigner function is a quasi-probability distribution in terms of momentum
p and position x, determined as follows:

FW (p, x) =
1

2π~

+∞∫

−∞
ψ∗

(
x− 1

2 y
)

ψ
(
x + 1

2 y
)
e−ipy/~dy
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=
1

2π~

+∞∫

−∞
ψ̃
∗ (

p− 1
2 v

)
ψ̃

(
p + 1

2 v
)
eixq/~dv . (1)

It is bounded by the restriction |FW (p, x)| ≤ (π~)−1, which means that such a func-
tion generally takes both negative and positive values (but note that the Wigner
function for the ground state of the linear harmonic oscillator takes only positive
values, see (4) below). For this reason, the Gaussian smoothing approach was pro-
posed in order to define some class of completely positive joint probability functions
of the following form:

F̄ (p, x) =
1
π~

+∞∫

−∞

+∞∫

−∞
e
− v2

2∆2
p
− y2

2∆2
x FW (p + v, x + y) dv dy ≥ 0. (2)

Here, ∆p∆x defines a finite region in the phase plane. Choosing some value for this
definition, one can obtain Gaussian smoothing of the Wigner function. The simplest
way corresponds to the value ∆p∆x = ~/2. Then (2) is well-known as the Husimi
function of the form:

FH (p, x) =
1

(2π)3/2 ~∆x

∣∣∣∣∣∣

+∞∫

−∞
ψ (y) · e−

ip y
~ − (x−y)2

4∆2
x dy

∣∣∣∣∣∣

2

. (3)

Unlike the Wigner quasi-distribution function, the Husimi quasi-distribution func-
tion, defined by (3), is bounded by the restriction 0 ≤ FH (p, x) ≤ (π~)−1. In other
words, one observes from this restriction that it takes only positive values, therefore
it represents a distribution function rather than quasi-distribution one. Here, we
use the 1/π~ normalization of [18] for the Husimi function, where it is called as the
smoothed Wigner function.

Both the Wigner and the Husimi functions are explicitly computed for the case of
the non-relativistic quantum harmonic oscillator stationary states (for n = 0, 1, 2, ...)
in canonical approach and they are given as [18]

F
(HO)
W (p, x) =

(−1)n

π~
Ln

(
4
~ω

(
p2

2m
+

mω2x2

2

))
e
− 2
~ω

�
p2

2m
+mω2x2

2

�

, (4)

F
(HO)
H (p, x) =

1
2π~n!

[
1
~ω

(
p2

2m
+

mω2x2

2

)]n

e
− 1
~ω

�
p2

2m
+mω2x2

2

�

, (5)

where Ln(z) are the Laguerre polynomials. Explicit expression of the Husimi func-
tion (5) is computed for value ∆2

x = ~
2mω and connected with explicit expression of

the Wigner function (4) through (2).
3.A superposition of four stationary states of the q-oscillator
The q-deformed models of the non-relativistic harmonic oscillator that we will

employ in order to construct a new type of the superposition, were introduced and
studied in a number of papers [19]-[24]. The main idea of introducing the q-oscillator
realization is based on the assumption that its annihilation and creation operators
satisfy the q-deformed Heisenberg commutation relations [b−, b+]q = b−b+−q b+b− =
1, which generalize the standard Heisenberg commutation relations, and recover the
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latter in the limit q → 1 [25]. Then, using this property, one can introduce four
pairs (North, South, East and West) of the q-creation and annihilation operators,
which satisfy the q-Heisenberg commutation relations [11]:

b±N = ± i√
1− q

e∓λx2

(
q±1e2λκxe∓κ∂x − q

1
2 e∓

κ
2 ∂x

)
e±λx2

, (6)

b±S = ∓ i√
1− q

e∓λx2

(
q±1e−2λhxe±κ∂x − q

1
2 e±

κ
2 ∂x

)
e±λx2

, (7)

b±E = ∓ i√
1− q

e∓λx2

(
e±2iλκx − q

1
2 e

iκ
2 ∂x

)
e±λx2

, (8)

b±W = ± i√
1− q

e∓λx2

(
e∓2iλκx − q

1
2 e−

iκ
2 ∂x

)
e±λx2

. (9)

Here, λ is a parameter given in terms of the mass m and the frequency ω as
λ = mω/2~. It is necessary to mention that q-deformation of the non-relativistic
quantum harmonic oscillator changes it from being a dynamical system, described
by a differential equation, to a system that is described by a finite-difference equa-
tion. Therefore, two additional interconnected parameters κ and q appear in (6)-(9),
where κ is the mesh (or grid) parameter of the finite-difference method, 0 < κ < ∞,
and q is the deformation parameter related to κ as q = exp

(−λκ2
)
, and therefore

0 < q < 1. Such a q-deformation of the quantum harmonic oscillator was further
generalized into so-called f -oscillators, where it is shown that one can consider the
deformation of them without using difference equations [26], [27].

Taking into account that q-creation and annihilation operators satisfy the re-
quirement b+b−ψn (x) = [n]q ψn (x), where [n]q is the basic number, [n]q = 1−qn

1−q ,
one finds the following four wave functions satisfying the above equation [11]:

ψN
n (x) = cn Hn

(
−qn−1e2λκx

∣∣∣ q−1
)
e−λx2

, (10)

ψS
n (x) = cn Hn

(
−qn−1e−2λκx

∣∣∣ q−1
)
e−λx2

, (11)

ψE
n (x) = cn Hn

(
−e2iλκx

∣∣∣ q
)
e−λx2

, (12)

ψW
n (x) = cn Hn

(
−e−2iλκx

∣∣∣ q
)
e−λx2

. (13)

The normalization constant cn in (10)-(13) can be computed from their orthogonality
relations and it is equal to

cn =
(

2λ

π

)1/4

qn/2 (q; q)−1/2
n .

In (10)-(13), Hn (−x̃| q) is the Rogers-Szegö polynomial of the following form:

Hn (z| q) =
n∑

k=0

[
n

k

]

q

(
q1/2z

)k
,

where
[

n
k

]

q

is the q-binomial coefficient,

[
n

k

]

q

:=
(q; q)n

(q; q)k (q; q)n−k
=

[
n

n− k

]

q

,
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and (q; q)n is the q-shifted factorial, defined as

(a; q)0 = 1, (a; q)n =
n−1∏

k=0

(
1− aqk

)
, n ≥ 1.

Then, it is possible to construct the following superposition of four stationary states
in terms of (10)-(13):

Ψ×,n (x) =
Nq

2
[
(−1)nψN

n (x) + ψS
n (x) + inψE

n (x) + i−nψW
n (x)

]
, (14)

where the normalization constant Nq is found from the following overlap of states (14),

+∞∫

−∞
Ψ∗
×,m (x) ·Ψ×,n (x) dx = δm, n , (15)

and it has the following form:

Nq =

{
1 +

qn

(q; q)n

n∑

k=0

(q−n; q)k

(q; q)k

[
(−1)n

(
qk; q

)
n

+ in
(
qik; q

)
n

+ i−n
(
q−ik; q

)
n

]
qnk

}−1
2

.

Despite its rather complicated form, in the limit q → 1 this relation simply
reduces to 1/2. In order to prove this, the use of the following summations is
sufficient:

(−1)n

n!

n∑

k=0

(−n)k (k)n

k!
= 1,

(±i)n

n!

n∑

k=0

(−n)k (±ik)n

k!
= 1,

where (a)n is the standard shifted factorial,

(a)0 = 1, (a)n =
n−1∏

k=0

(a + k), n ≥ 1.

It is well known that the Rogers-Szegö polynomials satisfy the following orthog-
onality relation on the unit circle [28]. However, [29] discusses slightly different
orthogonality relation for the Rogers-Szegö and Stieltjes-Wigert polynomials on the
full real axis

1√
π

∞∫

−∞
Hn

(−e−2iαy|q̃)Hm

(−e2iαy|q̃) e−y2
dy =

(q̃; q̃)n

q̃n
δnm, (16)

1√
π

∞∫

−∞
Sn

(
q̃−1/2e−2αy; q̃

)
Sm

(
q̃−1/2e−2αy; q̃

)
e−y2

dy =
1

(q̃; q̃)n q̃n
δnm, (17)

and provides a detailed proof of their connection with the mentioned above the
orthogonality relation on the unit circle. Here,
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Sn

(
q̃−1/2e−2αy; q̃

)
=

1
(q̃; q̃)n

n∑

k=0

(q̃−n; q̃)k

(q̃; q̃)k

q̃k(k/2+n)e−2kαy, q̃ = e−2α2
, α > 0

is the Stieltjes-Wigert polynomial [17]. In order to compute an integral (15) of the
overlap of states (14), we used orthogonality relations on the full real axis (16)
and (17) instead the well-known one on the unit circle.

It should be noted that all four wave functions (10)-(13) together with their
phase factors defined in (14), reduce to non-relativistic quantum harmonic oscillator
wave function in conformity with [10]. Therefore, the superposition (14) also easily
recovers the non-relativistic quantum harmonic oscillator stationary states in the
limit as q → 1.

4. Computation of the Husimi function and further discussions
To calculate the Husimi function for the superposition (14), we employ the same

method as in [10]. The only difference is that the superposition (14) leads to the
calculation of 16 integrals, and the result is:

FH
×,n(p, x) = FNN (p, x) + (−1)nFNS(p, x) + i−nFNE(p, x) + inFNW (p, x)

+ (−1)nFSN (p, x) + FSS(p, x) + inFSE(p, x) + i−nFSW (p, x)

+ inFEN (p, x) + i−nFES(p, x) + FEE(p, x) + (−1)nFEW (p, x)

+ i−nFWN (p, x) + inFWS(p, x) + (−1)nFWE(p, x) + FWW (p, x) , (18)

where the above components are explicitly given as

FNN (p, x) = FSS(p,−x) = γn(p, x)
(
e−ia/2; q

)
n

(
eia∗/2; q

)
n

,

FSN (p, x) = FNS(−p,−x) = γn(p, x)
(
eia/2; q

)
n

(
eia∗/2; q

)
n

,

FES(p, x) = FNE(p,−x) = γn(p, x)
(
ea/2; q

)
n

(
e−ia∗/2; q

)
n

,

FSE(p, x) = FEN (p,−x) = γn(p, x)
(
eia/2; q

)
n

(
ea∗/2; q

)
n

,

FEE(p, x) = FWW (−p,−x) = γn(p, x)
(
ea/2; q

)
n

(
ea∗/2; q

)
n

,

FEW (p, x) = FWE(p,−x) = γn(p, x)
(
ea/2; q

)
n

(
e−a∗/2; q

)
n

,

FWS(p, x) = FNW (p,−x) = γn(p, x)
(
e−a/2; q

)
n

(
e−ia∗/2; q

)
n

,

FSW (p, x) = FWN (p,−x) = γn(p, x)
(
eia/2; q

)
n

(
e−a∗/2; q

)
n

,

with a = κ
~ p + 2iλκx and the common factor γn(p, x) for all 16 components, which

is equal to

γn(p, x) =
N2

q

8π~
qn

(q; q)n
e
− 1
~ω

�
mω2x2

2
+ p2

2m

�

.

In order to arrive at (18) explicitly, one needs just to substitute (14) into
the general definition of the Husimi function (3) and to employ the well-known
Gaussian integral and q-binomial theorem for each of the 16 integrals. This results
in the analytical expression for the Husimi function of the proposed superposition,
which is presented above.
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Fig. 1. Density plot of the Husimi function of the single photon state (n = 1)
of (18), for values of κ = 0.0001, 1.3, 2.1,2.5, 3.3, 5.0 and m = ω = ~ = 1. The

associated values of q are found through the relation q = exp(−κ2/2).

In Fig.1 we show a density plot of the Husimi function of the single photon state
(n = 1) of (18). We depict the behaviour of the Husimi function for the values
κ = 0.0001, 1.3, 2.1, 2.5, 3.3 and 5.0, which correspond to the values q = 1, 0.43,
0.11, 0.044, 0.004 and 0. All plots are given in terms of the units m = ω = ~ =
1. Chosen values of depicted plots are completely same with plots of the Wigner
function of the single photon state (n = 1) for such a q-oscillator superposition
[11], which allows to make necessary comparisons between two quasi-probability
functions. As one observes from the first plot, for values of q, close to 1 (κ =
0.0001), the superposition under discussion completely reduces to the non-relativistic
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quantum harmonic oscillator. This result is obvious from the following point of
view. First, computation of the q → 1 limit of the expressions for FNN (p, x),
FSS(p, x), FEE(p, x) and FEE(p, x) components are similar to the q → 1 limit of
q-oscillator Husimi function, which is presented in [10]. This means that for all 4
above-mentioned components one can recover the non-relativistic quantum harmonic
oscillator Husimi function (5) easily. The q → 1 limit relations for the other 12
expressions, FNS(p, x), FNE(p, x), FNW (p, x), FSN (p, x), FSE(p, x), FSW (p, x),
FEN (p, x), FES(p, x), FEW (p, x), FWN (p, x), FWS(p, x) and FWE(p, x), can be
readily computed as well. However, here it is necessary to apply different techniques
of limit computation, namely, one needs to expand all q-depending factors in powers
of κ and then to evaluate a limit for each term separately. Thus, all of them recover
(5) in this limit too. Of course, here it is also necessary to take into account that the
q → 1 limit of Nq is 1/2. While the value of q varies from 1 to 0, one observes that
the transition from non-relativistic quantum harmonic oscillator stationary states
to the so-called compass states but without any sign of sub-Planck structures. This
behaviour proves that contrary to the cases of Wigner quasi-distribution functions
and Kirkwood quasi-distribution functions, the Husimi function does not lead to the
appearance of sub-Planck structures from the superposition of q-oscillator stationary
states. In other words, its Gaussian smoothing is based on the suppression of all sub-
Planck structures and therefore at the end one observes the pure classical case of the
four shifted Gaussians, which are like the well-known quantum harmonic oscillator
coherent states.

Quasi-distribution functions are powerful tools for possible description of quan-
tum dynamical systems in the language of classical physics. Wigner function is
most important both from mathematical point of view and a lot of experimental
applications (we just refer to recent one about experimental observation of quan-
tum chaos in a beam of light [30]). However, there are number of others, which
are related with the Wigner function through the certain method of its Gaussian
smoothing [31], [32]. In this paper, we applied one of them - namely the Husimi
quasi-distribution function to superposition of the q-deformed oscillator stationary
states in order to see what will be behaviour of the q-deformed superposed system
in terms of the smoothed quasi-distribution function. Our results show that unlike
the case of the Wigner function, where sub-Planck structures can be easily observed
under the limit q → 0, there is no any evidence of such a structures for the Husimi
function, which is in complete agreement with statement that the Husimi function
is not ideally adapted to the study any quantum coherence effects and computed
interference terms are so small than in case of Wigner function [33].
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