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Abstract. Para-Fermi statistics and Fermi statistics are known tosseaated
with particular representations of the Lie algebo&2n+ 1) = B,,. Similarly para-
Bose and Bose statistics are related with the Lie superalgsipté|2n) = B(0[n).
We develop an algebraical framework for the generalizadfoouantum statistics
based on the Lie algebrég, By, C, andDy,.

1. Introduction

In 1953 Green [1] introduced para-Bose and para-Fermi statias generalizations of Bose
and Fermi statistics. Instead of the bilinear commute{m?‘rsbﬂ = §j, [bié,bf] =0, &=+ (or
anti-commutatorg f, ", fj+} =g, {fi”;, ff} =0, & = +) as for Bose creation and annihilation
operators (CAOs) (or Fermi CAOs), para-statistics is desdrily triple relations. The defining
relations fom pairs of para-Fermi CAOE,E, =+andi=1,...,nare:

1 1 .
[[ijaFkn]aﬁg] = é(s_n)zad':f - 5(8—5)25“':'(”7 57’7,3 ==, Jak7| = 17"'7n (1)

and those fon pairs of para-Bose CACBiE, E=d+andi=1,...,n:

[{BfaBrk]}7Bls] = (£_E>6J|B§+(£_n>d(|877 Evrlag:i; jak7| :17"'7n' (2)

It was realized by Kamefuchi and Takahashi [2], and by Ryan Sudarshan [3], that the
2n operators:if subject to the relations (1) generate the Lie algetaf@n + 1) = B,,. More-
over, a particular representationszi{ 2n+ 1) yields the relations of Fermi statistics. Similarly
Ganchev and Palev [4] proved that the Lie superalgebra geteby the operatorst
(considered as odd elements) subject to the relations (Beisrthosymplectic Lie superal-
gebraosp1|2n) = B(0|n) [5]. Also here there exists amsp(1|2n) representation, that yields
the Bose statistics. Therefore para-statistics is assatciaith representations of the Lie (su-
per)algebras of cladd Motivated by these relations we introduce the concept @regalized
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guantum statistics for a classical Lie algebra and clasgifthe classes of such statistics by
means of their algebraic relations [6].

We should mention that examples of such statistics for eatiteaclassical Lie algebras
An, Bn,C, and D, were considered by Palev [7]-[11] (we refer to those exampke Palev’s
statistics), although a complete classification was neaten

2. Preliminaries, definition, method

Let G be a classical Lie algebra. A generalized quantum staistiated tdG is determined
by N creationxﬁ and N annihilation operators; . Inspired by the para-Fermi, para-Bose
and Palev’s statistics, the operata?’sshould satisfy certain requirements. THe @perators
xii should generate the Lie algeb@ subject to triple relations. L&b,; andG_; be the
subspaces db spanned by the creation and annihilation operators:

G 1=spar{x";i=1...,N}, G_i1=spar{x ;i=1...,N}. (3)

Since the defining relations should be triple relations implies that it is natural to make the
following requirements:

(67X 1% =0, [ ,x],%]=0,
[%",x], %] = a lineair combination ok, [[x",x;

[6",x] 1,% ] = alineair combination of", [[x,X;

LetGip=[G11,Gy1] andGy = [G1,G_1], then we requir€&s_>, & G_1 & God G111 G2 to
be aZ-grading ofG. Let w be the standard anti-involution of the Lie algedcharacterized
by w(x) = x' in the standard defining representationGfwherex' denotes the Hermitian
conjugate of the matrix in this representation) then we shall assumigi”) = x. And
finally, we shall require that the CAO$‘E are root vectors of the Lie algeb@&

Definition. Let G be a classical Lie algebra, with anti-involutiom A set of2N root vectors
xijE (i=1,...,N)is called a set of creation and annihilation operators @if:

W) =X,

G=G 290G 10GydG,1®G,zis aZ-grading of G, with G1 = span[x,-i, i =

1...,N} and Gik= (Gj, Gyl
The algebraic relations% satisfied by the operatorqixare the relations of a generalized
guantum statistics (GQS) associated with G.

A consequence of this definition is th@g is a subalgebra d& spanned by root vectors
of G, i.e. Gg is a regular subalgebra @. By the adjoint action, the remaining;’s are Go-
modules. Thus the following technique can be used in ordetassify all GQS associated
with G:

1. Determine all regular subalgebr@s of G [12].

2. For each regular subalgeb®&, determine the decomposition Gfinto simpleGg-modules
ok (k=1,2..)).

3. Investigate whether there existZ egrading ofG of the formG=G_,&G_1 8 Gyd G111 D
G. 2, Where eaclt; is either directly a modulgy or else a sum of such modulgs® g, ® - - -,
such that(G4i) = G_j.

A summary of the classification process for the classicaldlgebrasA,, B, C, andD, fol-
lows.

],%¢] = alineair combination of;",
],%;] = a lineair combination ok,



3. Classification

3.1. The Lie algebra p=sl(n+1)

Let G be the special linear Lie algebsi(n+ 1), consisting of tracelesgn+ 1) x (n+ 1)
matrices. The root vectors @ are the elementsj (j # k= 1,...,n+ 1), whereey is a
matrix with zeros everywhere except a 1 on the intersectiorow j and columnk. The
corresponding root is; — &, in the usual basis. The anti-involution is such thgej, ) = e;.

In order to find regular subalgebras Gf= A, one should delete nodes from the Dynkin
diagram ofG or from its extended Dynkin diagram.

Step 1. Delete nodé from the Dynkin diagram. Thesl(n+ 1) = G_1 & Go @ G,1, with
Go=H+sl(i)@sl(n—i+1), G_j=spadeq; k=1,....i, | =i+1,...,n+1} andN =
i(n—i+1). Fori =1, N = n, the rank ofA,,. Puttingaj‘ =€ j+1, alfr =ej111, j=1,...,n,
the corresponding relationg read (,k,1 = 1,...,n):

&3] = (a7, 8] =0 ([ .a].a"] = 0" +dua, (&) .al.a]=—0ka —Ga.
These are the relations Afstatistics [7]-[8], [11], [13]-[14]. Foi =2,N =2(n—1), let
a_;=eyjt2, & =€jr2 a;=6€21, a;=€422 j=1...,.n-1 (4)

Now the corresponding relations a& (7 £=4; j kl=1,...,n—1):

[a+ a_ k] = [ +17 ] J 7é k [ +17 ]] [a+k7a:k]a [ai_pajrj] = [ai_loa:_k]a
[[ag;- 8,84 = 5ne5jka§| +0en0aay, ([ag; ap ag] = —O¢e Oikan; — Oen il gy

Step 2. Delete nodé and j from the Dynkin diagram. Theal(n+1) =G_2®G_1® Go&®
G11® G, with Go =H +sl(i)@sl(j—i)@sl(n+1— j). There are six simpl&p-modules
and three different ways in which the§&g-modules can be combined. To characterize these
three cases, it is sufficient to give or@®y 1:

G_p=sparfeq,ap, k=1,...)i, | =i+1,...,j, p=j+1,...,n+ 1},
=(j—i)(n+1—j+i);
G_1=spadeqd.ep k=1,...,i, | =i+1,....j, p=j+1,...,n+1}, N=i(n+1—i);
G_p=sparfeq,ap; k=1,...,i, p=i+1,...,j, I =j+1...,n+1}, N=j(n+1-]).
For j —i =1 one can label the CAOs as follows:
a =6i+1, & =641k K=1...,0i; & =e€i1k1, & =6q1it1, K=i+1,....n
Using _ _
{2
the algebraic relations redd = +; k,I,m=1,... n):
a . 1=[a.,a]=0, k1=1,...iorkl=i+1,...,n,
al=[aa7]=0, k=1,...,i,l=i+1,...,n, (6)

& = ()W *maiat + (—1)WHM g al k=1 iorkl=i+1,...n
&l ,a],an] = — (1) VM gian — (1) VMg A k1 =1,...iorkl =i+1,...,n,
[ai ]:%E]:_@nﬁf+dmai,k:1=7|,|:|+177n7 [[aiaaf]?afén]:



The relations (6) wittn = 2m andi = m are the commutation relations of the (Palev’s) causal
A-statistics investigated in [10].

Step 3.If we delete 3 or more nodes from the Dynkin diagram, the apoedingZ-grading
of sl(n+ 1) has no longer the required properties.

Step 4.1f we delete nodé from the extended Dynkin diagram, the remaining diagrangésra
of type Ay, soGg = G, and there are no CAOs.

Step 5.1f we delete 2 (3) nodes from the extended Dynkin diagram widstep 1 (Step 2).

Step 6. If we delete 4 or more nodes from the extended Dynkin diagtamcorresponding
Z-grading ofsl(n+ 1) has no longer the required properties.

Following the same procedure we give only the most intargstases for the algebr&g-Dy,.

3.2. The Lie algebra B=sa(2n+1)

Delete node 1 from the Dynkin diagram. Thea2n+1) = G_1® Gy ® G1 with Gg =

H+so2n—1), G_1 = spaf e 2nt1 —€nt1n+1; €Lkin—n+ls €1k — Einni1; K=2,...,n}
andN = 2n— 1. Let us denote the CAOs by:

boo = €1.2n+1 — E2n+1,n+1, 0o = €n+11— Eni12n+1s
b = €lniki1— &t1nils B ) = €niki11 — Enilkils k=1...,n=-1, (7)
b:rk = €1 k+1 — Entk+1,n+1, bik = 6&+1,1 — €nt1ntk+1; k=1,...,n—1

The corresponding relation® are given by §,n,e =0,+; i, j,k=1,... ,n—1):

[bg’an]_ [og;. byl =0, [bT,bT;] = [bi;,bly],  i# ],
[ 007 ] [b007 b+ ] [b(—)i_ov 11] [boo, bi_j]v

[[bf; s r”]a ] djé.fnb +5jk5r]£b — Ok O, ,gbfnj,

[

[5u byl Dg] = — 8 Oy Bey — GOz by j + Oj Oy, —eb ;.-

Delete nodei (i = 2,...,n) from the Dynkin diagram; thersa2n+ 1) = G_» @
G_1® Gy @ Gi1® Gy with Gg = H +sl(i) ®so2(n—i) + 1), G_1 = spar{ejan+1 —
€2n+1n+js € kin—ntj> €k —Oinniji] =1,...,0i, k=i+1,...,n},andN = 2i(n—i) +1i.
The case with = nis the para-Fermi case presented in the Introduction.

3.3. The Lie algebra g£= sp(2n)

Delete node (i = 1,...,n—1) from the Dynkin diagram. Thesp(2n) = G_2® G_1® Go P
G111 G2 With Go=H +sl(i) ©sp(2(n—i)), G-1 = spa{&n+i + & nik, & —Entlinik K=

..., 1 =i +1,...,n} andN = 2i(n—i). Fori =1, let us denote the CAOs by
=e€ntj+1t€+1n+l, Cfj =€1Lj+1—€ntjtintl, J=1,...,n—1,
ij = €n+j+1,1 1+ €ntaj+1, C+J =€j411—€nrintj+l, J=1,...,n=1 8

Then the corresponding relatiogéread, withé , n, e,y =+ or +1, andj,k,1 =1,...,n—1:

[ng’cgk] 0, Hcgpcr);k]acg] 0, HCE], ¢ Wl,C _F]:ch‘ijkc‘im

[t k]—[C+J,C+k] ey e =[ct,ci ] =0, i #K

[[C?J’Cﬂk] ol = 5En51kcsl+5ns5klcgj + (=110 _Gjctpy, (9)
H gj’ nk]a el] 5JkC 5Eg5J|an—|-( )En5n7,g§<|c:fj
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Fori = n—1, let us also denote the CAOs bi:

C:J :ej72n+a'l,n+j7 C_T_J :ejn—ezrhn_'_j7 J = 1"._,n_1,
C+J:ezn7j+en+j,n, Cij:e’ﬂj_en—kjlna j:l)_”,n_l' (10)

Now, the corresponding relations read, Witln, e, y=+or+1, j, k1 =1,....n—1:

[CZ,,CQk]:O, [[c ir/,ac}f,k]» c4] =0,

ey ed =[ciehl =0, j#k

[[ngv fk] ] En(sjkcnl""éklcma [[Cijﬂc:ﬁ]acgl]:(Sf_n)chima (11)
[[c55, —k]?c,y J=—&5jC g —E0aC ¢

This set of CAOs, together with their relations (11), was taesed earlier in [7].

When noden is deleted from the Dynkin diagram @f,, thensp(2n) = G_1 ® Gy &
G.1 with Go =H +sl(n) andG_1 = {€j nyk +&ntj; 1 < j <k <n}. There areN = M
commuting annihilation operators, and the relatighsvill not be given explicitly.

3.4. The Lie algebra P= so(2n)

When node 1 is deleted from the Dynkin diagranDef thenso(2n) = G_1 ® Gy ® G.1 with
Go=H +Dn_1, G_1 = spar{ey — etint1, €Lnti—Gnr1 | =2,...,n} andN = 2(n—1)
Denoting the CAOs by

d:i =€nti+1—€+1n+1, d_:| =€Li+1— Enhtit+1nt1, i=1..,n-1,
d =entit11— entitt, A =@111— enpinsicts i=1...,n-1,  (12)

then, foré,n,e =+ andi, j,k=1,...,n—1, the relations? are given by:

[déwdﬁj] = [d%,d] = [df;,d5] =0,
[[d;,dgj],dgk] — 88 dey — gy + O, e Okd (13)

[[d;,d ]d ] 65051 sk+5'7£51kdgi 55,—edkd_,”-

Although the relations (13) are new, the existence of theoE€@AOs (12) was pointed out
in [7].

When nodei (i = 2,...,n—2) is deleted from the Dynkin diagram d,, then
so2n) =G @G 1 ®Go® G, 1® G, o with Gg = sl(i) ®so(2(n—1i)), G_1 = spar{eq —
en+|,n+k7 e«,n+l _Q,n+k; k= 17" '7i7 | =i +17"'7n} andN = 2I<n_|)

Delete noden from the Dynkin diagram, thesa(2n) = G_1 & Gp @ G1 with Gg =
H +sl(n), G_1 = span€j ktn— & j+n; 1 < j <k<n}andN = ”(“—2_1)

Delete nodes — 1 andn from the Dynkin diagram. Theso(2n) =G_>® G_1 @ Go ®
G11® G2 with Gg = H +sl(n— 1). There are sixgp-modules and three ways in which these
Gp-modules can be combined, namely with:

G = Spar{ejn—GZn,n—i-j; €j.2n— €nn+js J = 17"'7n_1}5 (14)
G 1 spafejn—€xnn+j, J =1,...,n—1; enrjk—e€nikj, 1< j<k<n-1}, (15)
G—l = Spar{ej+n,n—e2n7ja J = 17"'7n_1; ej,k+n—ex,j+n7 1§ J < kS n_l} (16)

5



For (14), we haveN = 2(n— 1); for (15) and (16), we havhl = @ It turns out that (15)
and (16) are isomorphic to each other. Denote the CAOs of (14) b

d:i:a,Zn—en,m—i,d_,__i:ein_eZn,n+ia i=1,...,n—1,
d' =eni—entin dfj=eni—enizn, i=1....n—1 17)

Then, withé, n,e,y=+or+1landi, j,k=1,...,n—1, the relations are explicitly given by:
[dn dgj] = 07 [[dy dy]]udgk] = 07

i &vn
[d5,dy] = [dj,d7;] =0, [di,d5]=[d};,d5] =0, (18)
(o), d% ], 057 ] = —&wd® ¢ + S’ i, ([0, M), dl] = Eejd]l + Syl

The set of CAOs (17) with relations (18) is the example that emassidered earlier in [7] and

[9].
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