A class of representations of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$ and quantum statistics

N.I. Stoilova¹

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciencies, Boul. Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

J. Van der Jeugt 2

Department of Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium.

Abstract

The description of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2|n_1, n_2)$ is carried out via generators $a_1^{\pm}, \ldots, a_{m_1+m_2+n_1+n_2}^{\pm}$ that satisfy triple relations and are called creation and annihilation operators. With respect to these generators, a class of Fock type representations of $\mathfrak{sl}(m_1+1, m_2|n_1, n_2)$ is constructed. The properties of the underlying statistics are discussed and its Pauli principle is formulated.

Representations of $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra PACS numbers: 03.65.-w, 03.65.Fd, 02.20.-a, 11.10.-z

1 Introduction

A result from quantum field theory is that particles with half-integer spins are fermions, satisfying the Fermi-Dirac statistics, and particles with integer spins are bosons, satisfying the Bose-Einstein statistics. However, beyond Fermi-Dirac and Bose-Einstein statistics, various kinds of generalized quantum statistics have been introduced, investigated and discussed [1–9]. One of the first such generalizations are the so called parafermion and paraboson statistics [2]. The algebraic structure behind a system of 2m-parafermion operators is the orthogonal Lie algebra $\mathfrak{so}(2m+1)$ [10], and behind a system of 2m-parafermions and 2n-parabosons there are two types of mutual nontrivial relations (from a physical point of view) [12] with algebraic structures the Lie superalgebra $\mathfrak{osp}(1|2n)$ [14,15]. All these algebras are of type B Lie algebras, Lie superalgebras or $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras. Furthermore, generalized statistics have been associated with all classical Lie algebras and basic classical Lie superalgebras from the infinite series A, B, C, and D and are refered to as A, B, C and D-(super)statistics [16–19]. Therefore it is natural to consider their $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded counterparts.

In recent years there has been an increased interests in colour algebras, especially in those with $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading and their applications [20–34]. In the following section we will remind the concept of $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras, and define the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra

¹E-mail: stoilova@inrne.bas.bg

²E-mail: Joris.VanderJeugt@UGent.be

 $\mathfrak{sl}(m_1+1, m_2|n_1, n_2)$. In particular we shall give a set of $\mathfrak{sl}(m_1+1, m_2|n_1, n_2)$ generators satisfying triple relations. Section 3 is devoted to a class of $\mathfrak{sl}(m_1+1, m_2|n_1, n_2)$ irreducible representations, the so called Fock representations and in Section 4 we discuss the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded A statistics.

2 $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra $\mathfrak{sl}(m_1+1, m_2|n_1, n_2)$

First it will be useful to recall the definition of $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebras [35–37].

As a linear space such algebras \mathfrak{g} are direct sums of four subspaces:

$$\mathfrak{g} = \bigoplus_{a} \mathfrak{g}_{a} = \mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(0,1)} \oplus \mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(1,1)}$$
(2.1)

with $\boldsymbol{a} = (a_1, a_2)$ an element of $\mathbb{Z}_2 \times \mathbb{Z}_2$. Writting $x_{\boldsymbol{a}}, y_{\boldsymbol{a}}, \ldots$, means that these elements belong to $\mathfrak{g}_{\boldsymbol{a}}$ and \boldsymbol{a} is said to be the degree, deg $x_{\boldsymbol{a}}$, of $x_{\boldsymbol{a}}$. Such elements $x_{\boldsymbol{a}}$ are called homogeneous elements. The bracket $[\![\cdot, \cdot]\!]$ on a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra \mathfrak{g} satisfies the grading, symmetry and Jacobi identities:

$$\llbracket x_{\boldsymbol{a}}, y_{\boldsymbol{b}} \rrbracket \in \mathfrak{g}_{\boldsymbol{a}+\boldsymbol{b}}, \tag{2.2}$$

$$[x_{\boldsymbol{a}}, y_{\boldsymbol{b}}]] = -(-1)^{\boldsymbol{a} \cdot \boldsymbol{b}}[\![y_{\boldsymbol{b}}, x_{\boldsymbol{a}}]\!], \tag{2.3}$$

$$\llbracket x_{\boldsymbol{a}}, \llbracket y_{\boldsymbol{b}}, z_{\boldsymbol{c}} \rrbracket \rrbracket = \llbracket \llbracket x_{\boldsymbol{a}}, y_{\boldsymbol{b}} \rrbracket, z_{\boldsymbol{c}} \rrbracket + (-1)^{\boldsymbol{a} \cdot \boldsymbol{b}} \llbracket y_{\boldsymbol{b}}, \llbracket x_{\boldsymbol{a}}, z_{\boldsymbol{c}} \rrbracket \rrbracket,$$
(2.4)

where

$$a + b = (a_1 + b_1, a_2 + b_2) \in \mathbb{Z}_2 \times \mathbb{Z}_2, \qquad a \cdot b = a_1 b_1 + a_2 b_2.$$
 (2.5)

From (2.2) and (2.5) it follows that $\mathfrak{g}_{(0,0)}$ is a Lie subalgebra of \mathfrak{g} , and $\mathfrak{g}_{(1,0)}, \mathfrak{g}_{(0,1)}, \mathfrak{g}_{(1,1)}$ are $\mathfrak{g}_{(0,0)}$ -modules. In addition $\mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(1,1)}$ is also a Lie subalgebra of \mathfrak{g} , and the subspace $\mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(0,1)}$ is a $\mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(1,1)}$ -module. Furthermore, $\{\mathfrak{g}_{(1,1)}, \mathfrak{g}_{(0,1)}\} \subset \mathfrak{g}_{(1,0)}$ and $\{\mathfrak{g}_{(1,1)}, \mathfrak{g}_{(1,0)}\} \subset \mathfrak{g}_{(0,1)}$.

Let M be an arbitrary $(m_1 + m_2 + n_1 + n_2 + 1 \times m_1 + m_2 + n_1 + n_2 + 1)$ -matrix of the following block form: $m_1 + 1 \quad m_2 \quad n_1 \quad n_2$

$$M = \begin{pmatrix} a_{(0,0)} & a_{(1,1)} & a_{(1,0)} & a_{(0,1)} \\ b_{(1,1)} & b_{(0,0)} & b_{(0,1)} & b_{(1,0)} \\ c_{(1,0)} & c_{(0,1)} & c_{(0,0)} & c_{(1,1)} \\ d_{(0,1)} & d_{(1,0)} & d_{(1,1)} & d_{(0,0)} \end{pmatrix} \begin{pmatrix} m_1 + 1 \\ m_2 \\ n_1 \\ n_2 \end{pmatrix}$$
(2.6)

The indices of the matrix blocks show the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading, and the size of the blocks is indicated in the lines above and to the right of the matrix. Matrix M can be written as a sum of four matrices:

$$M = M_{(0,0)} + M_{(1,1)} + M_{(1,0)} + M_{(0,1)}, (2.7)$$

with $M_{(a,b)}$ the corresponding block matrices $m_{(a,b)}$ and all other zeros. Defining the bracket $[\cdot, \cdot]$ on the space of these matrices by:

$$\llbracket M_{(a_1,a_2)}, \tilde{M}_{(b_1,b_2)} \rrbracket = M_{(a_1,a_2)} \tilde{M}_{(b_1,b_2)} - (-1)^{a_1 b_1 + a_2 b_2} \tilde{M}_{(b_1,b_2)} M_{(a_1,a_2)}$$
(2.8)

for the homogeneous elements $M_{(a_1,a_2)}$ and $\tilde{M}_{(b_1,b_2)}$ and extending it by linearity one obtains the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded general linear Lie superalgebra $\mathfrak{gl}(m_1 + 1, m_2 | n_1, n_2)$.

It is straightforward to check that for the graded supertrace $\operatorname{Str}(A) = \operatorname{tr}(a_{(0,0)}) + \operatorname{tr}(b_{(0,0)}) - \operatorname{tr}(c_{(0,0)}) - \operatorname{tr}(d_{(0,0)})$ in terms of the ordinary trace tr, $\operatorname{Str}[\![A,B]\!] = 0$. Therefore, the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$ is defined as the subalgebra of $\mathfrak{gl}(m_1 + 1, m_2 | n_1, n_2)$ with graded supertrace equal to 0.

Let

$$d_{i} = \begin{cases} (0,0); & i = 0, \dots, m_{1} \\ (1,1); & i = m_{1} + 1, \dots, m_{1} + m_{2} = m \\ (1,0); & i = m_{1} + m_{2} + 1, \dots, m_{1} + m_{2} + n_{1} = m + n_{1} \\ (0,1); & i = m_{1} + m_{2} + n_{1} + 1, \dots, m_{1} + m_{2} + n_{1} + n_{2} = m + n, \end{cases}$$
(2.9)

and let e_{ij} , $i, j = 0, 1, ..., m_1 + m_2 + n_1 + n_2 = m + n$ (where $m_1 + m_2 = m, n_1 + n_2 = n$) be the $(m+n+1 \times m+n+1)$ matrix (2.6) with 1 in the entry of row *i*, column *j* and 0 elsewhere. These matrices are homogeneous and the grading deg (e_{ij}) is as follows:

$$\deg(e_{ij}) = d_i + d_j.$$

The bracket for such matrices is given by:

$$[\![e_{ij}, e_{kl}]\!] = \delta_{jk} e_{il} - (-1)^{(d_i + d_j) \cdot (d_k + d_l)} \delta_{il} e_{kj}.$$

The algebra $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$ can be considered as the linear envelope of e_{ij} , $i \neq j = 0, 1, \ldots, m + n$, $e_{00} - (-1)^{d_i \cdot d_i} e_{ii}$, $i = 1, \ldots, m + n$. A set of generators of $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$ is given by:

$$a_i^+ = e_{i0}, \ a_i^- = e_{0i}, \ i = 1, \dots, m+n, \ (\deg(a_i^{\pm}) = d_i)$$
 (2.10)

since

$$\llbracket a_i^+, a_j^- \rrbracket = e_{ij}, \ i \neq j = 1, \dots, m+n; \ \llbracket a_k^-, a_k^+ \rrbracket = e_{00} - (-1)^{d_k \cdot d_k} e_{kk}, \ k = 1, \dots, m+n.$$
(2.11)

Denote these generators by

$$a_i^{\pm} \equiv b_i^{\pm} \in \mathfrak{g}_{(0,0)}, \ i = 1, \dots, m_1,$$
 (2.12)

$$a_i^{\pm} \equiv \tilde{b}_{i-m_1}^{\pm} \in \mathfrak{g}_{(1,1)}, \ i = m_1 + 1, \dots, m,$$
 (2.13)

$$a_i^{\pm} \equiv f_{i-m}^{\pm} \in \mathfrak{g}_{(1,0)}, \ i = m+1, \dots, m+n_1,$$
 (2.14)

$$a_i^{\pm} \equiv \tilde{f}_{i-m-n_1}^{\pm} \in \mathfrak{g}_{(0,1)}, \ i = m + n_1 + 1, \dots, m + n.$$
 (2.15)

The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$ can be defined in terms of the generators a_i^{\pm} , $i = 1, \ldots, m + n$ and the following relations:

$$\begin{bmatrix} a_i^{\xi}, a_j^{\xi} \end{bmatrix} = 0, \quad \xi = \pm, \ i, j = 1, \dots, m + n, \\ \\ \begin{bmatrix} \begin{bmatrix} a_i^{+}, a_j^{-} \end{bmatrix}, a_k^{+} \end{bmatrix} = \delta_{jk} a_i^{+} + (-1)^{d_i \cdot d_i} \delta_{ij} a_k^{+}, \\ \\ \\ \begin{bmatrix} \begin{bmatrix} a_i^{+}, a_j^{-} \end{bmatrix}, a_k^{-} \end{bmatrix} = -(-1)^{(d_i + d_j) \cdot d_k} \delta_{ik} a_j^{-} - (-1)^{d_i \cdot d_i} \delta_{ij} a_k^{-}, \quad i, j, k = 1, \dots, m + n.$$

$$(2.16)$$

Definition 1. We will call the generators a_i^{\pm} , i = 1, ..., m+n, creation and annihilation operators of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$.

3 Representations of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$

We now proceed to construct a class of representations, Fock type representations, of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ graded Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$. The irreducible Fock representations are labelled by one non-negative integer p = 1, 2, ..., called an order of the statistics. To construct them assume that the corresponding representation space W_p contains (up to a multiple) a cyclic vector $|0\rangle$, such that

$$a_{i}^{-}|0\rangle = 0, \quad i = 1, 2, \dots, n + m, \\ [\![a_{i}^{-}, a_{j}^{+}]\!]|0\rangle = \delta_{ij}p|0\rangle, \quad p \in \mathbb{N}, \quad i, j = 1, 2, \dots, n + m.$$
(3.1)

The Fock spaces are finite-dimensional irreducible $\mathfrak{sl}(m_1+1, m_2|n_1, n_2)$ -modules. The vectors

$$(b_1^+)^{r_1} \dots (b_{m_1}^+)^{r_{m_1}} (\tilde{b}_1^+)^{l_1} \dots (\tilde{b}_{m_2}^+)^{l_{m_2}} (f_1^+)^{\theta_1} \dots (f_{n_1}^+)^{\theta_{n_1}} (\tilde{f}_1^+)^{\lambda_1} \dots (\tilde{f}_{n_2}^+)^{\lambda_{n_2}} |0\rangle$$
(3.2)

subject to the following restriction

$$r_i, l_i \in \mathbb{Z}_+, \quad \theta_i, \lambda_i \in \{0, 1\}, \quad R = \sum_{i=1}^{m_1} r_i + \sum_{i=1}^{m_2} l_i + \sum_{i=1}^{n_1} \theta_i + \sum_{i=1}^{n_2} \lambda_i \le p$$
 (3.3)

constitute a basis in W_p . The linear space of all vectors (3.2) for any $r_i, l_i \in \mathbb{Z}_+$, $\theta_i, \lambda_i \in \{0, 1\}$, i.e. without the restriction (3.3), is an infinite-dimensional $\mathfrak{sl}(m_1 + 1, m_2 | n_1, n_2)$ -module \overline{W}_p . It is however not irreducible and \overline{W}_p contains an infinite-dimensional invariant subspace W_p^{inv} , linear envelope of all the vectors (3.2) with $R = \sum_{i=1}^{m_1} r_i + \sum_{i=1}^{m_2} l_i + \sum_{i=1}^{n_1} \theta_i + \sum_{i=1}^{n_2} \lambda_i > p$. Then W_p is a factor module of \overline{W}_p with respect to W_p^{inv} .

Define a Hermitian form \langle , \rangle on W_p with the standard Fock space technique. So, postulate that

$$\langle 0|0\rangle = 1,\tag{3.4}$$

$$\langle a_i^{\pm} v | w \rangle = \langle v | a_i^{\mp} w \rangle, \qquad \forall v, w \in W_p.$$
 (3.5)

With respect to this form, the different vectors in (3.2) are orthogonal, and the following vectors form an orthonormal basis of W_p :

$$|p; r_1, \dots, r_{m_1}, l_1, \dots, l_{m_2}, \theta_1, \dots, \theta_{n_1}, \lambda_1, \dots, \lambda_{n_2}) = \sqrt{\frac{(p-R)!}{p! r_1! \dots \lambda_{n_2}!}} \times (b_1^+)^{r_1} \dots (b_{m_1}^+)^{r_{m_1}} (\tilde{b}_1^+)^{l_1} \dots (\tilde{b}_{m_2}^+)^{l_{m_2}} (f_1^+)^{\theta_1} \dots (f_{n_1}^+)^{\theta_{n_1}} (\tilde{f}_1^+)^{\lambda_1} \dots (\tilde{f}_{n_2}^+)^{\lambda_{n_2}} |0\rangle,$$
(3.6)

with

$$r_i, l_i \in \mathbb{Z}_+, \quad \theta_i, \lambda_i \in \{0, 1\}, \quad R = \sum_{i=1}^{m_1} r_i + \sum_{i=1}^{m_2} l_i + \sum_{i=1}^{n_1} \theta_i + \sum_{i=1}^{n_2} \lambda_i \le p.$$
 (3.7)

Proposition 2. The transformation of the orthonormal basis of W_p under the action of the creation and annihilation operators a_i^{\pm} reads:

$$b_i^+|p;\ldots,r_{i-1},r_i,r_{i+1},\ldots) = \sqrt{(r_i+1)(p-R)}|p;\ldots,r_{i-1},r_i+1,r_{i+1},\ldots),$$
(3.8)

$$\tilde{b}_i^+|p;\dots,l_{i-1},l_i,l_{i+1},\dots) = \sqrt{(l_i+1)(p-R)}|p;\dots,l_{i-1},l_i+1,l_{i+1},\dots),$$
(3.9)

$$f_{i}^{+}|p;\ldots,\theta_{i-1},\theta_{i},\theta_{i+1},\ldots) = (1-\theta_{i})(-1)^{l_{1}+\ldots+l_{m_{2}}}(-1)^{\theta_{1}+\ldots+\theta_{i-1}}\sqrt{p-R}|p;\ldots,\theta_{i-1},\theta_{i}+1,\theta_{i+1},\ldots),$$
(3.10)

$$\tilde{f}_{i}^{+}|p;\ldots,\lambda_{i-1},\lambda_{i},\lambda_{i+1},\ldots) = (1-\lambda_{i})(-1)^{l_{1}+\ldots+l_{m_{2}}}(-1)^{\lambda_{1}+\ldots+\lambda_{i-1}}\sqrt{p-R}|p;\ldots,\theta_{i-1},\theta_{i}+1,\theta_{i+1},\ldots),$$
(3.11)

$$b_i^-|p;\ldots,r_{i-1},r_i,r_{i+1},\ldots) = \sqrt{r_i(p-R+1)}|p;\ldots,r_{i-1},r_i-1,r_{i+1},\ldots),$$
(3.12)

$$\tilde{b}_i^-|p;\ldots,l_{i-1},l_i,l_{i+1},\ldots) = \sqrt{l_i(p-R+1)}|p;\ldots,l_{i-1},l_i-1,l_{i+1},\ldots),$$
(3.13)

$$f_{i}^{-}|p;\ldots,\theta_{i-1},\theta_{i},\theta_{i+1},\ldots) = \theta_{i}(-1)^{l_{1}+\ldots+l_{m_{2}}}(-1)^{\theta_{1}+\ldots+\theta_{i-1}}\sqrt{p-R+1}|p;\ldots,\theta_{i-1},\theta_{i}-1,\theta_{i+1},\ldots),$$
(3.14)

$$\tilde{f}_{i}^{-}|p;\ldots,\lambda_{i-1},\lambda_{i},\lambda_{i+1},\ldots) = \lambda_{i}(-1)^{l_{1}+\ldots+l_{m_{2}}}(-1)^{\lambda_{1}+\ldots+\lambda_{i-1}}\sqrt{p-R+1}|p;\ldots,\theta_{i-1},\theta_{i}+1,\theta_{i+1},\ldots)$$
(3.15)

The above transformations are obtained by applying the defining relations (2.16) of $\mathfrak{sl}(m_1 + 1, m_2|n_1, n_2)$. However, in order to prove that these explicit actions (3.8)-(3.15) give a representation of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded special linear Lie superalgebra $\mathfrak{sl}(m_1 + 1, m_2|n_1, n_2)$ it is sufficient to show that (3.8)-(3.15) satisfy the defining relations of the algebra which is a long but straightforward matter. The irreducibility then follows from the fact that for any nonzero vector $x \in W_p$ there exists a polynomial \mathfrak{P} of $\mathfrak{sl}(m_1 + 1, m_2|n_1, n_2)$ generators such that $\mathfrak{P}x = W_p$.

4 $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded A statistics

The operators $b_i^{\pm} \equiv a_i^{\pm} \in \mathfrak{g}_{(0,0)}$, $i = 1, \ldots, m_1$ and $\tilde{b}_{i-m_1}^{\pm} \equiv a_i^{\pm} \in \mathfrak{g}_{(1,1)}$, $i = m_1 + 1, \ldots, m_1$ generate the Lie algebra $\mathfrak{sl}(m+1)$ and satisfy the relations:

$$[a_{i}^{\xi}, a_{j}^{\xi}] = 0, \quad \xi = \pm, \ i, j = 1, \dots, m,$$

$$[[a_{i}^{+}, a_{j}^{-}], a_{k}^{+}] = \delta_{jk}a_{i}^{+} + \delta_{ij}a_{k}^{+},$$

$$[[a_{i}^{+}, a_{i}^{-}], a_{k}^{-}] = -\delta_{ik}a_{i}^{-} - \delta_{ij}a_{k}^{-}.$$

(4.1)

Relations (4.1) are the defining triple relations of A-statistics [38].

There are other two sets of operators $f_{i-m}^{\pm} \equiv a_i^{\pm} \in \mathfrak{g}_{(1,0)}$ for $i = m+1, \ldots, m+n_1$ and $\tilde{f}_{i-m-n_1}^{\pm} \equiv a_i^{\pm} \in \mathfrak{g}_{(0,1)}$ for $i = m+n_1+1, \ldots, m+n$ satisfying the common defining triple relations of A-superstatistics [39]:

$$\{a_i^+, a_j^+\} = \{a_i^-, a_j^-\} = 0, [\{a_i^+, a_j^-\}, a_k^+] = \delta_{jk}a_i^+ - \delta_{ij}a_k^+, [\{a_i^+, a_j^-\}, a_k^-] = -\delta_{ik}a_j^- + \delta_{ij}a_k^-.$$

$$(4.2)$$

Here, either $i, j, k = m + 1, ..., m + n_1$ or else $i, j, k = m + n_1 + 1, ..., m + n$.

It is easy to write down the mixed relations between the three families of operators a_i^{\pm} , $i = 1, \ldots, m + n$ (the operators of A-statistics and the two sets of operators of A-superstatistics), in terms of (anti)commutators using (2.16) and the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -grading. In particular the mixed relations between the two families of A-superstatistics operators are as follows:

$$\begin{aligned} [a_i^+, a_j^+] &= [a_i^-, a_j^-] = 0, \\ \{[a_i^+, a_j^-], a_k^+\} &= \delta_{jk} a_i^+, \\ \{[a_i^+, a_j^-], a_k^-\} &= \delta_{ik} a_j^-, \end{aligned}$$
(4.3)

with in (4.3), either $i = m + 1, ..., m + n_1$, $j = m + n_1 + 1, ..., m + n$, k = m + 1, ..., m + n, or else $i = m + n_1 + 1, ..., m + n$, $j = m + 1, ..., m + n_1$, k = m + 1, ..., m + n;

and

$$\{a_i^+, a_j^+\} = \{a_i^-, a_j^-\} = 0, [\{a_i^+, a_j^-\}, a_k^+] = -\delta_{ij}a_k^+, [\{a_i^+, a_j^-\}, a_k^-] = +\delta_{ij}a_k^-.$$
 (4.4)

with in (4.4), either $i, j = m + 1, ..., m + n_1$, $k = m + n_1 + 1, ..., m + n$, or else $i, j = m + n_1 + 1, ..., m + n$, $k = m + 1, ..., m + n_1$.

The operators a_i^+ (resp. a_i^-) can be interpreted as operators in a state space W_p , the Fock space, creating "a particle" (resp. annihilating "a particle"), with energy ε_i . Let for simplicity m = n and consider a Hamiltonian

$$H = \sum_{i=1}^{m} \varepsilon_i([a_i^+, a_i^-] + \{a_i^+, a_i^-\}).$$
(4.5)

Then

$$[H, a_i^{\pm}] = \pm \varepsilon_i a_i^{\pm}, \quad [H, a_{i+m}^{\pm}] = \pm \varepsilon_i a_{i+m}^{\pm}.$$

$$(4.6)$$

This result together with (3.8)-(3.15) allows one to interpret r_i , $i = 1, ..., m_1$, l_i , $i = 1, ..., m_2$, θ_i , $i = 1, ..., n_1$ and λ_i , $i = 1, ..., n_2$ as the number of particles on the corresponding orbital. The operator a_i^+ increases this number by one, it "creates" a particle in the one-particle state (orbital). Similarly, the operator a_i^- diminishes this number by one, it "kills" a particle on the corresponding orbital. However on every orbital of the last *n* there cannot be more than one particle, whereas such restriction does not hold for the first *m* orbitals. Therefore we have generalized fermions and bosons in this case. However there is an extra property. Since $\sum_{i=1}^{m_1} r_i + \sum_{i=1}^{m_2} l_i + \sum_{i=1}^{n_1} \theta_i + \sum_{i=1}^{n_2} \lambda_i \leq p$ no more than *p* particles can be accomodated in the system. This is the *Pauli principle* for this statistics.

Acknowledgments

This article is based upon work from COST Action 21109 CaLISTA, supported by COST (European Cooperation in Science and Technology) and by the Bulgarian National Science Fund, grant KP-06-N88/3.

References

- [1] Gentile G 1940 Osservazioni sopra le statistiche intermedie Nuov. Cim. 17 493–97
- [2] Green H S 1953 A Generalized Method of Field Quantization Phys. Rev. 90 270-273
- [3] Wilczek F 1982 Magnetic flux, angular momentum, and statistics Phys. Rev. Lett. 48 1144–6
- [4] Haldane F D M 1991 "Fractional statistics" in arbitrary dimensions: a generalization of the Pauli principle Phys. Rev. Lett. 67 937–40
- [5] Macfarlane A J 1989 On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)_q J. Phys. A: Math. Gen. 22 4581–8;
 Biedenharn L C 1989 The quantum group SU_q(2) and a q-analogue of the boson operators J. Phys. A: Math. Gen. 22 L873–8;
 Sun C P and Fu H C 1989 The q-deformed boson realisation of the quantum group SU(n)_q and its representations J. Phys. A: Math. Gen. 22 L983–8

- [6] Tichy M C and Mølmer K 2017 Extending exchange symmetry beyond bosons and fermions Phys. Rev. A 96(2) 022119–022119-10
- [7] Zhou C -C, Chen Y -Z and Dai W -S 2022 Unified Framework for Generalized Statistics: Canonical Partition Function, Maximum Occupation Number, and Permutation Phase of Wave Function J. Stat. Phys. 186 article number 19
- [8] Sánchez N M and Dakić B 2023 Reconstruction of quantum particle statistics: bosons, fermions, and transtatistics (arXiv:2306.05919 [quant-ph])
- [9] Wang Z and Hazzard K R A 2023 Free particles beyond fermions and bosons (arXiv:2308.05203 [quant-ph])
- [10] Kamefuchi S and Takahashi 1962 Nucl. Phys. 36, 177; Ryan C and E.C.G. Sudarshan E C G 1963 Nucl. Phys. 47, 207
- [11] Ganchev A Ch and T.D. Palev 1980 A Lie Superalgebraic Interpretation of the Para-Bose Statistics J. Math. Phys. 21 797-799
- [12] Greenberg O W and Messiah A M L 1965 Selection Rules for Parafields and the Absence of Para particles in Nature. *Phys. Rev. B* 138 1155-1167
- [13] Palev T D 1982 Para-Bose and para-Fermi operators as generators of orthosymplectic Lie superalgebras J. Math. Phys. 23 1100-1102
- [14] Tolstoy V N 2014 Once more on Parastatistics Phys. Part. Nucl. Lett. 11 933-937
- [15] Stoilova N I and Van der Jeugt J 2018 The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded Lie superalgebra $\mathfrak{pso}(2m+1|2n)$ and new parastatistics representations J. Phys. A: Math. Theor. **51** 135201
- [16] Palev T D 1976 Lie algebraical aspects of the quantum statistics (Habilitation thesis, Inst. Nucl. Research and Nucl. Energy, Sofia; in Bulgarian)
- [17] Palev T D 1977 Lie algebraic aspects of quantum statistics. Unitary quantization (Aquantization) (Preprint JINR E17-10550 and hep-th/9705032)
- [18] Stoilova N I and Van der Jeugt J 2005 A classification of generalized quantum statistics associated with classical Lie algebras J. Math. Phys. 46 033501
- [19] Stoilova N I and Van der Jeugt J 2005 A classification of generalized quantum statistics associated with basic classical Lie superalgebras J. Math. Phys. 46 113504
- [20] Aizawa N, Kuznetsova Z, Tanaka H and Toppan F 2016 Z₂ × Z₂-graded Lie symmetries of the Lévy-Leblond equations Prog. Theor. Exp. Phys. 2016 123A01
- [21] Bruce A J and Duplij S 2020 Double-graded supersymmetric quantum mechanics J. Math. Phys. 61 063503
- [22] Aizawa N, Amakawa K and Doi S 2020 N-Extension of double-graded supersymmetric and superconformal quantum mechanics J. Phys. A: Math. Theor. 53 065205
- [23] Aizawa N, Kuznetsova Z and Toppan F 2020 Z₂ × Z₂-graded mechanics: the classical theory Eur. Phys. J. C 80 668
- [24] Aizawa N, Kuznetsova Z and Toppan F 2021 $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded mechanics: the quantization Nucl. Phys. B 967 115426

- [25] Quesne C 2021 Minimal bosonization of double-graded quantum mechanics Mod. Phys. Lett. A 36 2150238
- [26] Doi S and Aizawa N 2022 Irreducible representations of \mathbb{Z}_2^2 -graded N = 2 supersymmetry algebra and \mathbb{Z}_2^2 -graded supermechanics J. Math. Phys. **63** 091704
- [27] Bruce A J 2020 Z₂ × Z₂-graded supersymmetry: 2D sigma models J. Phys. A: Math. Theor. 53 455201
- [28] Kuznetsova Z and Toppan F 2021 Classification of minimal Z₂ × Z₂-graded Lie (super)algebras and some applications J. Math. Phys. 62 063512
- [29] Bruce A J 2021 Is the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded sine-Gordon equation integrable? Nucl. Phys. B 971 115514
- [30] Doi S and Aizawa N 2022 Comments on \mathbb{Z}_2^2 -graded supersymmetry in superfield formalism Nucl. Phys. B 974 115641
- [31] Aizawa N, Ito R, Kuznetsova Z and Toppan F 2023 New aspects of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded 1D superspace: closed strings and 2D relativistic models *Nucl. Phys. B* **991** 116202
- [32] Aizawa N and Ito R 2023 Integration on minimal Z²₂-superspace and emergence of space J. Phys. A: Math. Theor. 56 485201
- [33] Stoilova N I and Van der Jeugt J 2023 On classical Z₂ × Z₂-graded Lie algebras J. Math. Phys.
 64 061702
- [34] Stoilova N I and Van der Jeugt J 2024 Orthosymplectic Z₂ × Z₂-graded Lie superalgebras and parastatics J. Phys. A 64 095202 (13pp)
- [35] Rittenberg V and Wyler D 1978 Generalized Superalgebras Nucl. Phys. B 139 189–202
- [36] Rittenberg V and Wyler D 1978 Sequences of Z₂ ⊕ Z₂-graded Lie algebras and superalgebras J. Math. Phys. 19 2193–2200
- [37] Scheunert M 1979 Generalized Lie algebras J. Math. Phys. 20 712–720
- [38] Jellal A, Palev T D and Van der Jeugt J 2001 Macroscopic properties of A-statistics J. Phys. A: Math. Gen. 34 10179–99
- [39] Palev T D, Stoilova N I and Van der Jeugt J 2003 Microscopic and macroscopic properties of A-superstatistics J. Phys. A: Math. Gen. 36 7093–7112