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Abstract

The description of the Z2 × Z2-graded special linear Lie superalgebra sl(m1 + 1,m2|n1, n2)
is carried out via generators a±1 , . . . , a

±
m1+m2+n1+n2

that satisfy triple relations and are called
creation and annihilation operators. With respect to these generators, a class of Fock type
representations of sl(m1+1,m2|n1, n2) is constructed. The properties of the underlying statistics
are discussed and its Pauli principle is formulated.

Representations of Z2 × Z2-graded special linear Lie superalgebra
PACS numbers: 03.65.-w, 03.65.Fd, 02.20.-a, 11.10.-z

1 Introduction

A result from quantum field theory is that particles with half-integer spins are fermions, satisfying
the Fermi-Dirac statistics, and particles with integer spins are bosons, satisfying the Bose-Einstein
statistics. However, beyond Fermi-Dirac and Bose-Einstein statistics, various kinds of generalized
quantum statistics have been introduced, investigated and discussed [1–9]. One of the first such
generalizations are the so called parafermion and paraboson statistics [2]. The algebraic structure
behind a system of 2m-parafermion operators is the orthogonal Lie algebra so(2m + 1) [10], and
behind a system of 2n-parabosons is the orthosymplectic Lie superalgebra osp(1|2n) [11]. For
a mixed system of 2m-parafermions and 2n-parabosons there are two types of mutual nontrivial
relations (from a physical point of view) [12] with algebraic structures the Lie superalgebra osp(2m+
1|2n) [13] and the Z2 × Z2-graded Lie superalgebra osp(1, 2m|2n, 0) ≡ pso(2m+ 1|2n) [14,15]. All
these algebras are of type B Lie algebras, Lie superalgebras or Z2 × Z2-graded Lie superalgebras.
Furthermore, generalized statistics have been associated with all classical Lie algebras and basic
classical Lie superalgebras from the infinite series A,B,C, and D and are refered to as A,B,C and
D-(super)statistics [16–19]. Therefore it is natural to consider their Z2 × Z2-graded counterparts.

In recent years there has been an increased interests in colour algebras, especially in those with
Z2×Z2-grading and their applications [20–34]. In the following section we will remind the concept
of Z2 ×Z2-graded Lie superalgebras, and define the Z2 ×Z2-graded special linear Lie superalgebra
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sl(m1+1,m2|n1, n2). In particular we shall give a set of sl(m1+1,m2|n1, n2) generators satisfying
triple relations. Section 3 is devoted to a class of sl(m1 + 1,m2|n1, n2) irreducible representations,
the so called Fock representations and in Section 4 we discuss the Z2 × Z2-graded A statistics.

2 Z2×Z2-graded special linear Lie superalgebra sl(m1+1,m2|n1, n2)

First it will be useful to recall the definition of Z2 × Z2-graded Lie superalgebras [35–37].
As a linear space such algebras g are direct sums of four subspaces:

g =
⊕
a

ga = g(0,0) ⊕ g(0,1) ⊕ g(1,0) ⊕ g(1,1) (2.1)

with a = (a1, a2) an element of Z2 × Z2. Writting xa, ya, . . ., means that these elements belong
to ga and a is said to be the degree, deg xa, of xa. Such elements xa are called homogeneous
elements. The bracket J·, ·K on a Z2×Z2-graded Lie superalgebra g satisfies the grading, symmetry
and Jacobi identities:

Jxa, ybK ∈ ga+b, (2.2)

Jxa, ybK = −(−1)a·bJyb, xaK, (2.3)

Jxa, Jyb, zcKK = JJxa, ybK, zcK+ (−1)a·bJyb, Jxa, zcKK, (2.4)

where
a+ b = (a1 + b1, a2 + b2) ∈ Z2 × Z2, a · b = a1b1 + a2b2. (2.5)

From (2.2) and (2.5) it follows that g(0,0) is a Lie subalgebra of g, and g(1,0), g(0,1), g(1,1) are g(0,0)-
modules. In addition g(0,0) ⊕ g(1,1) is also a Lie subalgebra of g, and the subspace g(1,0) ⊕ g(0,1) is
a g(0,0) ⊕ g(1,1)-module. Furthermore, {g(1,1), g(0,1)} ⊂ g(1,0) and {g(1,1), g(1,0)} ⊂ g(0,1).

Let M be an arbitrary (m1+m2+n1+n2+1×m1+m2+n1+n2+1)-matrix of the following
block form:

M =

m1 + 1 m2 n1 n2
a(0,0) a(1,1) a(1,0) a(0,1)

b(1,1) b(0,0) b(0,1) b(1,0)

c(1,0) c(0,1) c(0,0) c(1,1)

d(0,1) d(1,0) d(1,1) d(0,0)


m1 + 1

m2

n1

n2

(2.6)

The indices of the matrix blocks show the Z2×Z2-grading, and the size of the blocks is indicated in
the lines above and to the right of the matrix. Matrix M can be written as a sum of four matrices:

M = M(0,0) +M(1,1) +M(1,0) +M(0,1), (2.7)

with M(a,b) the corresponding block matrices m(a,b) and all other zeros. Defining the bracket J·, ·K
on the space of these matrices by:

JM(a1,a2), M̃(b1,b2)K = M(a1,a2)M̃(b1,b2) − (−1)a1b1+a2b2M̃(b1,b2)M(a1,a2) (2.8)

for the homogeneous elements M(a1,a2) and M̃(b1,b2) and extending it by linearity one obtains the
Z2 × Z2-graded general linear Lie superalgebra gl(m1 + 1,m2|n1, n2).

It is straightforward to check that for the graded supertrace Str(A) = tr(a(0,0)) + tr(b(0,0)) −
tr(c(0,0)) − tr(d(0,0)) in terms of the ordinary trace tr, StrJA,BK = 0. Therefore, the Z2 × Z2-
graded special linear Lie superalgebra sl(m1 +1,m2|n1, n2) is defined as the subalgebra of gl(m1 +
1,m2|n1, n2) with graded supertrace equal to 0.
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Let

di =


(0, 0); i = 0, . . . ,m1

(1, 1); i = m1 + 1, . . . ,m1 +m2 = m
(1, 0); i = m1 +m2 + 1, . . . ,m1 +m2 + n1 = m+ n1

(0, 1); i = m1 +m2 + n1 + 1, . . . ,m1 +m2 + n1 + n2 = m+ n,

(2.9)

and let eij , i, j = 0, 1, . . . ,m1 +m2 + n1 + n2 = m+ n (where m1 +m2 = m,n1 + n2 = n) be the
(m+n+1×m+n+1) matrix (2.6) with 1 in the entry of row i, column j and 0 elsewhere. These
matrices are homogeneous and the grading deg(eij) is as follows:

deg(eij) = di + dj .

The bracket for such matrices is given by:

Jeij , eklK = δjkeil − (−1)(di+dj)·(dk+dl)δilekj .

The algebra sl(m1 + 1,m2|n1, n2) can be considered as the linear envelope of eij , i ̸= j =
0, 1, . . . ,m+ n, e00 − (−1)di·dieii, i = 1, . . . ,m+ n. A set of generators of sl(m1 + 1,m2|n1, n2) is
given by:

a+i = ei0, a−i = e0i, i = 1, . . . ,m+ n, (deg(a±i ) = di) (2.10)

since

Ja+i , a
−
j K = eij , i ̸= j = 1, . . . ,m+ n; Ja−k , a

+
k K = e00 − (−1)dk·dkekk, k = 1, . . . ,m+ n. (2.11)

Denote these generators by

a±i ≡ b±i ∈ g(0,0), i = 1, . . . ,m1, (2.12)

a±i ≡ b̃±i−m1
∈ g(1,1), i = m1 + 1, . . . ,m, (2.13)

a±i ≡ f±
i−m ∈ g(1,0), i = m+ 1, . . . ,m+ n1, (2.14)

a±i ≡ f̃±
i−m−n1

∈ g(0,1), i = m+ n1 + 1, . . . ,m+ n. (2.15)

The Z2 × Z2-graded special linear Lie superalgebra sl(m1 + 1,m2|n1, n2) can be defined in terms
of the generators a±i , i = 1, . . . ,m+ n and the following relations:

Jaξi , a
ξ
jK = 0, ξ = ±, i, j = 1, . . . ,m+ n,

JJa+i , a
−
j K, a+k K = δjka

+
i + (−1)di·diδija

+
k , (2.16)

JJa+i , a
−
j K, a−k K = −(−1)(di+dj)·dkδika

−
j − (−1)di·diδija

−
k , i, j, k = 1, . . . ,m+ n.

Definition 1. We will call the generators a±i , i = 1, . . . ,m+n, creation and annihilation operators
of the Z2 × Z2-graded Lie superalgebra sl(m1 + 1,m2|n1, n2).

3 Representations of the Z2 × Z2-graded Lie superalgebra sl(m1 +
1,m2|n1, n2)

We now proceed to construct a class of representations, Fock type representations, of the Z2 ×Z2-
graded Lie superalgebra sl(m1+1,m2|n1, n2). The irreducible Fock representations are labelled by
one non-negative integer p = 1, 2, . . ., called an order of the statistics. To construct them assume
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that the corresponding representation space Wp contains (up to a multiple) a cyclic vector |0⟩, such
that

a−i |0⟩ = 0, i = 1, 2, . . . , n+m,

Ja−i , a
+
j K|0⟩ = δijp|0⟩, p ∈ N, i, j = 1, 2, . . . , n+m. (3.1)

The Fock spaces are finite-dimensional irreducible sl(m1 + 1,m2|n1, n2)-modules. The vectors

(b+1 )
r1 . . . (b+m1

)rm1 (b̃+1 )
l1 . . . (b̃+m2

)lm2 (f+
1 )θ1 . . . (f+

n1
)θn1 (f̃+

1 )λ1 . . . (f̃+
n2
)λn2 |0⟩ (3.2)

subject to the following restriction

ri, li ∈ Z+, θi, λi ∈ {0, 1}, R =

m1∑
i=1

ri +

m2∑
i=1

li +

n1∑
i=1

θi +

n2∑
i=1

λi ≤ p (3.3)

constitute a basis in Wp. The linear space of all vectors (3.2) for any ri, li ∈ Z+, θi, λi ∈ {0, 1},
i.e. without the restriction (3.3), is an infinite-dimensional sl(m1 + 1,m2|n1, n2)-module W̄p. It is
however not irreducible and W̄p contains an infinite-dimensional invariant subspace W inv

p , linear
envelope of all the vectors (3.2) with R =

∑m1
i=1 ri +

∑m2
i=1 li +

∑n1
i=1 θi +

∑n2
i=1 λi > p. Then Wp is

a factor module of W̄p with respect to W inv
p .

Define a Hermitian form ⟨ , ⟩ on Wp with the standard Fock space technique. So, postulate that

⟨0|0⟩ = 1, (3.4)

⟨a±i v|w⟩ = ⟨v|a∓i w⟩, ∀v, w ∈ Wp. (3.5)

With respect to this form, the different vectors in (3.2) are orthogonal, and the following vectors
form an orthonormal basis of Wp :

|p; r1, . . . , rm1 , l1, . . . , lm2 , θ1, . . . , θn1 , λ1, . . . , λn2) =

√
(p−R)!

p!r1! . . . λn2 !

× (b+1 )
r1 . . . (b+m1

)rm1 (b̃+1 )
l1 . . . (b̃+m2

)lm2 (f+
1 )θ1 . . . (f+

n1
)θn1 (f̃+

1 )λ1 . . . (f̃+
n2
)λn2 |0⟩, (3.6)

with

ri, li ∈ Z+, θi, λi ∈ {0, 1}, R =

m1∑
i=1

ri +

m2∑
i=1

li +

n1∑
i=1

θi +

n2∑
i=1

λi ≤ p. (3.7)

Proposition 2. The transformation of the orthonormal basis of Wp under the action of the creation
and annihilation operators a±i reads:

b+i |p; . . . , ri−1, ri, ri+1, . . .) =
√

(ri + 1)(p−R)|p; . . . , ri−1, ri + 1, ri+1, . . .), (3.8)

b̃+i |p; . . . , li−1, li, li+1, . . .) =
√

(li + 1)(p−R)|p; . . . , li−1, li + 1, li+1, . . .), (3.9)

f+
i |p; . . . , θi−1, θi, θi+1, . . .) = (1− θi)(−1)l1+...+lm2 (−1)θ1+...+θi−1

√
p−R|p; . . . , θi−1, θi + 1, θi+1, . . .),

(3.10)

f̃+
i |p; . . . , λi−1, λi, λi+1, . . .) = (1− λi)(−1)l1+...+lm2 (−1)λ1+...+λi−1

√
p−R|p; . . . , θi−1, θi + 1, θi+1, . . .),

(3.11)
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b−i |p; . . . , ri−1, ri, ri+1, . . .) =
√

ri(p−R+ 1)|p; . . . , ri−1, ri − 1, ri+1, . . .), (3.12)

b̃−i |p; . . . , li−1, li, li+1, . . .) =
√

li(p−R+ 1)|p; . . . , li−1, li − 1, li+1, . . .), (3.13)

f−
i |p; . . . , θi−1, θi, θi+1, . . .) = θi(−1)l1+...+lm2 (−1)θ1+...+θi−1

√
p−R+ 1|p; . . . , θi−1, θi − 1, θi+1, . . .),

(3.14)

f̃−
i |p; . . . , λi−1, λi, λi+1, . . .) = λi(−1)l1+...+lm2 (−1)λ1+...+λi−1

√
p−R+ 1|p; . . . , θi−1, θi + 1, θi+1, . . .).

(3.15)

The above transformations are obtained by applying the defining relations (2.16) of sl(m1 +
1,m2|n1, n2). However, in order to prove that these explicit actions (3.8)-(3.15) give a repre-
sentation of the Z2 × Z2-graded special linear Lie superalgebra sl(m1 + 1,m2|n1, n2) it is sufficient
to show that (3.8)-(3.15) satisfy the defining relations of the algebra which is a long but straight-
forward matter. The irreducibility then follows from the fact that for any nonzero vector x ∈ Wp

there exists a polynomial P of sl(m1 + 1,m2|n1, n2) generators such that Px = Wp.

4 Z2 × Z2-graded A statistics

The operators b±i ≡ a±i ∈ g(0,0), i = 1, . . . ,m1 and b̃±i−m1
≡ a±i ∈ g(1,1), i = m1 + 1, . . . ,m

generate the Lie algebra sl(m+ 1) and satisfy the relations:

[aξi , a
ξ
j ] = 0, ξ = ±, i, j = 1, . . . ,m,

[ [a+i , a
−
j ], a

+
k ] = δjka

+
i + δija

+
k , (4.1)

[ [a+i , a
−
j ], a

−
k ] = −δika

−
j − δija

−
k .

Relations (4.1) are the defining triple relations of A-statistics [38].
There are other two sets of operators f±

i−m ≡ a±i ∈ g(1,0) for i = m + 1, . . . ,m + n1 and

f̃±
i−m−n1

≡ a±i ∈ g(0,1) for i = m+n1+1, . . . ,m+n satisfying the common defining triple relations
of A-superstatistics [39]:

{a+i , a
+
j } = {a−i , a

−
j } = 0,

[{a+i , a
−
j }, a

+
k ] = δjka

+
i − δija

+
k ,

[{a+i , a
−
j }, a

−
k ] = −δika

−
j + δija

−
k . (4.2)

Here, either i, j, k = m+ 1, . . . ,m+ n1 or else i, j, k = m+ n1 + 1, . . . ,m+ n.
It is easy to write down the mixed relations between the three families of operators a±i , i =

1, . . . ,m + n (the operators of A-statistics and the two sets of operators of A-superstatistics), in
terms of (anti)commutators using (2.16) and the Z2×Z2-grading. In particular the mixed relations
between the two families of A-superstatistics operators are as follows:

[a+i , a
+
j ] = [a−i , a

−
j ] = 0,

{[a+i , a
−
j ], a

+
k } = δjka

+
i ,

{[a+i , a
−
j ], a

−
k } = δika

−
j , (4.3)

with in (4.3), either i = m + 1, . . . ,m + n1, j = m + n1 + 1, . . . ,m + n, k = m + 1, . . . ,m + n, or
else i = m+ n1 + 1, . . . ,m+ n, j = m+ 1 . . . ,m+ n1, k = m+ 1, . . . ,m+ n;
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and

{a+i , a
+
j } = {a−i , a

−
j } = 0,

[{a+i , a
−
j }, a

+
k ] = −δija

+
k ,

[{a+i , a
−
j }, a

−
k ] = +δija

−
k . (4.4)

with in (4.4), either i, j = m + 1, . . . ,m + n1, k = m + n1 + 1, . . . ,m + n, or else i, j = m + n1 +
1, . . . ,m+ n, k = m+ 1, . . . ,m+ n1.

The operators a+i (resp. a−i ) can be interpreted as operators in a state space Wp, the Fock
space, creating “a particle” (resp. annihilating “a particle”), with energy εi . Let for simplicity
m = n and consider a Hamiltonian

H =

m∑
i=1

εi([a
+
i , a

−
i ] + {a+i , a

−
i }). (4.5)

Then
[H, a±i ] = ±εia

±
i , [H, a±i+m] = ±εia

±
i+m. (4.6)

This result together with (3.8)-(3.15) allows one to interpret ri, i = 1, . . . ,m1, li, i = 1, . . . ,m2,
θi, i = 1, . . . , n1 and λi, i = 1, . . . , n2 as the number of particles on the corresponding orbital. The
operator a+i increases this number by one, it “creates” a particle in the one-particle state (orbital).
Similarly, the operator a−i diminishes this number by one, it “kills” a particle on the corresponding
orbital. However on every orbital of the last n there cannot be more than one particle, whereas such
restriction does not hold for the first m orbitals. Therefore we have generalized fermions and bosons
in this case. However there is an extra property. Since

∑m1
i=1 ri +

∑m2
i=1 li +

∑n1
i=1 θi +

∑n2
i=1 λi ≤ p

no more than p particles can be accomodated in the system. This is the Pauli principle for this
statistics.
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[8] Sánchez N M and Dakić B 2023 Reconstruction of quantum particle statistics: bosons,
fermions, and transtatistics (arXiv:2306.05919 [quant-ph])

[9] Wang Z and Hazzard K R A 2023 Free particles beyond fermions and bosons (arXiv:2308.05203
[quant-ph])

[10] Kamefuchi S and Takahashi 1962 Nucl. Phys. 36, 177; Ryan C and E.C.G. Sudarshan E C G
1963 Nucl. Phys. 47, 207

[11] Ganchev A Ch and T.D. Palev 1980 A Lie Superalgebraic Interpretation of the Para-Bose
Statistics J. Math. Phys. 21 797-799

[12] Greenberg O W and Messiah A M L 1965 Selection Rules for Parafields and the Absence of
Para particles in Nature. Phys. Rev. B 138 1155-1167

[13] Palev T D 1982 Para-Bose and para-Fermi operators as generators of orthosymplectic Lie
superalgebras J. Math. Phys. 23 1100-1102

[14] Tolstoy V N 2014 Once more on Parastatistics Phys. Part. Nucl. Lett. 11 933-937

[15] Stoilova N I and Van der Jeugt J 2018 The Z2 × Z2-graded Lie superalgebra pso(2m + 1|2n)
and new parastatistics representations J. Phys. A: Math. Theor. 51 135201

[16] Palev T D 1976 Lie algebraical aspects of the quantum statistics (Habilitation thesis, Inst.
Nucl. Research and Nucl. Energy, Sofia; in Bulgarian)

[17] Palev T D 1977 Lie algebraic aspects of quantum statistics. Unitary quantization (A-
quantization) (Preprint JINR E17-10550 and hep-th/9705032)

[18] Stoilova N I and Van der Jeugt J 2005 A classification of generalized quantum statistics
associated with classical Lie algebras J. Math. Phys. 46 033501

[19] Stoilova N I and Van der Jeugt J 2005 A classification of generalized quantum statistics
associated with basic classical Lie superalgebras J. Math. Phys. 46 113504

[20] Aizawa N, Kuznetsova Z, Tanaka H and Toppan F 2016 Z2×Z2-graded Lie symmetries of the
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