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Abstract In a recent paper characters and superdimension formulas were
investigated for the class of representations with Dynkin labels [0, . . . , 0, p] of
the Lie superalgebra osp(m|n). Such representations are infinite-dimensional,
and of relevance in supergravity theories provided their superdimension is
finite. We have shown that the superdimension of such representations co-
incides with the dimension of a so(m − n) representation. In the present
contribution, we investigate how this osp(m|n) ∼ so(m− n) correspondence
can be extended to the class of osp(2m|2n) representations with Dynkin labels
[0, . . . , 0, q, p].

1 Introduction

Chiral spinors and self dual tensors of the Lie superalgebra osp(m|n) play
a prominent role in some models of supergravity theory [1, 13]. As repre-
sentations, these spinors and self dual tensors are characterized by Dynkin
labels [0, . . . , 0, p], where p = 1 for the chiral spinor and p = 2 for the self
dual tensor. It will be interesting to consider the class of representations with
arbitrary positive integer p. Although all Dynkin labels are nonnegative inte-
gers, the corresponding representations are infinite-dimensional (as they do
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not satisfy the extra condition in Kac’s list of finite-dimensional irreducible
representations [6, 7]). In [14], we showed that the superdimension of these
representations coincides with the dimension of the corresponding so(m−n)
representation. Herein, the algebra should be interpreted differently when
m−n is negative: as sp(n−m) when n−m is even, and as osp(1|n−m− 1)
when n−m is odd.

The results of [14] rely on the knowledge of the character for such osp(m|n)
representations. In particular, the expansion or formulation of this character
in terms of supersymmetric Schur functions turned out to be the crucial
ingredient in order to obtain the osp(m|n) ∼ so(m− n) correspondence.

In the present paper, we shift our attention to the class of osp(2m|2n) rep-
resentations with Dynkin labels [0, . . . , 0, q, p]. In the distinguished Dynkin
diagram of osp(2m|2n), all nodes have zero labels and only the two nodes
of the fork have a non-negative integer label. Such representations are again
infinite-dimensional. Our idea to deal with these representations is as follows:
we will first investigate the finite-dimensional so(2k) representations of type
[0, . . . , 0, q, p], conjecture that the osp(m|n) ∼ so(m−n) correspondence still
holds, and as such obtain interesting new characters of osp(2m|2n) represen-
tations.

2 Preliminaries and definitions

The character formulas used in this paper are expressed in terms of symmetric
or supersymmetric Schur functions, which are labelled by partitions. So it will
be useful to recall some notation for this. The standard reference is [12]. A
partition λ = (λ1, λ2, . . . , λn) of weight |λ| and length ℓ(λ) ≤ n is a sequence
of non-negative integers satisfying the condition λ1 ≥ λ2 ≥ · · · ≥ λn, such
that their sum is |λ|, and λi > 0 if and only if i ≤ ℓ(λ). It is common to
represent (and sometimes identify) a partition by its Young diagram. For
example, the Young diagram of λ = (6, 4, 4, 2) is given by the first figure
in (1).

× ×

×
× (1)

The conjugate partition λ′ corresponds to the Young diagram of λ reflected
about the main diagonal. For the above example, λ′ = (4, 4, 3, 3, 1, 1). If λ, µ
are two partitions, one writes λ ⊃ µ if the diagram of λ contains that of µ. The
difference λ− µ is called a skew diagram [12]. For example, if µ = (4, 4, 3, 1),
then the boxes of the skew diagram λ − µ are crossed in the second picture
of (1). A skew diagram is a horizontal strip if it has at most one box in each
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column. The number of boxes of the horizontal strip is its length. The above
example is a horizontal strip of length 4.

Partitions are used to label symmetric and supersymmetric functions.
When dealing with characters of Lie algebras or Lie superalgebras, the Schur
functions [12] or S-functions are the most useful basis. In terms of a set of n
independent variables x = (x1, x2, . . . , xn), the Schur function sλ(x) (with λ
a partition) is a symmetric polynomial that can be defined by means of deter-
minants [12]. When dealing with two sets of variables x = (x1, . . . , xm) and
y = (y1, . . . , yn), one can define the so-called supersymmetric Schur function
sλ(x|y) [2, 9]. Here, sλ(x|y) is zero whenever λm+1 > n. Following this, it is
common to denote by Hm,n the set of all partitions with λm+1 ≤ n, i.e. the
partitions (with their Young diagram) inside the (m,n)-hook.

For characters of simple Lie algebras, ordinary Schur functions play a
prominent role. Characters of finite-dimensional irreducible representation
(irreps) of gl(n) or sl(n) are directly given by a Schur function, and characters
of irreps of other simple Lie algebras can be expanded in Schur functions [10].
An irrep of gl(n) is characterized by a partition λ with ℓ(λ) ≤ n. In terms of
the standard basis ǫ1, . . . , ǫn of the weight space of gl(n), the highest weight of
this representation is

∑n
i=1 λiǫi, and the representation space will be denoted

by V λ
gl(n). Its character is given by charV λ

gl(n) = sλ(x), where xi = eǫi .
For Lie superalgebras, this role is played by the supersymmetric Schur

functions, at least for certain classes of representations. For a partition
λ ∈ Hm,n, the corresponding covariant representation of the Lie superal-
gebra gl(m|n) will be denoted by V λ

gl(m|n). In terms of the standard basis

ǫ1, . . . , ǫm, δ1, . . . , δn of the weight space of gl(m|n), the highest weight of
this representation is

∑m
i=1 λiǫi +

∑n
j=1 max(λ′

j −m, 0)δj , and the main re-
sult of [2] is

charV λ
gl(m|n) = sλ(x|y), (2)

where xi = eǫi and yj = eδj .

3 Dimension, superdimension and t-dimension

As is well known, the character of a representation gives all information on
the weight structure of the representation. Sometimes, it is useful to consider
certain specializations of characters, because of specific information that is
needed, or because of elegant formulas that hold for certain specializations.
Let V be a highest weight representation of a simple Lie algebra or Lie
superalgebra, with highest weight Λ and character charV . A well known spe-
cialization of the character of V is the so-called q-dimension [8, Chapter 10].
The q-dimension of V is nothing else than the specialization

dimq(V ) = F (e−Λ charV ), where F (e−αi) = q, (3)
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and the αi’s are the simple roots of the Lie (super)algebra. So this corre-
sponds to the principal gradation of the Lie (super)algebra, and one counts
the dimension of the “levels” of the representation space starting from the
top level (corresponding to the highest weight) according to this gradation.

Here, we will be dealing with a different specialization, referred to as the t-
dimension. For a (simple) Lie algebra, of which the simple roots are commonly
expressed in terms of the standard basis ǫ1, . . . , ǫn, one defines

dimt(V ) = F0(e
−Λ charV ), where F0(e

−ǫi) = t. (4)

For a Lie superalgebra of type sl, gl or osp, of which the simple roots are
commonly expressed in terms of the standard basis ǫ1, . . . , ǫm, δ1, . . . , δn, we
define the t-dimension and the t-superdimension:

dimt(V ) = F0(e
−Λ charV ), where F0(e

−ǫi) = t and F0(e
−δi) = t; (5)

sdimt(V ) = F1(e
−Λ charV ), where F1(e

−ǫi) = t and F1(e
−δi) = −t. (6)

Intuitively, the t-dimension again counts the dimension of levels of a repre-
sentation starting from the top level, but according to a gradation different
from the principal one. Similarly, the t-superdimension counts the dimension
of the same levels, but with alternating signs. For finite-dimensional repre-
sentations, putting t = 1 in dimt(V ) gives the dimension of V , and putting
t = 1 in sdimt(V ) gives its so-called superdimension (i.e. dimV0̄ − dimV1̄,
when V = V0̄⊕V1̄ is written as the direct sum of its even and odd subspace).

Let us consider some examples. For the orthogonal Lie algebra so(2n+1),
with simple roots ǫ1 − ǫ2, . . . , ǫn−1 − ǫn, ǫn, we will focus on representations
V with Dynkin labels [0, . . . , 0, p], for which the highest weight is (p2 , . . . ,

p
2 )

in the ǫ-basis. For this representation, the character is [15, 3]

char[0, . . . , 0, p]so(2n+1) = (x1 · · ·xn)
−p/2

∑

λ1≤p, ℓ(λ)≤n

sλ(x). (7)

So the sum is over all partitions λ such that the Young diagram of λ fits
inside the n×p rectangle, of width p and height n. Specializing this character
according to F0, one finds:

dimt[0, . . . , 0, p]so(2n+1) =
∑

λ1≤p, ℓ(λ)≤n

dimV λ
gl(n)t

|λ|. (8)

When the character is expressed in terms of Schur functions, as in (7), it yields
in fact the branching of the representation according to so(2n + 1) ⊃ gl(n).
When the character is specialized as in (8), it is a polynomial in t (or, in case
of an infinite-dimensional representation, a formal power series in t) such
that the coefficient of tk counts the dimension “at level k” according to the
Z-gradation induced by the gl(n) subalgebra of so(2n+ 1). For example, for
so(7), one has
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dimt[0, 0, 1]so(7) = 1 + 3t+ 3t2 + t3,

dimt[0, 0, 2]so(7) = 1 + 3t+ 9t2 + 9t3 + 9t4 + 3t5 + t6,

dimt[0, 0, 2]so(7) = 1 + 3t+ 9t2 + 19t3 + 24t4 + 24t5 + 19t6 + 9t7 + 3t8 + t9.

The q-dimension, on the other hand, is a character specialization with a
very different nature. It is a character specialization closely related to Weyl’s
dimension formula, for which an explicit formula exists [8, (10.10.1)]. For the
representations considered in this example, this yields (replacing q by q2 in
order to avoid half-integer powers):

dimq2 [0, 0, p]so(7) =
(1− qp+5)(1− qp+4)(1− qp+3)2(1− qp+2)(1− qp+1)

(1− q5)(1− q4)(1− q3)2(1− q2)(1− q)
.

(9)
So the q-dimension is a character specialization for the principal gradation of
a Lie (super)algebra, leading to classical formulas. The t-dimension is a char-
acter specialization related to the gradation coming from the gl(n) subalgebra
(or gl(m|n) subalgebra), thus typically related to the branching g ⊃ gl(n) or
g ⊃ gl(m|n).

As a second example, let us consider the t-dimension for a class of rep-
resentations of g = osp(1|2n). The notation is as follows [5, 6, 7]: δj are
the basis elements for the weight space of osp(1|2n); the odd roots are given
by ±δj (j = 1, . . . , n), the even roots by δi − δj (i 6= j) and ±(δi + δj),
and the simple roots by δ1 − δ2, δ2 − δ3, . . . , δn−1 − δn, δn. The subalgebra
gl(n) is spanned by the root vectors corresponding to δi − δj . The embed-
ding gl(n) ⊂ osp(1|2n) leads to a Z-gradation of osp(1|2n) [14]. We consider
here a class of infinite-dimensional representations of osp(1|2n), namely the
ones with highest weight given by (−p

2 ,−
p
2 , . . . ,−

p
2 ) in the δ-basis. For this

representation, the Dynkin labels are [0, 0, . . . , 0,−p]. The structure and char-
acter of this representation have been determined in [11]. Using the notation
xi = e−δi , one has:

char[0, 0, . . . , 0,−p]osp(1|2n) = (x1 · · ·xn)
p/2

∑

λ, ℓ(λ)≤p

sλ(x). (10)

This is an infinite sum over all partitions of length at most p. Since sλ(x) = 0
if ℓ(λ) > n, the sum is actually over all partitions satisfying ℓ(λ) ≤ min(n, p).
Applying the above specialization F0, one finds:

dimt[0, 0, . . . , 0,−p]osp(1|2n) =
∑

λ, ℓ(λ)≤min(n,p)

dimV λ
gl(n)t

|λ|. (11)

This infinite sum can be rewritten in an alternative form, see [14]. Some
examples for osp(1|6) are given by:
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dimt[0, 0,−1]osp(1|6) =
1− 3t2 + 3t4 − t6

(1− t)3(1− t2)3
=

1

(1− t)3

= 1 + 3t+ 6t2 + 10t3 + 15t4 + · · ·

dimt[0, 0,−2]osp(1|6) =
1− t3

(1− t)3(1− t2)3
= 1 + 3t+ 9t2 + 18t3 + 36t4 + · · ·

dimt[0, 0,−3]osp(1|6) =
1

(1− t)3(1− t2)3
= 1 + 3t+ 9t2 + 19t3 + 39t4 + · · ·

4 Superdimensions for osp(2m + 1|2n) and osp(2m|2n)

In this section we mainly summarize some of the main results of [14]. For the
Lie superalgebra B(m,n) = osp(2m+ 1|2n), we work with the distinguished
set of simple roots in the ǫ-δ-basis [6, 5]

δ1 − δ2, . . . , δn−1 − δn, δn − ǫ1, ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm. (12)

The relevant gl(m|n) subalgebra is spanned by the root vectors corresponding
to δi − δj , ǫi − ǫj , ±(ǫi − δj), and g = osp(2m+ 1|2n) admits a Z-gradation
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2 with g0 = gl(m|n).

The class of representations to be considered are the irreducible highest
weight representations with highest weight given by (p2 , . . . ,

p
2 ;−

p
2 , . . . ,−

p
2 )

in the ǫ-δ-basis. This representation has Dynkin labels [0, 0, . . . , 0, p]. Using
xi = e−ǫi , yi = e−δi , the following character formula holds [16, 14]:

char[0, . . . , 0, p]osp(2m+1|2n) = (y1 · · · yn/x1 · · ·xm)p/2
∑

λ, λ1≤p

sλ(x|y). (13)

Here the sum is over all partitions λ inside the (m,n)-hook (otherwise sλ(x|y)
is zero anyway) with λ1 ≤ p, or equivalently ℓ(λ′) ≤ p. Applying F1, one
should (apart from the factor in front of the above sum) specify xi = t and
yj = −t in the above character, and so one finds

sdimt[0, . . . , 0, p]osp(2m+1|2n) =
∑

λ, λ1≤p

sλ(t, . . . , t| − t, . . . ,−t)

=
∑

λ, λ1≤p

sλ(1, . . . , 1| − 1, . . . ,−1) t|λ|

=
∑

λ, λ1≤p

sdimV λ
gl(m|n) t

|λ|. (14)

But superdimension formulas for covariant representations of gl(m|n) are well
known [9], and reduce to dimensions of gl(k) irreps:
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sdimV λ
gl(n+k|n) = dimV λ

gl(k), sdimV λ
gl(m|m+k) = (−1)|λ| dimV λ′

gl(k). (15)

In particular, when m = n, sdimV λ
gl(n|n) = 0 unless λ is the zero partition

(0). Note that (15) implies: when ℓ(λ) > k then sdimV λ
gl(n+k|n) = 0; when

λ1 > k then sdimV λ
gl(m|m+k) = 0. Applying this to (14) leads to three cases.

Case 1: m = n, osp(2n+ 1|2n). All superdimensions of covariant represen-
tations of gl(n|n) are zero, except when λ = (0). Hence:

sdimt[0, . . . , 0, p]osp(2n+1|2n) = 1. (16)

Case 2: m = n+ k, osp(2n+ 2k + 1|2n). This is the most interesting case.
The infinite sum in (14) reduces to a finite sum:

sdimt[0, . . . , 0, p]osp(2m+1|2n) =
∑

λ, λ1≤p

dimV λ
gl(k) t

|λ|

=
∑

λ, λ1≤p, ℓ(λ)≤k

dimV λ
gl(k) t

|λ|. (17)

This coincides with example (8). Hence we can write

sdimt[0, 0, . . . , 0, p]osp(2n+2k+1|2n) = dimt[0, . . . , 0, p]so(2k+1). (18)

Case 3: n = m+ k, osp(2m+ 1|2m+ 2k). One finds:

sdimt[0, . . . , 0, p]osp(2m+1|2n) =
∑

λ, λ1≤p, λ1≤k

(−1)|λ| dimV λ′

gl(k) t
|λ|

=
∑

µ, ℓ(µ)≤min(p,k)

dimV µ
gl(k) (−t)|µ|. (19)

The right hand side is the same expression as (11), so

sdimt[0, 0, . . . , 0, p]osp(2m+1|2m+2k) = dim−t[0, . . . , 0,−p]osp(1|2k). (20)

So in all three cases, the superdimension for osp(2m+1|2n) simplifies and
reduces to a dimension of so(2m+ 1− 2n) or osp(1|2n− 2m).

Let us now turn to the Lie superalgebra D(m,n) = osp(2m|2n). The
distinguished set of simple roots in the ǫ-δ-basis is

δ1−δ2, . . . , δn−1−δn, δn−ǫ1, ǫ1−ǫ2, . . . , ǫm−2−ǫm−1, ǫm−1−ǫm, ǫm−1+ǫm.
(21)

It will be helpful to see this superalgebra in the subalgebra chain osp(2m +
1|2n) ⊃ osp(2m|2n) ⊃ gl(m|n).

For the irreducible highest weight representation of osp(2m|2n) with high-
est weight given by (p2 , . . . ,

p
2 ;−

p
2 , . . . ,−

p
2 ), with Dynkin labels [0, 0, . . . , 0, p],
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the character was determined in [14]:

char[0, . . . , 0, p]osp(2m|2n) = (y1 · · · yn/x1 · · ·xm)p/2
∑

λ∈B, λ1≤p

sλ(x|y). (22)

Herein, B denotes the set of partitions for which each part appears twice
(including the zero partition). Thus, one finds

sdimt[0, . . . , 0, p]osp(2m|2n) =
∑

λ∈B, λ1≤p

sdimV λ
gl(m|n) t

|λ|. (23)

This expression allows once again to deduce superdimension formulas in three
cases: m = n, m > n and m < n, see [14]. Let us give here the formula for
m > n, i.e. m = n+ k, or osp(2n+ 2k|2n). From (23) one has:

sdimt[0, . . . , 0, p]osp(2m|2n) =
∑

λ∈B, λ1≤p

dimV λ
gl(k) t

|λ|

=
∑

λ∈B, λ1≤p, ℓ(λ)≤k

dimV λ
gl(k) t

|λ|. (24)

This is to be compared to known characters of so(2k) irreps [14], where a
distinction should be made between k even and k odd. For k even, one has

char[0, . . . , 0, p]so(2k) = (x1 · · ·xk)
−p/2

∑

λ∈B; λ1≤p, ℓ(λ)≤k

sλ(x). (25)

For k odd,

char[0, . . . , p, 0]so(2k) = (x1 · · ·xk)
−p/2

∑

λ∈B: λ1≤p, ℓ(λ)≤k−1

sλ(x). (26)

Comparing with (24), yields:

sdimt[0, 0, . . . , 0, p]osp(2n+2k|2n) =

{

dimt[0, . . . , 0, 0, p]so(2k) for k even,
dimt[0, . . . , 0, p, 0]so(2k) for k odd.

(27)
Here, the convention for the order of the simple roots of so(2k) is ǫ1 −
ǫ2, . . . , ǫk−1 − ǫk, ǫk−1 + ǫk.

5 Characters of “fork” representations for so(2m) and
osp(2m|2n)

The characters of so(2k) and so(2k+1), used in the previous section, should
be seen in the context of the subalgebra chain so(2k + 1) ⊃ so(2k) ⊃ gl(k).
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In (7) we obtained

char[0, . . . , 0, p]so(2k+1) = (x1 · · ·xk)
−p/2

∑

λ1≤p, ℓ(λ)≤k

sλ(x). (28)

Essentially, this is the branching so(2k+1) ⊃ gl(k), since Schur functions are
characters of gl(k) irreps. Considering the representation with respect to the
branching so(2k + 1) ⊃ so(2k), one finds (using Weyl’s character formula):

char[0, . . . , 0, p]so(2k+1) =

p
∑

r=0

char[0, . . . , r, p− r]so(2k). (29)

The so(2k) representations with Dynkin labels [0, . . . , r, p− r] are sometimes
referred to as fork representations, since the only non-zero Dynkin labels
appear at the fork nodes of the diagram, see Fig. 1

Fig. 1 Dynkin diagram
of the fork repre-
sentation of so(2k)

k

k–1

k–221

00

r

p-r

0

Fig. 2 Dynkin diagram
of the fork representa-
tion of osp(2m|2n)

p-r

r

00000

m+n

m+n–1

m+n–2n+1nn–11

The so(2k) characters – in terms of Schur functions – that were used in
the identification of the right hand side of (24) were for the representations
[0, . . . , 0, p] and [0, . . . , 0, p, 0]. Given (29), the question is how to write the
character of the other so(2k) fork representations [0, . . . , r, p− r] as a sum of
Schur functions? Or in other words, what is the branching so(2k) ⊃ gl(k) for
these representations? The answer is given by:

Theorem 1. For k even, one has

char[0, . . . , 0, r, p− r]so(2k) = (x1 · · ·xk)
−p/2

∑

λ1≤p, ℓ(λ)≤k; λ∈Br

sλ(x). (30)

Herein, Br stands for the set of partitions of B to which a horizontal strip
of length r is attached. (Recall that B is the set of partitions for which each
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part appears twice.) The first condition (λ1 ≤ p, ℓ(λ) ≤ k) means that (the
Young diagram of) λ fits inside the k × p rectangle. Similarly, for k odd:

char[0, . . . , 0, r, p− r]so(2k) = (x1 · · ·xk)
−p/2

∑

λ1≤p, ℓ(λ)≤k; λ∈Bp−r

sλ(x). (31)

The proof is technical and can be obtained using the branching rules for
so(2k) ⊃ gl(k) described in [10]. Note that, in accordance with (29), the union
of all partitions of Br in the k × p rectangle, for r = 0, 1, . . . , p, is equal to
the set of all partitions in the rectangle.

In order to illustrate the sets Br, let us give some examples for so(8).

char[0, 0, 0, 1]so(8) = (x1 · · ·x4)
−1/2(1 + s(1,1) + s(1,1,1,1))

char[0, 0, 1, 0]so(8) = (x1 · · ·x4)
−1/2(s(1) + s(1,1,1))

char[0, 0, 0, 2]so(8) = (x1 · · ·x4)
−1(1 + s(1,1) + s(2,2) + s(1,1,1,1) + s(2,2,1,1)

+ s(2,2,2,2))

char[0, 0, 1, 1]so(8) = (x1 · · ·x4)
−1(s(1) + s(2,1) + s(1,1,1) + s(2,2,1) + s(2,1,1,1)

+ s(2,2,2,1))

char[0, 0, 2, 0]so(8) = (x1 · · ·x4)
−1(s(2) + s(2,1,1) + s(2,2,2))

char[0, 0, 0, 3]so(8) = (x1 · · ·x4)
−3/2(1 + s(1,1) + s(2,2) + s(1,1,1,1) + s(3,3)

+ s(2,2,1,1) + s(3,3,1,1) + s(2,2,2,2) + s(3,3,2,2) + s(3,3,3,3))

char[0, 0, 1, 2]so(8) = (x1 · · ·x4)
−3/2(s(1) + s(2,1) + s(1,1,1) + s(2,1,1,1) + s(2,2,1)

+ s(3,2) + s(2,2,2,1) + s(3,2,1,1) + s(3,3,1) + s(3,2,2,2)

+ s(3,3,2,1) + s(3,3,3,2))

char[0, 0, 2, 1]so(8) = (x1 · · ·x4)
−3/2(s(2) + s(2,1,1) + s(3,1) + s(2,2,2) + s(3,1,1,1)

+ s(3,2,1) + s(3,2,2,1) + s(3,3,2) + s(3,3,3,1))

char[0, 0, 3, 0]so(8) = (x1 · · ·x4)
−3/2(s(3) + s(3,1,1) + s(3,2,2) + s(3,3,3))

From these examples, one can indeed see that for representations [0, 0, 0, p],
only partitions appear for which each part is repeated twice (inside the 4× p
rectangle). The partitions appearing in, e.g., [0, 0, 2, 1] are obtained from
those of [0, 0, 0, 3] by attaching a horizontal strip of length 2. Note that indeed
the union of all partitions appearing in, e.g., [0, 0, 0, 3], [0, 0, 1, 2], [0, 0, 2, 1]
and [0, 0, 3, 0] give indeed all partitions inside the 4× 3 rectangle.

But now we can extend the analogy that we observed between representa-
tions [0, . . . , 0, p] of osp(m|n) and the corresponding ones of so(m − n). For
osp(2m+1|2n), one should compare equation (13) with (8). For osp(2m|2n),
one should compare (22) with (25). For all these cases, the character of the
corresponding representation (expressed in terms of Schur functions) is the
same, up to the extra condition ℓ(λ) ≤ k for so(2k). We conjecture that
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this correspondence also holds for the characters of fork representations of
osp(2m|2n) (see Fig. 2), by dropping the condition ℓ(λ) ≤ k in (30).

Conjecture 1. For |m− n| even, one has

char[0, . . . , 0, r, p− r]osp(2m|2n) = (y1 · · · yn/x1 · · ·xm)p/2
∑

λ1≤p, λ∈Br

sλ(x/y).

(32)
So in this case we have an expansion as an infinite sum of supersymmetric
Schur functions, labeled by partitions λ inside the (m,n)-hook, of width at
most p, and belonging to Br.

For |m − n| odd, the result is similar, with Br replaced by Bp−r, follow-
ing (31).

Note that this conjecture also has some interesting consequences, and
yields the equivalence of (29):

char[0, . . . , 0, p]so(2m+1|2n) =

p
∑

r=0

char[0, . . . , r, p− r]so(2m|2n). (33)

Indeed, the expansion of the left hand side is given by (13), and involves all
partitions λ with λ1 ≤ p. The expansion of the terms in the right hand side
is given by (32); each term involves the partitions of Br with λ1 ≤ p. Clearly,
{λ | λ1 ≤ p} is the disjoint union of the sets

{λ ∈ Br | λ1 ≤ p}, r = 0, 1, . . . , p. (34)

Obviously, every element of (34) belongs to {λ | λ1 ≤ p}. The other way
round, when λ is an arbitrary partition with λ1 ≤ p, one should make the
following construction. For λ = (λ1, λ2, λ3, λ4, . . .), let µ1 = µ2 = λ2, µ3 =
µ4 = λ4, etc.; thus µ ∈ B (all parts appear twice). And λ−µ is by construction
a horizontal strip of length r = |λ| − |µ|, where r ≤ p since λ1 ≤ p. So λ
belongs to a unique set of (34) for some r ∈ {0, 1, . . . , p}. Now (33) follows.

To conclude, in the current paper we have first analyzed characters and su-
perdimensions for representations of the form [0, . . . , 0, p] for osp(2m+1|2n)
and osp(2m|2n), and related them to characters and dimensions of so(2k+1)
and so(2k) (for k = m − n). Exploiting this correspondence, we conjecture
that it also holds for fork representations of the form [0, . . . , 0, r, p − r] for
osp(2m|2n). For this purpose, we have deduced characters of the correspond-
ing fork representations of so(2k). The formal proof of the conjecture might
be difficult or technical. One way is to try and use characters of more gen-
eral osp(m|n) tensors which were studied in [4]. Here, the character formulas
correspond to alternating series of S-functions, which are not easy to handle.
Another way is to make use of the explicit construction of the representation
[0, . . . , 0, p]so(2m+1|2n) in [16]. This method is in principle straightforward,
but might be difficult to perform because of the complicated matrix elements
appearing for these representations.
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