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Abstract The defining triple relations of m pairs of parafermion operators f±i and
n pairs of paraboson operators b±j with relative parafermion relations can be con-
sidered as defining relations for the Lie superalgebra osp(2m+ 1|2n) in terms of
2m+2n generators. As a consequence of this the parastatistics Fock space of order
p corresponds to an infinite-dimensional unitary irreducible representation V(p) of
osp(2m+ 1|2n), with lowest weight (− p

2 , . . . ,−
p
2 |

p
2 , . . . ,

p
2 ). An explicit construc-

tion of the representations V(p) is given for any m and n, as well as the computation
of matrix elements of the osp(2m+1|2n) generators.

1 Introduction

Standard quantum mechanics considers two types of particles, bosons B±j ([a,b] =
ab−ba)

[B−j ,B
+
l ] = δ jl , [B−j ,B

−
l ] = [B+

j ,B
+
l ] = 0, (1)

and fermions F±i ({a,b}= ab+ba)

{F−i ,F+
k }= δik, {F−i ,F−k }= {F

+
i ,F+

k }= 0, (2)

and the corresponding quantum statistics, Bose-Einstein and Fermi-Dirac statistics.
The n-boson Fock space with vacuum vector |0〉 satisfies

〈0|0〉= 1, B−j |0〉= 0, (B±j )
† = B∓j (3)
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and the other orthogonal normalized basis vectors are defined by

|k1, . . . ,kn〉=
(B+

1 )
k1 · · ·(B+

n )
kn

√
k1! · · ·kn!

|0〉, k1, . . . ,kn ∈ Z+. (4)

Similarly, the m-fermion Fock space is defined by

〈0|0〉= 1, F−i |0〉= 0, (F±i )† = F∓i (i = 1, . . . ,m). (5)

and the basis vectors are as follows

|θ1, . . . ,θm〉= (F+
1 )θ1 · · ·(F+

m )θm |0〉, θ1, . . . ,θm ∈ {0,1}. (6)

Bose-Einstein and Fermi-Dirac statistics were generalized by Green [3] in 1953.
He has shown that tensor fields can be quantized with creation and annihilation
operators b±j (parabosons), which satisfy the triple relations

[{bξ

j ,b
η

k },b
ε
l ] = (ε−ξ )δ jlb

η

k +(ε−η)δklb
ξ

j , (7)

whereas for spinor fields he has introduced parafermions f±j postulating the com-
mutation relations

[[ f ξ

j , f η

k ], f ε
l ] =

1
2
(ε−η)2

δkl f ξ

j −
1
2
(ε−ξ )2

δ jl f η

k , (8)

where j,k, l ∈ {1,2, . . .} and η ,ε,ξ ∈ {+,−} (or, in the algebraic expressions,
η ,ε,ξ ∈ {+1,−1}). The paraboson Fock space V (p) is the Hilbert space with vac-
uum vector |0〉, defined by means of

〈0|0〉= 1, b−j |0〉= 0, (b±j )
† = b∓j ,

{b−j ,b
+
k }|0〉= pδ jk |0〉, (9)

and by irreducibility under the action of the algebra spanned by the elements b+j ,
b−j , subject to (7). In the same way, the parafermion Fock space W (p) is the Hilbert
space with unique vacuum vector |0〉, defined by

〈0|0〉= 1, f−j |0〉= 0, ( f±j )
† = f∓j ,

[ f−j , f+k ]|0〉= pδ jk |0〉, (10)

and by irreducibility under the action of the algebra spanned by the elements f+j ,
f−j , subject to (8). In both cases the parameter p is known as the order of the cor-
responding para system. For p = 1 the paraboson (parafermion) Fock space coin-
cides with the boson (fermion) Fock space. The paraboson and parafermion Fock
spaces can in principle be constructed by the so-called Green ansatz [3]. How-
ever the explicit construction of these para Fock spaces has been an open prob-
lem for many years because of the difficulties of finding a proper basis of an irre-
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ducible constituent of a p-fold tensor product [4]. In recent papers [8, 12, 13], these
problems of giving complete constructions of the paraboson and parafermion Fock
spaces were solved. The solutions rely on the facts that paraboson and parafermion
statistics are incorporated into algebraic structures. More precisely, a finite set of
parafermions f±j , i = 1,2, . . . ,m subject to the parafermion relations (8) defines the
Lie algebra so(2m+1) by means of generators and relations [7, 11]. The Fock space
W (p) is the unitary irreducible representation of so(2m + 1) with lowest weight
(− p

2 ,−
p
2 , . . . ,−

p
2 ). In a similar way, n paraboson operators b±j subject to (7) are gen-

erating elements of the orthosymplectic Lie superalgebra osp(1|2n) [2]. The Fock
space V (p) is the unitary irreducible representation of osp(1|2n) with lowest weight
( p

2 ,
p
2 , . . . ,

p
2 ). If one considers an infinite number of parafermions (parabosonts) the

creation and annihilation operators generate the infinite-dimentional algebra so(∞)
(superalgebra osp(1|∞)) [13].

In the case of a mixed system consisting of parafermions f±j and parabosons b±j
the relative commutation relations among paraoperators were studied by Greenberg
and Messiah [4]. They have shown that there can exist at most four types of rel-
ative commutation relations: straight commutation, straight anticommutation, rel-
ative paraboson, and relative parafermion relations and the most interesting case
is the latter one. Palev [10] proved that m parafermions f±j (8) and n parabosons
b±j (7) with relative parafermion relations generate the orthosymplectic Lie super-
algebra osp(2m+ 1|2n). Therefore the parastatistics Fock space corresponds to an
infinite-dimensional unitary representation of osp(2m+ 1|2n). For its explicit con-
struction, the techniques developed in [8, 12] can be applied, namely the branching
osp(2m+1|2n)⊃ gl(m|n), an induced module construction, a basis description for
the covariant tensor representations of gl(m|n) [14], Clebsch-Gordan coefficients of
gl(m|n) [14], and the method of reduced matrix elements.

In section 2, we define m parafermions f±j (8) and n parabosons b±j (7) with rel-
ative parafermion relations and the parastatistics Fock space V(p). In section 3, we
consider the important relation between parastatistics operators and the Lie superal-
gebra osp(2m+1|2n), and give a description of V(p) in terms of representations of
osp(2m+1|2n). The rest of this section is devoted to the analysis of the representa-
tions V(p) for osp(2m+ 1|2n) and to the matrix elements for any m and n. These
matrix elements were recently computed [15]. We conclude the paper with some
final remarks.

2 The parastatistics algebra and its Fock space V(p)

Consider a system of m pairs of parafermions f±i ≡ c±i , i = 1, . . . ,m and n pairs
of parabosons b±j ≡ c±m+ j , j = 1, . . . ,n with relative parafermion relations among
them. The defining triple relations for such a system are given by

JJc+j ,c
−
k K,c+l K = 2δklc+j , JJc+j ,c

+
k K,c+l K = 0,
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Jc−j ,Jc+k ,c
−
l KK = 2δ jkc−l , JJc−j ,c

−
k K,c−l K = 0 (11)

or

JJcξ

j ,c
η

k K,cε
l K =−2δ jlδε,−ξ ε

〈l〉(−1)〈k〉〈l〉cη

k +2ε
〈l〉

δklδε,−η cξ

j , (12)

ξ ,η ,ε =± or ±1; j,k, l = 1, . . . ,n+m,

where
Ja,bK = ab− (−1)deg(a)deg(b)ba (13)

and

deg(c±i )≡ 〈i〉=
{

0 if j = 1, . . . ,m
1 if j = m+1, . . . ,n+m.

(14)

In the case j,k, l = 1, . . . ,m (12) reduces to (8) and in the case j,k, l =m+1, . . . ,m+
n (12) reduces to (7).

The parastatistics Fock space V(p) is the Hilbert space with vacuum vector |0〉,
defined by means of ( j,k = 1,2, . . . ,m+n)

〈0|0〉= 1, c−j |0〉= 0, (c±j )
† = c∓j ,

Jc−j ,c
+
k K|0〉= pδ jk |0〉, (15)

and by irreducibility under the action of the algebra spanned by the elements c+j ,
c−j , j = 1, . . . ,m+ n, subject to (12). The parameter p is referred to as the order of
the parastatistics system.

In 1982 Palev [10] proved the following theorem.

Theorem 1 (Palev). The Lie superalgebra generated by 2m even elements f±i ≡ c±i
(i = 1, . . . ,m) and 2n odd elements b±j ≡ c±m+ j ( j = 1, . . . ,n) subject to the rela-
tions (12) is the orthosymplectic Lie superalgebra osp(2m+1|2n). The Fock space
V(p) is the unitary irreducible representation of osp(2m+1|2n) with lowest weight
(− p

2 , . . . ,−
p
2 |

p
2 , . . . ,

p
2 ).

Constructing a basis for the parastatistics Fock space V(p) for general (integer)
p-values turns out to be a difficult problem, for which we describe the solution in
the rest of the paper.

3 The Lie superalgebras osp(2m+1|2n) and a class of
osp(2m+1|2n) explicit representations

The orthosymplectic Lie superalgebra B(m|n) ≡ osp(2m + 1|2n) [5] consists of
(2m+2n+1×2m+2n+1) matrices of the form
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a b u x x1
c −at v y y1
−vt −ut 0 z z1
yt

1 xt
1 zt

1 d e
−yt −xt −zt f −dt

 , (16)

with a any (m×m)-matrix, b and c antisymmetric (m×m)-matrices, u and v (m×1)-
matrices, x,y,x1,y1 (m×n)-matrices, z and z1 (1×n)-matrices, d any (n×n)-matrix,
and e and f symmetric (n× n)-matrices. The even elements have x = y = x1 =
y1 = 0, z = z1 = 0 and the odd elements are those with a = b = c = 0, u = v = 0,
d = e = f = 0. Denote the row and column indices running from 1 to 2m+2n+1
and by ei j the matrix with zeros everywhere except a 1 on position (i, j). The Cartan
subalgebra h of osp(2m + 1|2n) is the subspace of diagonal matrices with basis
hi = eii−ei+m,i+m (i= 1, . . . ,m), hm+i = e2m+1+ j,2m+1+ j−e2m+1+n+ j,2m+1+n+ j ( j =
1, . . . ,n). Denote by εi (i = 1, . . . ,m), δ j ( j = 1, . . . ,n) the dual basis of h∗.

Introducing the following multiples of the even vectors with roots ±ε j ( j =
1, . . . ,m)

c+j = f+j =
√

2(e j,2m+1− e2m+1, j+m),

c−j = f−j =
√

2(e2m+1, j− e j+m,2m+1), (17)

and of the odd vectors with roots ±δ j ( j = 1, . . . ,n)

c+m+ j = b+j =
√

2(e2m+1,2m+1+n+ j + e2m+1+ j,2m+1),

c−m+ j = b−j =
√

2(e2m+1,2m+1+ j− e2m+1+n+ j,2m+1), (18)

it is easy to verify that these operators satisfy the triple relations (12).
The operators c+j are positive root vectors, and the c−j are negative root vectors.
We are interested in the construction of the parastatistics Fock space V(p) de-

fined by (15). It is straightforward to see that

[c−i ,c
+
i ] =−2hi (i = 1, . . . ,m), and {c−m+ j,c

+
m+ j}= 2hm+ j ( j = 1, . . . ,n). (19)

Therefore indeed Theorem 1 holds.
In general the representations V(p) can be constructed using an induced module

procedure (see [15] for more details). The relevant subalgebras of osp(2m+ 1|2n)
are as follows.

Proposition 1. A basis for the even subalgebra so(2m+ 1)⊕ sp(2n) of osp(2m+
1|2n) is given by

[cξ

i ,c
η

k ], cε
l (i,k, l = 1, . . . ,m); {cξ

m+ j,c
η

m+s} ( j,s = 1, . . . ,n, ξ ,η =±). (20)

The elements
Jc+j ,c

−
k K ( j,k = 1, . . . ,m+n) (21)
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constitute a basis for the subalgebra u(m|n).

Note that with the notation 1
2Jc+j ,c

−
k K ≡ E jk, the triple relations (12) imply the

relations
JEi j,EklK = δ jkEil− (−1)deg(Ei j)deg(Ekl)δliEk j. (22)

Therefore, the elements Jc+j ,c
−
k K form, up to a factor 2, the standard basis elements

of u(m|n) or gl(m|n).
The subalgebra u(m|n) can be extended to a parabolic subalgebra P of osp(2m+

1|2n)
P = span{c−j ,Jc+j ,c

−
k K,Jc−j ,c

−
k K | j,k = 1, . . . ,m+n}. (23)

Because of the fact that Jc−j ,c
+
k K|0〉= pδ jk |0〉, with [c−i ,c

+
i ] =−2hi (i = 1, . . . ,m,)

and {c−m+ j,c
+
m+ j} = 2hm+ j ( j = 1, . . . ,n), the space spanned by |0〉 is a trivial one-

dimensional u(m|n) module C|0〉 of weight (− p
2 , . . . ,−

p
2 |

p
2 , . . . ,

p
2 ). As c−j |0〉 = 0,

the u(m|n) module C|0〉 can be extended to a one-dimensional P module. The
induced osp(2m+1|2n) module V(p) is defined by

V(p) = Indosp(2m+1|2n)
P C|0〉. (24)

This is an osp(2m+1|2n) representation with lowest weight (− p
2 , . . . ,−

p
2 |

p
2 , . . . ,

p
2 ).

By the Poincaré-Birkhoff-Witt theorem [6], a basis for V(p) is given by

(c+1 )
k1 · · ·(c+m+n)

km+n(Jc+1 ,c
+
2 K)k12(Jc+1 ,c

+
3 K)k13 · · ·(Jc+m+n−1,c

+
m+nK)

km+n−1,m+n |0〉,
k1, . . . ,km+n,k12,k13 . . . ,km−1,m,km+1,m+2,km+1,m+3 . . . ,km+n−1,m+n ∈ Z+,

k1,m+1,k1,m+2 . . . ,k1,m+n,k2,m+1, . . . ,km,m+n ∈ {0,1}. (25)

In general V(p) is not an irreducible representation of osp(2m+ 1|2n). Let M(p)
be the maximal nontrivial submodule of V(p). Then the irreducible module, corre-
sponding to the parastatistics Fock space, is

V(p) =V(p)/M(p). (26)

Now the aim is to determine the vectors belonging to M(p), and thus find the struc-
ture of V(p), and to compute the matrix elements of the algebra generators.

For this purpose, let us first consider the character of V(p): this is a formal in-
finite series of terms νx j1

1 x j2
2 . . .x jm

m y jm+1
1 y jm+2

2 . . .y jm+n
n , where the exponents carry

a weight ( j1, . . . , jm| jm+1, . . . , jm+n) of V(p) and ν is the dimension of this weight
space. The vacuum vector |0〉 of V(p), of weight (− p

2 , . . . ,−
p
2 |

p
2 , . . . ,

p
2 ), yields a

term x
− p

2
1 . . .x

− p
2

m y
p
2
1 . . .y

p
2
n in the character charV(p) and from the basis vectors (25)

it follows that

charV(p) =
(x1)

−p/2 · · ·(xm)
−p/2(y1)

p/2 · · ·(yn)
p/2

∏i, j(1+ xiy j)

∏i(1− xi)∏i<k(1− xixk)∏ j(1− y j)∏ j<l(1− y jyl)
. (27)
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Such expressions can be expanded in terms of supersymmetric Schur functions,
valid for general m and n.

Proposition 2 (Cummins and King). Consider two sets of variables

(x) = (x1,x2, . . . ,xm), (y) = (y1,y2, . . . ,yn).

Then [1]

∏i, j(1+ xiy j)

∏i(1− xi)∏i<k(1− xixk)∏ j(1− y j)∏ j<l(1− y jyl)

= ∑
λ∈H

sλ (x1, . . . ,xm|y1, . . . ,yn) = ∑
λ∈H

sλ (x|y). (28)

In the right hand side, the sum is over all partitions λ satisfying the so called hook
condition λm+1 ≤ n (λ ∈H ), and sλ (x|y) is the supersymmetric Schur function [9]
defined by

sλ (x|y) = ∑
τ

sλ/τ(x)sτ ′(y) = ∑
σ ,τ

cλ
στ sσ (x)sτ ′(y),

where `(σ)≤m, `(τ ′)≤ n and |λ |= |σ |+ |τ|. Herein, some standard notation [9] is
used: for a partition λ , `(λ ) is the length of λ and |λ | its weight; τ ′ is the partition
conjugate to τ; cλ

στ are the Littlewood-Richardson coefficients; and sν(x) is the
ordinary Schur function.

Now it is well known that the characters of the irreducible covariant u(m|n) tensor
representations V ([Λ λ ]) are given by such supersymmetric Schur functions sλ (x|y)
(λ ∈H ). The relation between the partitions λ = (λ1,λ2, . . .), λm+1 ≤ n and the
highest weights Λ λ ≡ [µ]r ≡ [µ1r, . . . ,µmr|µm+1,r . . . ,µrr] (r = m+ n) of the irre-
ducible covariant u(m|n) tensor representations is known [16]:

µir = λi, 1≤ i≤ m,

µm+i,r = max{0,λ ′i −m}, 1≤ i≤ n, (29)

where λ ′ is the partition conjugate [9] to λ . Therefore the formula (28) gives the
branching to u(m|n) of the osp(2m+ 1|2n) representation V(p). This also gives a
possibility to label the basis vectors of V(p). For each irreducible covariant u(m|n)
tensor representations one can use the Gelfand-Zetlin basis (GZ) [14] and the union
of all these GZ basis is then the basis for V(p). In such a way the new basis of V(p)
consists of vectors of the form
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|µ)≡ |µ)r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ1r · · · µm−1,r µmr µm+1,r · · · µr−1,r µrr
µ1,r−1 · · · µm−1,r−1 µm,r−1 µm+1,r−1 · · · µr−1,r−1
...

...
...

...
... . . .

µ1,m+1 · · · µm−1,m+1 µm,m+1 µm+1,m+1
µ1m · · · µm−1,m µmm
µ1,m−1 · · · µm−1,m−1
... . . .

µ11


, (30)

which satisfy the conditions

1. µir ∈ Z+ are fixed and µ jr−µ j+1,r ∈ Z+, j 6= m, 1≤ j ≤ r−1,
µmr ≥ #{i : µir > 0, m+1≤ i≤ r};

2. µip−µi,p−1 ≡ θi,p−1 ∈ {0,1}, 1≤ i≤ m; m+1≤ p≤ r;
3. µmp ≥ #{i : µip > 0, m+1≤ i≤ p}, m+1≤ p≤ r;
4. if µm,m+1 = 0, then θmm = 0;
5. µip−µi+1,p ∈ Z+, 1≤ i≤ m−1; m+1≤ p≤ r−1;
6. µi, j+1−µi j ∈ Z+ and µi, j−µi+1, j+1 ∈ Z+,

1≤ i≤ j ≤ m−1 or m+1≤ i≤ j ≤ r−1.

(31)

Note that the last m lines of the triangular GZ-array correspond to a GZ-pattern
of gl(m), whereas the last n columns correspond to a GZ-pattern for gl(n). The con-
ditions above follow from the correspondence between a highest weight in partition
notation and its coordinates, see (29), and from the fact that for covariant represen-
tations, the decomposition from u(m|n) to u(m|n−1) is governed by

sλ (x|y) = ∑
σ

sσ (x|y1, . . . ,yn−1)y|λ |−|σ |n . (32)

In this last expression, the sum is over all partitions σ such that λ −σ is a vertical
strip [9]. That actually explains why the θi,p’s in (31) take values in {0,1}.

Now the task is to give the explicit action of the generating elements c±i (12) of
osp(2m+1|2n). For this purpose, we introduce the following notations:

|µ)≡ |µ)r =

∣∣∣∣∣ [µ]
r

|µ)r−1

)
,

([µ]r) = (µ1r,µ2r, . . . ,µrr) and ([µ]r±k) = (µ1r, . . . ,µkr±1, . . . ,µrr). Then

Proposition 3. The explicit actions of the Lie superalgebra generators c±j on a basis
of V(p) are as follows:

c+j |µ) = ∑
k,µ ′

(
[µ]r

|µ)r−1
;

10 · · ·00
10 · · ·0
· · ·
0

∣∣∣∣∣ [µ]
r
+k

|µ ′)r−1

)
×Gk([µ]

r)

∣∣∣∣∣ [µ]r+k

|µ ′)r−1

)
, (33)
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c−j |µ) = ∑
k,µ ′

(
[µ]r−k

|µ ′)r−1
;

10 · · ·00
10 · · ·0
· · ·
0

∣∣∣∣∣ [µ]
r

|µ)r−1

)
×Gk([µ]

r
−k)

∣∣∣∣∣ [µ]r−k

|µ ′)r−1

)
. (34)

The first factor in the right hand sides of (33)-(34) is a u(m|n) Clebsch-Gordan
coefficient (CGC) given by formulae (4.9)-(4.17) in [14], and the second factor is a
reduced matrix element. The reduced matrix elements Gk (k = 1, . . . ,m+n = r) are
given by:

Gk(µ1r,µ2r, . . . ,µrr) =− (Em(µkr +m−n− k)+1)∏
m
j 6=k=1(µkr−µ jr− k+ j)

∏
bm/2c
j 6= k

2=1
(µkr−µ2 j,r− k+2 j)(µkr−µ2 j,r− k+2 j+1)


1/2

×
n

∏
j=1

(
µkr +µm+ j,r +m− j− k+2

µkr +µm+ j,r +m− j− k+2−Em+µm+ j,r

)1/2

(35)

for k ≤ m and k even;

Gk(µ1r,µ2r, . . . ,µrr) = (p−µkr + k−1)(Om(µkr +m−n− k)+1)∏
m
j 6=k=1(µkr−µ jr− k+ j)

∏
dm/2e
j 6= k+1

2 =1
(µkr−µ2 j−1,r− k+2 j−1)(µkr−µ2 j−1,r− k+2 j)


1/2

×
n

∏
j=1

(
µkr +µm+ j,r +m− j− k+2

µkr +µm+ j,r +m− j− k+2−Om+µm+ j,r

)1/2

(36)

for k ≤ m and k odd. The remaining expressions for k = 1,2, . . . ,n are

Gm+k(µ1r,µ2r, . . . ,µrr) = (−1)µm+k+1,r+µm+k+2,r+...+µrr

×
(
(Oµm+k,r(µm+k,r− k+n)+1)(Em+µm+k,r(p+µm+k,r +m− k)+1)

)1/2

×

 ∏
bm/2c
j=1 (Em+µm+k,r(µ2 j,r +µm+k,r−2 j− k+m+1)+1)

∏
dm/2e
j=1 (Em+µm+k,r(µ2 j−1,r +µm+k,r−2 j− k+m+1)+1)

1/2

×

∏
dm/2e
j=1 (Om+µm+k,r(µ2 j−1,r +µm+k,r−2 j− k+m+2)+1)

∏
bm/2c
j=1 (Om+µm+k,r(µ2 j,r +µkr−2 j− k+m)+1)

1/2

×
n

∏
j 6=k=1

(
µm+ j,r−µm+k,r− j+ k

µm+ j,r−µm+k,r− j+ k−Oµm+ j,r−µm+k,r

)1/2

. (37)

Herein E and O are the even and odd functions defined by
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E j = 1 if j is even and 0 otherwise,
O j = 1 if j is odd and 0 otherwise; (38)

where obviously O j = 1−E j, but it is still convenient to use both notations. Also,
note that products such as ∏

s
j 6=k=1 means “the product over all j-values running

from 1 to s, but excluding j = k”. The notation bac (resp. dae) refers to the floor
(resp. ceiling) of a, i.e. the largest integer not exceeding a (resp. the smallest integer
greater than or equal to a).

Now, taking into account the general conditions (31), the only factor in the right
hand sides of (35)-(37) that may become zero appears in (36) and is

p−µkr + k−1 (k ≤ m and k odd).

For k = 1 this factor is (p− µ1r), and µ1r is the largest integer in the first row of
the GZ-pattern (30) (which is also the first part of the partition λ , see (29)). Starting
from the vacuum vector, with a GZ-pattern consisting of all zeros, one can raise
the entries in the GZ-pattern by applying the operators c+j . However, when µ1r has
reached the value p it can no longer be increased. As a consequence, all vectors |µ)
with µ1r > p belong to the submodule M(p). This gives the structure of V(p).

Theorem 2. An orthonormal basis for the space V(p) is given by the vectors |µ),
see (30)-(31), with µ1r ≤ p. The action of the Cartan algebra elements of osp(2m+
1|2n) is:

hk|µ) =

(
− p

2
+

k

∑
j=1

µ jk−
k−1

∑
j=1

µ j,k−1

)
|µ), k = 1, . . . ,m;

hk|µ) =

(
p
2
+

k

∑
j=1

µ jk−
k−1

∑
j=1

µ j,k−1

)
|µ), k = m+1, . . . ,r. (39)

The action of the operators c±j , j = 1, . . . ,r is given by (33)-(34), where the CGCs
are found in [14] (see formulae (4.9)-(4.17)) and the reduced matrix elements are
given by (35)-(37).

4 Summary and conclusion

In the present paper we have constructed the Fock spaces V(p) of m parafermions
and n parabosons with relative parafermion relations among them, which are the
unitary irreducible representations of osp(2m + 1|2n) with lowest weight of the
form (− p

2 , . . . ,−
p
2 |

p
2 , . . . ,

p
2 ). The subalgebra u(m|n) of osp(2m+ 1|2n), generated

by all supercommutators of the parafermions and parabosons, and its covariant ten-
sor representations play a crucial role in the analysis. For each irreducible covariant
u(m|n) tensor representation the known Gelfand-Zetlin basis follows the decompo-
sition u(m|n)⊃ u(m|n−1)⊃ . . .⊃ u(m|1)⊃ u(m)⊃ u(m−1)⊃ . . .⊃ u(1).
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The real interest is in such quantum systems (mixed systems of parafermions and
parabosons) with infinite degrees of freedom (m→∞ and n→∞). It is clear that the
GZ-basis used here cannot be used for such a purpose: as m→∞ in (30), there is no
longer control over n. In order to investigate such systems one should construct the
irreducible covariant tensor representations of u(n|n) in another Gelfand-Zetlin ba-
sis, namely following the decomposition u(n|n)⊃ u(n|n−1)⊃ u(n−1|n−1) . . .⊃
u(2|2)⊃ u(2|1)⊃ u(1|1)⊃ u(1). We hope to report this result soon.
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