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Abstract A Z2 × Z2-graded Lie algebra g is a Z2 × Z2-graded algebra g
with a bracket J·, ·K that satisfies certain graded versions of the symmetry and
Jacobi identity. In particular, despite the common terminology, g is not a Lie
algebra. We construct classes of Z2 × Z2-graded Lie algebras corresponding
to the classical Lie algebras, in terms of their defining matrices. For the
Z2 × Z2-graded Lie algebra of type A, the construction coincides with the
previously known class. For the Z2 × Z2-graded Lie algebra of type B, C
and D our construction is new and gives rise to interesting defining matrices
closely related to the classical ones but undoubtedly different. We also give
some examples and possible applications to parastatistics.

1 Introduction

In physics, relations between physical operators x and y are commonly ex-
pressed in terms of commutators [x, y] and anticommutators {x, y}. Starting
from an associative algebra, the bracket [x, y] = xy − yx leads to the struc-
ture of a Lie algebra. And starting from a Z2-graded associative algebra, the
bracket Jx, yK = xy − (−1)ξηyx (where ξ is the degree of x and η is the de-
gree of y) leads to the structure of a Lie superalgebra. So why should one go
beyond these structures, and study Z2 × Z2-graded Lie algebras or Z2 × Z2-
graded Lie superalgebras? The answer lies in the reformulation of the product
order of three operators. For three elements x, y, z in an associative algebra,
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the twelve terms of the trivial product identity

(xyz + yzx+ zxy + zyx+ yxz + xzy)

−(xyz + yzx+ zxy + zyx+ yxz + xzy) = 0 (1)

can be rewritten by means of commutators and anticommutators in (essen-
tially) four ways [30]:

(a) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

(b) [x, {y, z}] + [y, {z, x}] + [z, {x, y}] = 0,

(c) [x, {y, z}] + {y, [z, x]} − {z, [x, y]} = 0,

(d) [x, [y, z]] + {y, {z, x}} − {z, {x, y}} = 0.

Clearly, (a) corresponds to the Jacobi identity for a Lie algebra (LA); (a)–
(c) appears as the Jacobi identity for a Lie superalgebra (LSA); but (d) can
appear only as the Jacobi identity for a Z2 × Z2-graded Lie algebra or a
Z2 × Z2-graded Lie superalgebra.

The definition of a Z2 × Z2-graded Lie algebra (Z2
2-GLA) or a Z2 × Z2-

graded Lie superalgebras (Z2
2-GLSA) goes back to Rittenberg and Wyler [19,

20]. Let g be a Z2 × Z2-graded linear space:

g =
⊕
a

ga = g(0,0) ⊕ g(0,1) ⊕ g(1,0) ⊕ g(1,1), (2)

where a = (a1, a2) ∈ Z2 × Z2. The relations that should hold are often
written in terms of homogeneous elements, such as xa ∈ ga, which is of
degree deg xa = a, and extended by linearity to all elements of g.

The structure (g, J·, ·K) with J·, ·K a bilinear operation is a Z2 × Z2-graded
Lie algebra if

Jxa, ybK ∈ ga+b, (3)

Jxa, ybK = −(−1)a·bJyb, xaK, (4)

Jxa, Jyb, zcKK = JJxa, ybK, zcK+ (−1)a·bJyb, Jxa, zcKK, (5)

where
a+ b = (a1 + b1, a2 + b2), a · b = a1b2 − a2b1. (6)

Note the peculiar product in (6). If the product in (6) is replaced by a ·
b = a1b1 + a2b2, then the above is the definition of a Z2 × Z2-graded Lie
superalgebra [20].

So in general, these algebras are not Lie algebras nor Lie superalgebras.
The terminology is therefore slightly misleading. But since these terms have
become common now in literature, we shall also use them.

Compared to the essential role of Lie algebras and Lie superalgebras, the
Z2×Z2-graded Lie (super)algebras received for many years little attention in
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theoretical and mathematical physics [14, 17, 29]. Only in recent years there
is renewed interest in Z2 ×Z2-graded Lie (super)algebras. For example, such
structures have appeared in symmetries of Lévy–Leblond equations [2, 3], in
graded (quantum) mechanics and quantization [1,4,5,8,18], and in Z2 × Z2-
graded two-dimensional models [6, 7, 16]. In particular Z2 × Z2-graded Lie
algebras and superalgebras have been recognized in parastatistics [24, 26]
and in the description of parabosons and parafermions [27,28].

In [25] several classes of Z2 × Z2-graded Lie algebras corresponding to
classical Lie algebras were constructed, in terms of defining matrices. In the
present contribution, we will recall some of these classes, but also characterize
these classes of matrix algebras in a new way, by using the notion of graded
transpose.

2 Z2 × Z2-graded Lie algebras

Following the definition given in the previous section, it is clear that g(0,0)
is a Lie subalgebra of the Z2

2-GLA g and that g(0,1), g(1,0) and g(1,1) are
g(0,0)-modules. It will be useful to list the brackets (commutators or anti-
commutators) among the subspaces more explicitly:

[g(0,0), ga] ⊂ ga, [ga, ga] ⊂ g(0,0), a ∈ Z2 × Z2 (7)

and
{ga, gb} ⊂ gc (8)

if a, b and c are mutually distinct elements of {(1, 0), (0, 1), (1, 1)}. Thus if
g = g(0,0) ⊕ g(0,1) ⊕ g(1,0) ⊕ g(1,1) is a Z2

2-GLA, then any permutation of the
last three subspaces maps g into another Z2

2-GLA. Such mappings are “trivial
permutation transformations” of g.

The three subspaces g(0,1), g(1,0) and g(1,1) are therefore on an equal foot-
ing. In order to exclude ordinary Lie algebras or Lie superalgebras, we can
assume that at least two of these three subspaces are nontrivial. And follow-
ing the previous remark, we shall impose the condition that g is generated by
g(1,0)⊕g(0,1) (both nontrivial). Then one can deduce from the Jacobi identity
that

g(0,0) = [g(1,0), g(1,0)] + [g(0,1), g(0,1)] and g(1,1) = {g(1,0), g(0,1)}. (9)

As usual, one can construct a Z2
2-GLA from any Z2×Z2 graded associative

algebra. Indeed, let g be an associative algebra with a product x · y, and
suppose g has a Z2 × Z2-grading of the form (2) that is compatible with the
product, i.e. xa ·yb ∈ ga+b. Then it is easy to verify that the following bracket
turns g into a Z2

2-GLA:
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Jxa, ybK = xa · yb − (−1)a·byb · xa . (10)

Concretely, let V be a Z2 × Z2-graded linear space of dimension n:
V = V(0,0) ⊕ V(0,1) ⊕ V(1,0) ⊕ V(1,1), with subspaces of dimension p, q, r and
s respectively, where p + q + r + s = n. End(V ) is then a Z2 × Z2-graded
associative algebra, and by the previous property it is turned into a Z2

2-GLA
by the bracket J·, ·K of (10). Let us denoted this algebra by glp,q,r,s(n). In
matrix form, the elements are written as:

p q r s
a(0,0) a(0,1) a(1,0) a(1,1)

b(0,1) b(0,0) b(1,1) b(1,0)

c(1,0) c(1,1) c(0,0) c(0,1)

d(1,1) d(1,0) d(0,1) d(0,0)


p

q

r

s

(11)

The indices of the matrix blocks refer to the Z2 ×Z2-grading, and the size of
the blocks is indicated in the lines above and to the right of the matrix.

One can check that TrJA,BK = 0, where Tr is the ordinary trace, hence
g = slp,q,r,s(n) is defined as the subalgebra of traceless elements of glp,q,r,s(n).
The dimensions of the subspaces of g are given by

g(0,0) p2 + q2 + r2 + s2 − 1
g(0,1) 2pq + 2rs
g(1,0) 2pr + 2qs
g(1,1) 2qr + 2ps

Note that the underlying vector space is just the space of traceless ma-
trices. For the associative matrix algebra of traceless matrices, all Z2 × Z2-
gradings have been classified [9, Example 2.30], and these correspond to the
gradings (11). Using the bracket (10) (checking closure in the same vector
space, and yielding the complete vector space) one obtains also in this way
the Z2

2-GLA’s slp,q,r,s(n). This class of Z2
2-GLA’s is not new, and has been

known for a long time. It appears already in [20] under the name sl(p, q, r, s).

3 Z2
2-GLA’s as subalgebras of slp,q,r,s(n)

A crucial notion to be introduced here is that of graded transpose. Let A be
a homogeneous element of slp,q,r,s(n) ⊂ End(V ) of degree a ∈ Z2 × Z2. Let
V ∗ be the vector space dual to V , inheriting the Z2 × Z2-grading from V ,
and denote the natural pairing of V and V ∗ by ⟨·, ·⟩. Then A∗ ∈ End(V ∗) is
determined by:

⟨A∗yb, x⟩ = (−1)a·b⟨yb, Ax⟩, ∀yb ∈ V ∗
b ,∀x ∈ V. (12)
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Clearly, this is extended by linearity to all elements of slp,q,r,s(n). In matrix
form, this yields the Z2 × Z2-graded transpose AT of A:

A =


a(0,0) a(0,1) a(1,0) a(1,1)
b(0,1) b(0,0) b(1,1) b(1,0)
c(1,0) c(1,1) c(0,0) c(0,1)
d(1,1) d(1,0) d(0,1) d(0,0)

 , AT =


at(0,0) bt(0,1) ct(1,0) dt(1,1)
at(0,1) bt(0,0) −ct(1,1) −dt(1,0)
at(1,0) −bt(1,1) ct(0,0) −dt(0,1)
at(1,1) −bt(1,0) −ct(0,1) dt(0,0)

 ,

(13)
where at denotes the ordinary matrix transpose. It is not difficult to check
(case by case, according to the Z2 × Z2-grading) that the graded transpose
of matrices satisfies

(AB)T = (−1)a·bBTAT , (14)

where the sign is determined by (6).
This notion of graded transpose allows us to determine certain classes of

Z2
2-GLA as subalgebras of slp,q,r,s(n). Denote

sop,q,r,s(n) = {A ∈ slp,q,r,s(n) | AT +A = 0}. (15)

If A,B ∈ sop,q,r,s(n), then

JA,BKT = (AB − (−1)a·bBA)T

= (−1)a·bBTAT −ATBT = (−1)a·bBA−AB = −JA,BK,

thus (15) is closed under the bracket J·, ·K and forms a Z2
2-graded Lie subal-

gebra of slp,q,r,s(n). The matrices of sop,q,r,s(n) are of the following form:

p q r s
a(0,0) a(0,1) a(1,0) a(1,1)

−at(0,1) b(0,0) b(1,1) b(1,0)

−at(1,0) b
t
(1,1) c(0,0) c(0,1)

−at(1,1) b
t
(1,0) ct(0,1) d(0,0)


p

q

r

s

(16)

where a(0,0), b(0,0), c(0,0) and d(0,0) are antisymmetric matrices.
In order to continue in the future with more structural properties of

Z2
2-GLA’s (roots, root space decomposition, etc.), it would be interesting

to identify a Cartan subalgebra of (16). The classical choice (as for the
Lie algebra so(n) of antisymmetric matrices) would lead here to a non-
abelian algebra (since the Cartan subalgebra elements would not all be ele-
ments of sop,q,r,s(n)(0,0)). Hence we will construct some other subalgebras of
slp,q,r,s(n), with a matrix form that does exhibit a Cartan subalgebra con-
sisting of diagonal matrices.

For classical LA’s of type B, C, D, the appropriate matrix form exhibiting
a Cartan subalgebra of diagonal matrices is given by the following block
matrices [10,13]:
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G = so(2n+ 1)
(dimG = 2n2 + n)

n n 1 a b c

d −at e

−et −ct 0

n

n

1

b and d antisymmetric;

G = sp(2n)
(dimG = 2n2 + n)

n n(
a b

c −at

)
n

n

b and c symmetric;

G = so(2n)
(dimG = 2n2 − n)

n n(
a b

c −at

)
n

n

b and c antisymmetric.

(17)

In [25], we followed a procedure to construct such classes of Z2
2-GLA’s

corresponding to classical LA’s. That procedure uses in fact the classification
of so-called 5-gradings of classical LA’s as determined in [22]. We will not
repeat this procedure here, but rather put some of the results of [25] in the
framework of the earlier introduced graded transpose.

The first class of Z2
2-GLA’s we list here are those of type C. The Z2

2-GLA
g = spp(2n) consists of all matrices of the following block form:

p n− p p n− p
a(0,0) a(1,0) b(1,1) b(0,1)

ã(1,0) ã(0,0) −b t
(0,1) b̃(1,1)

c(1,1) c(0,1) −a t
(0,0) −ã t

(1,0)

−c t
(0,1) c̃(1,1) −a t

(1,0) −ã t
(0,0)


p

n− p

p

n− p

(18)

where b(1,1), b̃(1,1), c(1,1) and c̃(1,1) are symmetric matrices of appropriate size.
Compare this with the matrices of sp(2n) given in (17). The only difference
is a sign difference in the two blocks that are put in a frame in (18). We have

dim g(0,0) = p2 + (n− p)2

dim g(0,1) = 2p(n− p), dim g(1,0) = 2p(n− p)

dim g(1,1) = p(p+ 1) + (n− p)(n− p+ 1),

and obviously by the previous remark: dim spp(2n) = dim sp(2n).
Having this form, one can verify that spp(2n) consists of all matrices A of

slp,n−p,n−p,p(2n) that satisfy

ATJ + JA = 0 (19)

where
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J =


0 0 I 0

0 0 0 I

−I 0 0 0

0 I 0 0


p

n− p

p

n− p

(20)

and I is an identity matrix of appropriate size. Note that JT = −J and
J−1 = J t. From this, it is easy to show that JA,BK satisfies (19) when A and
B satisfy (19).

Next, we turn to the class of Z2
2-GLA’s of type D. The Z2×Z2-graded LA

g = sop(2n) consists of all matrices of the following block form:

p n− p p n− p
a(0,0) a(1,0) b(1,1) b(0,1)

ã(1,0) ã(0,0) b t
(0,1) b̃(1,1)

c(1,1) c(0,1) −a t
(0,0) −ã t

(1,0)

c t
(0,1) c̃(1,1) −a t

(1,0) −ã t
(0,0)


p

n− p

p

n− p

(21)

where b(1,1), b̃(1,1), c(1,1) and c̃(1,1) are antisymmetric matrices. Now one
should compare these matrices with the matrices of so(2n) given in (17).
Again, the only difference is a sign difference in the two blocks that are put
in a frame in (21). One can verify

dim g(0,0) = p2 + (n− p)2

dim g(0,1) = 2p(n− p), dim g(1,0) = 2p(n− p)

dim g(1,1) = p(p− 1) + (n− p)(n− p− 1),

and obviously dim sop(2n) = dim so(2n).
There is a similar characterization as before. One can check that sop(2n)

consists of all matrices A of slp,n−p,n−p,p(2n) that satisfy

ATK +KA = 0 (22)

where

K =


0 0 I 0

0 0 0 I

I 0 0 0

0 −I 0 0


p

n− p

p

n− p

. (23)

From the identities KT = K and K−1 = Kt one can again deduce that the
graded bracket of A and B satisfies (22) when A and B satisfy (22).

Finally, the last class of Z2
2-GLA’s listed here is that of type B. The Z2×Z2-

graded LA g = sop(2n+1) consists of all matrices of the following block form:



8 N.I. Stoilova and J. Van der Jeugt

p n− p p n− p 1

a(0,0) a(1,1) b(0,0) b(1,1) c(0,1)

ã(1,1) ã(0,0) b t
(1,1) b̃(0,0) c(1,0)

d(0,0) d(1,1) −a t
(0,0) ã t

(1,1) e(0,1)

d t
(1,1) d̃(0,0) a t

(1,1) −ã t
(0,0) e(1,0)

−e t
(0,1) −e t

(1,0) −c t
(0,1) −c t

(1,0) 0



p

n− p

p

n− p

1

(24)

where b(0,0), b̃(0,0), d(0,0) and d̃(0,0) are antisymmetric matrices. There are
some other matrix forms for g = sop(2n+ 1), see [25]. Note that

dim g(0,0) = 2n2 − n− 4p(n− p)2

dim g(0,1) = 2p, dim g(1,0) = 2(n− p)

dim g(1,1) = 4p(n− p),

and dim sop(2n+ 1) = dim so(2n+ 1).
Just as for the other classes, there is a different characterization: g =

sop(2n+ 1) consists of all matrices A of sl2p,1,0,2n−2p(2n+ 1) that satisfy

ATK ′ +K ′A = 0 (25)

where

K ′ =


0 0 I 0 0

0 0 0 −I 0

I 0 0 0 0

0 −I 0 0 0

0 0 0 0 1


p

n− p

p

n− p

1

(26)

In this case, K ′T = K ′ and K ′−1 = K ′t. These relations are again sufficient
to show that the matrices of type (24) close under the Z2×Z2-graded bracket.

4 Example and conclusions

A number of examples of systems displaying a Z2 ×Z2-graded Lie symmetry
were already given in [25]. Here, let us again consider an example in the con-
text of parafermion operators. Ordinary parafermion operators satisfy certain
triple commutation relations [11, 12], and form a generating set for the Lie
algebra so(2n + 1) [15, 21, 23]. Consider now the following set of generators
from the Z2

2-GLA soq(2n + 1), determined by the last row and last column
in (24):
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f−
j =

√
2(ej,2n+1 − e2n+1,n+j),

f+
j =

√
2(e2n+1,j − en+j,2n+1), j = 1, . . . , n. (27)

As usual, ejk is the notation of a matrix of the relevant size with zeros
everywhere except a 1 on the intersection of row j and column k. In terms
of these generators, the subspaces of soq(2n + 1) consist of the following
elements:

g(0,1) = span{f±
k , k = 1, . . . , q}

g(1,0) = span{f±
k , k = q + 1, . . . , n}

g(0,0) = span{[fξ
k , f

η
l ], ξ, η = ±, k, l = 1, . . . , q and k, l = q + 1, . . . , n}

g(1,1) = span{{fξ
k , f

η
l }, ξ, η = ±, k = 1, . . . , q, l = q + 1, . . . n}.

The generators f±
i , i = 1, . . . , n consists of two sorts of parafermion operators

f±
i , i = 1, . . . , q and f±

i , i = q+1, . . . , n. Each sort is subject to the common
triple relations [23] of parafermion statistics (j, k, l = 1, . . . , q or j, k, l =
q + 1, . . . , n):

[[fξ
j , f

η
k ], f

ϵ
l ] =

1

2
(ϵ− η)2δklf

ξ
j − 1

2
(ϵ− ξ)2δjlf

η
k , ξ, η, ϵ = ± or ± 1, (28)

in terms of nested commutators only. However, the system as a whole is
very different from an ordinary set of parafermions. Indeed, the “relative
commutation relations” between the two sorts of parafermion operators are as
follows, and given only in terms of nested anticommutators (j = 1, . . . , q, k =
q + 1, . . . , n, l = 1, . . . , n or j = q + 1, . . . , n, k = 1, . . . , q, l = 1, . . . , n):

{{fξ
j , f

η
k }, f

ϵ
l } =

1

2
(ϵ− η)2δklf

ξ
j +

1

2
(ϵ− ξ)2δjlf

η
k , ξ, η, ϵ = ± or ± 1. (29)

This gives a new type of parastatistics, not considered before and worth
studying. It could describe a model consisting of two sets of parafermionic
particles, where the two sets are not independent of each other but there is
a kind of entanglement determined by (29).
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