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Abstract. Generalized quantum statistics such as para-Bose and para-Fermi statistics are
related to the basic classical Lie superalgebras B(0|n) and B,. We give a quite general definition
of “a generalized quantum statistics associated to a Lie superalgebra G”. This definition is
closely related to a certain Z-grading of G. The generalized quantum statistics is determined
by a set of root vectors (the creation and annihilation operators of the statistics) and the set of
algebraic relations for these operators. Then we give a complete classification of all generalized
quantum statistics associated to the Lie superalgebras A,, By, Cyn, Dy, G2, Fi, Fs, Er, Es,
A(m|n), B(m|n), C(n), D(m|n), G(3), F(4) and D(2,1; a).

1. Introduction

Green [1] extended the ordinary Bose and Fermi statistics to parastatistics. Both for para-Bose
and para-Fermi operators, the bilinear commutators or anticommutators for bosons and fermions
are replaced by trilinear relations. These trilinear relations are closely related to a Lie algebra
or Lie superalgebra. For example, a set of 2n para-Fermi operators ff (E==+,1=1,...,n)

[[f‘f7f]?]7fle] - %(e_n)chklff_%(6_5)26jlf]:;]7 577756::‘: or :l:lv j)kvl: 17""” (1)

generates the Lie algebra B,, = so(2n+1) [2], whereas a set of 2n para-Bose operators bf (& =+,
i=1,...,n)

{65, 0} b] = (€ — £)3jb]] + (e — m)opab, Eme=For £1; jkl=1,....n (2

considered as odd elements, generates the orthosymplectic Lie superalgebra B(0|n) =
osp(1|2n) [3]. Therefore parastatistics can be associated with representations of the Lie
superalgebras of class B [4]. Then it is natural to expect that new types of generalized quantum
statistics (GQS) can be associated with other Lie superalgebras. Note that, for conveniece, we
often consider Lie algebras as a subset of Lie superalgebras (namely as Lie superalgebras with
even elements only).

Examples of alternative types of GQS have been considered by Palev [5]-[13]. Inspired by the
examples of parastatistics and Palev’s examples we give a classification of all GQS associated
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with the Lie superalgebras A,,, By, Cy, Dy, Ga, Fy, Eg, E7, Eg, A(m|n), B(m|n), C(n), D(m|n),
G(3), F(4) and D(2,1; ). More details of the classification presented here can be found in the
series of papers [14]-[16].

GQS associated to a Lie superalgebra G is related to a Z-grading of G of the type
G=G_2®G_1PGy®G11® Gyo. Such a Z-grading is said to be of length 5 if Gio # 0; if
G192 = 0, but G411 # 0, then the Z-grading is of length 3. These Z-gradings imply that one is
dealing with Lie (super)triple systems (in the case of Lie algebras, see [17] and in the case of Lie
superalgebras, see [18]). Such systems have also been referred to as “(super)ternary algebras”
in [19]. Another mathematical structure, F-Lie algebra, also called ternary algebra for F' = 3
was introduced in [20]. However the systems considered here are in the sense of [19]. In the last
paper, examples and explicit constructions of (super)ternary algebras are given for many simple
Lie algebras and Lie superalgebras. In section VII of [19] one notes: “It would be interesting to
embark on a complete classification of ternary algebras and superternary algebras and provide
a list of all possible constructions of a given Lie (super)algebra from (super)ternary algebras.”
The results of the present paper provide such a complete classification.

In the next section we give a definition of generalized quantum statistics associated with a Lie
superalgebra G and the corresponding creation and annihilation operators. This notion is closely
related to gradings of GG, and to regular subalgebras of GG. Following the definition, we describe
the classification method. In the process of investigations Dynkin diagram techniques [21, 22]
play a crucial role. In the remaining sections of the paper, the classification results are
summarised.

2. Definition and classification method
Let G be a Lie superalgebra [4], with bracket [z, y], where (in U(G))

[2,y] = 2y — (—1)e) deWlyy,

if x and y are homogeneous (for a Lie algebra, all elements are even and have degree 0; for a Lie
superalgebra, homogeneous elements are even or odd, having degree 0 or 1).

Definition 1 Let G be a Lie superalgebra, with antilinear anti-involutive mapping w. A set of

2N root vectors xF (i =1,...,N) is called a set of creation and annihilation operators (CAQOs)
for G if:
o w(zf) =af,

e G=G 2BG_1DGyDG 1 DG9 is a Z-grading of G, with G4, = span{:vl?t, i=1...,N}
and G]‘+k = [[GJ,Gk]]

The algebraic relations R satisfied by the operators x
statistics (GQS) associated with G.

+

;. are the relations of a generalized quantum

A consequence of this definition is that G is generated by G_; and G41, i.e. by the set of
CAOs, and since G, = [Gj, Gi], it follows that

G :span{:vf, [[xf,x?]], ij=1,...,N, &n==+} (3)

The second condition in Definition 1 implies that Gy itself is a subalgebra of G spanned by
root vectors of G. So (G is a regular subalgebra containing the Cartan subalgebra H of G. By
the adjoint action, the remaining G;’s are Gp-modules. This implies the following technique in
order to obtain a complete classification of all GQS associated with G:

(i) Determine all regular subalgebras Gy of G. If not yet contained in Gy, replace Gy by Go+H.



(ii) For each regular subalgebra Gy, determine the decomposition of G into simple Gy-modules
g (k=1,2,...).
(iii) Investigate whether there exists a Z-grading of G of the form

G=G_20G_1B5Gy)d Gy & Gg, (4)

where each G; is either directly a module g; or else a sum of such modules g1 & g2 & - - -,
such that w(G4;) = G_;.

To find regular subalgebras one can use the method of deleting nodes from (extended) Dynkin
diagrams [21, 22]. The second stage is straightforward by means of representation theoretical
techniques. The third stage requires most of the work: one must try out all possible combinations
of the Gp-modules g, and see whether it is possible to obtain a grading of the type (4). In this
process, if one of the simple Gyo-modules gi is such that w(gx) = g, then it follows that this
module should be part of Gy. In other words, such a case reduces essentially to another case
with a larger regular subalgebra.

In the following sections we shall give a summary of the classification process for the simple
Lie algebras and basic classical Lie superalgebras.

3. Simple Lie algebras
3.1. The Lie algebra A,
Let G be the special linear Lie algebra si(n + 1) = A,,, consisting of traceless (n+ 1) x (n+ 1)
matrices. The Cartan subalgebra H of G is the subspace of diagonal matrices. The root vectors
of G are the elements e;, (j # k =1,...,n+ 1), where ej;, is a matrix with zeros everywhere
except a 1 on the intersection of row j and column k. The corresponding root is €; — €, in
the usual basis. The anti-involution is such that w(ej;) = ey;. The simple roots, the Dynkin
diagram and the extended Dynkin diagram of A,, are given in Table 1.

In order to find regular subalgebras of G = A,,, one should delete nodes from the Dynkin
diagram of G or from its extended Dynkin diagram.

Step 1. Delete node i from the Dynkin diagram. The corresponding diagram is the Dynkin
diagram of sl(i) @ sl(n —i+ 1), so Go = H + sl(i) ® sl(n — i+ 1). In this case, there are only
two GGo modules and we can put

G_i=span{ey; k=1,...,4, l=i+1,....,n+1}, Gy =w(G_q). (5)
Therefore si(n + 1) has the following grading:
sl(n+1) =G_1® Gy DGy, (6)

the number of creation and annihilation operators is N = i(n —i+1). Note that the cases i and
n + 1 — ¢ are isomorphic.

The most interesting cases are those with ¢ = 1 and ¢ = 2, for which we shall explicitly give
the relations R between the CAOs.

For i =1, N = n, the rank of A,,. Putting

- — + _ i —
CLj = €1,5+1, CLj = €j+1,1, j—l,...,n, (7)

the corresponding relations R read (j,k,l =1,...,n):



Table 1. Simple Lie algebras, their (extended) Dynkin diagrams with a labelling of the nodes

and the corresponding simple roots.

LA Dynkin diagram

extended Dynkin diagram

An

€n+1 — €1
0

€n—1 — €n €n — €n+l

1 2 n—1 n 1 2 n—1 n
€1 — €2
Bn 1 €2 — €3 €n—1 — €n €n
0
n—1 n
—€1 — €
C —2€; €1 — €2 €2 — €3 €n—1 — €n €n
" as—0O—O—
0 1 2 n—1 n
€1 — € €n—1 — €n
D !
n
0
€n—1+€n —€1 — €2 €n—1+ €n

€+ €3 —2€1 €1 — €3

1 2

€1+ € — 2€3 €9+ €3 — 261 €1 — €2
O

0 1 2

Go

T(e1—e2—e3—e4)

1
€2 —€3 €3—¢€y €4 g(e1—ea—e3—eq) —€1 —€y € —€3 €3 €4 €
F4 1 2 3 4 0 1 2 3 4
€3 — €4 €4 — €5 €5 — €6 €6 — €7 €7 — €8
1 2 3 4 5
€3 —€4 €4 —€ €5 —€ € €7 €7 — €3 6
o Lleg —eg—e3—eq— €5+ €6+ €7 + €3)
1 2 3 4 7 \€1 2 3 4 5 6 7 8
6 0
1
E6 5(61—62—63—64—€5+66+67+68) -€1 + €2
€2 — €3 €3 — €4 €4 — €5 €5 — €6 €6 — €7 €7 — €8 €2 — €3 €3 — €4 €4~ €5 €5 — €6 €6 — €7 €7 —€g  —€1te€g
1 2 3 4 5 6 1 2 3 4 5 6 0
7 7
E7 %(ﬂ*52*53*64*f5+55+€7+65) %(51*62*53*64*65‘#55‘#57"»65)
18
—€1 —€ € —€3 € —€ € —€ € —€ € — € 32im1G -6 -6 G-a G-6 GG G (G
1 2 3 4 5 6 0 1 2 3 4 5 6 7
8 8

Eg

%(Fl*‘2*‘3*‘4*F;+€6+F7+Fs)

1
5(61 — €2 —€3— €4 — €5+ €6 + €7 + €g)




These are the relations of the so called A-statistics [5]-[6], [9]-[11].
Fori=2 N =2(n—1), let

aZ; =e€1jy2, ay;=e€zj42,  j=1...n—1

+ + : —
a_j = €421, a_H = €5422, J = 1, e, — 1. (9)

Now the corresponding relations are (§,n,e = +; j,k,l=1,...,n—1):

[ag'j,ajz'k] = lag;, a;k] =0,

lagaZel =0, G#Fk,

[aF;,a7,) = lal; a7y), 7k

[aijva:j] = a3y, aZyl, (10)
[ai—j?ajrj] = a2y, aZyl,

[[agj, Q) at] = 5,765jkagrl + 5§n5kla$,

llag;, a), ag] = —0¢cdjna, — dendjiag,.

These relations are already more complicated than (8). But they are still defining relations for
the Lie algebra A,,.

Step 2. Delete node ¢ and j from the Dynkin diagram. By the symmetry of the Dynkin

diagram, it is sufficient to comnsider 1 < i < L%J and i < j < n+1—1i We have
Go = H+sl(i)®sl(j —i) @ sl(n+1— 7). In this case, there are six simple Go-modules.

All the possible combinations of these modules give rise to gradings of the form
Sl(’n + 1) =G oG 19GyD G+1 D G+2.

There are essentially three different ways in which these Gp-modules can be combined. To
characterize these three cases, it is sufficient to give only G_1:

G_1 = span{ep,ep; k=1,...,4, l=i+1,...,5, p=7+1,...,n+1}, (11)
with N=(j —9)(n+1—j+1);

G_1 = spanfep,ep; k=1,...,4, l=i+1,...,5, p=j+1,...,n+1}, (12)
with N =i(n+ 1 —1);

G_1 = span{ep,ep; k=1,....4, p=i+1,...,5, l=7+1,...,n+1}, (13)

with N = j(n+1—j).

It turns out that the sets of CAOs corresponding to (12) and (13) are isomorphic to (11), so it
is sufficient to consider only (11). Each case of (11) with 1 < i < [F]andi<j<n+1—1i
gives rise to a distinct GQS. For reasons explained earlier, we shall give the corresponding set
of relations explicitly only for small N. In this case, it is interesting to give R for j —i = 1,

because then the number of creation or annihilation operators is N = n. One can label the
CAQOs as follows:

- _ + _ — .
ap = €kit1, A = €1k, k=1,...,1;
- + _ o
A = €41 k+1; Qp = Ckt1i+1, k=i4+1,...,n. (14)

Using

0 if k=1,....,i
<k>:{ 1 if k=i+1,....n (15)



the quadratic and triple relations read:
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“]1=0, k=1,....i, l=i+1,...,n, (16)
—1)O+Mgat 4+ (1) O, 0 k=1, ior kil=4i+1,...,n,

— ()0 an — (~1) O e k=1, iorkl=i+1,...,n,
Ok 4 imal, k=1,...,i, l=i+1,...,n,

0, (== k,l,m=1,...,n).

Q
| w4
e 9
=

u@
1
v@
St
1

S

Q\
4

I

S S B
@m IS
Il

The existence of the set of CAOs (14) is pointed out in [5] as a possible example. The
relations (16) with n = 2m and i = m are the commutation relations of the so called causal
A-statistics investigated in [8].

Step 3. If we delete 3 or more nodes from the Dynkin diagram, the resulting Z-gradings of
sl(n 4 1) are no longer of the form si(n+ 1) = G_2 ® G_1 ® Gy ® G4+1 ® G2, but there would
be non-zero G; with |i| > 2, so these cases are not relevant for our classification.

Step 4. Next, we move on to the extended Dynkin diagram of G. If we delete node i from the
extended Dynkin diagram, then remaining diagram is again of type A,, so Gog = G, and there
are no CAOs.

Step 5. If we delete node ¢ and j from the extended Dynkin diagram (0 <i < j < n+1), then
siin+1)=G_18Go® Gy with Go=H +sl(j —i)®sl(n—j+i+1), and

G_i=span{ey; k=i+1...,5, l#i+1,...,j}

The number of annihilation operators is N = (j —i)(n+ 1 —j +1). It is not difficult to see that
all these cases are isomorphic to those of Step 1. This can also be deduced from the symmetry
of the Dynkin diagram.

Step 6. If we delete nodes i, j and k from the extended Dynkin diagram (i < j < k), then the
corresponding Z-gradings are of the form

sl(n + 1) =G 929G 1DGyD G+1 (&) G+2.

All the corresponding CAOs, however, are isomorphic to those of Step 2 (which can again be
seen from the remaining Dynkin diagram).
Step 7. If we delete 4 or more nodes from the extended Dynkin diagram, the corresponding

Z-grading of sl(n + 1) has no longer the required properties (i.e. there are non-zero subspaces
G, with |i| > 2).

3.2. The Lie algebras B,,, C, and D,
G = so(2n + 1) = B,, is the subalgebra of sl(2n + 1) consisting of matrices of the form:

a b ¢
d —a e |, (17)
—et =t 0

where @ is any (n X m)-matrix, b and d are antisymmetric (n x n)-matrices, and ¢ and e are
(n x 1)-matrices. The Cartan subalgebra H of G is again the subspace of diagonal matrices.



The root vectors and corresponding roots of G are given by:

€jk — Cktnj+n € — €k, jFk=1,...,n,
€jk+n — Ckjt+n < € T €k, i<k=1,...,n,
€jtnk — Cktnyj < € — €k, j<k=1,...,n,
€j2n+1 — €2n+l,54+n < €5, j=1...,n,
en+j2n+1 — €2n+15 < —€j, ji=1...,n.

G = sp(2n) = C), is the subalgebra of sl(2n) consisting of matrices of the form:

(&) a9

where a is any (nxn)-matrix, and b and ¢ are symmetric (nxn)-matrices. The Cartan subalgebra
H consist of the diagonal matrices, and the root vectors and corresponding roots of G are:

€ik — €k+n,j+n T €5 — €k, .7 7é k= 17 L
6j,k+n+€k:,j+n € +€/€7 j S k= 17"'7”5
€jtnk T €ktnj < —€j — €k, J<k=1,...,n

G = so(2n) = D,, is the subalgebra of sl(2n) consisting of matrices of the form:

(&%) a9

where a is any (n x n)-matrix, and b and ¢ are antisymmetric (n x n)-matrices. The Cartan
subalgebra H consist of the diagonal matrices, and the root vectors and corresponding roots of
G are:

€ik — €k4n,j4n T € — €k, .7 ;é k= 17"‘)”7
€jk+n — Ckjt+n < € T €k, J<k=1,...,n,
€jtnk — €k+n,j > —€j — €k, j < k=1,...,n.

The simple roots, Dynkin diagrams and extended Dynkin diagrams of B,, C,, and D,, are given
in Table 1. The anti-involution is such that w(e;jr) = ex;. Just as for A,, we have performed the
process of deleting nodes from the Dynkin diagrams and from the extended Dynkin diagrams of
B, C, and D,,. The results are summarized in Table 2.

3.3. The exceptional Lie algebras
The Lie algebra G4 of rank 2 has dimension 14. In terms of the orthonormal vectors €i, €s, €3
such that €; 4+ €2 + €3 = 0, the root system is given by

A={e—¢€j, ei+€ —2 (1<i#j#k<3)} (20)
The simple root system is
H:{a1:€2+63—261, 012:61—62} (21)

and the corresponding Dynkin diagram and extended Dynkin diagram are given in Table 1. The
process described in the previous section, deleting nodes from the (extended) Dynkin diagram,
leads to the results in Table 2.



Table 2. Summary of the classification for simple Lie algebras: all non-isomorphic GQS are
given. For each GQS, we list: the subalgebra Gy (each Gy contains the complete Cartan
subalgebra H, so we only list the remaining part of Gy = H + ---); the length [ of the Z-
grading (3 or 5), dim Gy = dim G_;, which is also the number N of creation and annihilation
operators.

Lie Go=H+ ¢ | dim Gy =N
algebra
A, sl(i) @ slin—i+1),i < [2H] 3i(n+1—1)
sl(i) Dsl(j —i)@slin+1—7), (i< |5]i<j<n4+1-4) | 5| (G—i)(n+1—j+1i)
B, so(2n — 1) 3| 2n—-1
sl(i) @ so(2(n—1)+1),(2<i<n) 51 2i(n—1)+1
Cp sl(i) ®sp(2(n—1i)),(1<i<n-—1) 3| 2i(n—1)
sl(n) 3 w
D, so(2n — 2) 312(n-1)
sl(i) @ so(2(n—1)),(2<i<n-—3) 5| 2i(n —1)
sl(n —2) @ sl(2) @ sl(2) 51| 4(n—2)
sl(n—1) 51 2(n—1)and @
sl(n) 3 n(n;l)
G2 Sl(?) 5 4
Fy sp(6) 51| 14
so(7) 518
Es s0(10) 3|16
sl(2) @ si(5) 5 20
sl(6) 5 20
s0(8) 5| 16
E. Ee 327
s1(2) @ so(10) 5| 32
so(12) 5| 32
si(7) 5 35
Es by 5 | 56
so(14) 5| 64

Let us next consider the Lie algebra Fjy, of rank 4 and dimension 52. In terms of the
orthonormal vectors €1, €9, €3, €4 the root system is given by

1
A= {:I:ei :|:6j (1 <1 75] < 4)7 :|:6j (1 < ] < 4)7 5(:&61 :|:62 :|:63 :|:64)}. (22)

The simple root system is

1
={a; =€ —€3, aa =€3— €4, 3 = €4, Qg = 5(61 —€ —€3—€q)} (23)

and the corresponding Dynkin diagram and the extended Dynkin diagram are given in Table 1.
We have considered now the various ways of deleting nodes from these diagrams, and investigate
whether they give rise to Z-gradings of the type (4) giving the result in Table 2.

For the remaining exceptional Lie algebras Eg, Fy and Ejg, our labeling of simple roots is
again the usual one. But our choice of (simple) roots in terms of vectors ¢; is slightly different.
For Eg, our choice is essentially the same as in [23, Table 1], except that we work with an
independent basis ¢; in R® (and not a redundant basis in R?). The roots for Eg are the same
as in [24] (but in this last textbook the choice of simple roots is different). For E7 and Eg it is



convenient for us to take the same root space as for Eg. The simple roots of E7 are then those
of Eg with the first one deleted, and the simple roots of Fg are then those of E7 with the first
one deleted.

The Lie algebra Fg of rank 6 has dimension 78. We will use the following root system of Eg.
Consider the 8-dimensional real vector space R® with orthonormal basis vectors ¢; (i = 1,...,8).
The roots of Eg are elements of the 6-dimensional subspace V of R® consisting of those elements
Z§:1 c;€; with ¢1 + ¢ = 0 and Z?:g ¢; = 0. A set of simple roots of Eg is then given by the
elements

. 1
a; = €42 — €13 (i=1,...,5), a6=5(61—62—63—64—65+66+67+68). (24)

All 72 nonzero roots are given by

te—¢), (1<i#j<20r3<i#j<8)
8 8

2
%(Z(—l)‘“ei), (a0, Yai=1, > a=3). (25)
=1 =3

1=1

The corresponding Dynkin diagram and the extended Dynkin diagram are given in Table 1.
The roots of E7 are elements of the 7-dimensional subspace V' consisting of elements Z§=1 Ci€;

with Zle ¢i = 0. A set of simple roots of E7 consists of the six simple roots «; (i = 1,...,6)
of Eg plus the extra root
€9 — €3. (26)

The corresponding Dynkin diagram and the extended Dynkin diagram are given in Table 1.
By construction, the Eg subsystem of E7 is evident. The nonzero roots of E7 consist of

:i:(ei—ej), (1 <1<y SS),
8

%(Z(—l)aiei), (6 (0.1} Y0 = 4) (27)

i=1

Note that the 72 nonzero roots of Eg are indeed part of the 126 nonzero roots (27).
In terms of the orthonormal vectors €;, ¢ = 1,...,8 the root system of Fg is given by

te; e, (1<i<j<8);

8
1
3 Z &ei, & = £1 and the number of §; = 41 is even. (28)
i=1
A set of simple roots of Eg consists of the seven simple roots «; (i = 1,...,7) of Ey plus the
extra root
—€1 — €9. (29)

The corresponding Dynkin diagram and the extended Dynkin diagram are given in Table 1,
whereas summary of the GQSs associated with the Lie algebras Fg, E7 and Eg are presented in
Table 2.

4. The basic classical Lie superalgebras

Let us note first that for the basic classical Lie superalgebras, the description by means of
a Dynkin diagram is not unique: besides the so-called distinguished Dynkin diagram, other
non-equivalent Dynkin diagrams exist [4], [25]. This feature makes it harder to obtain a



complete classification of all generalized quantum systems since one should repeat the process of
investigation for all non distinguished Dynkin diagrams and their extensions. In Table 3 we give
all (extended) Dynkin diagrams of basic classical Lie superalgebras, relevant for the classification
process. All GQS associated with the basic classical Lie superalgebras are listed in Table 4.

Table 3. Basic classical Lie superalgebras, the (extended) Dynkin diagrams, relevant for the
classification process, with a labeling of the nodes and the corresponding simple roots.

LSA Dynkin diagram and extended Dynkin diagram
€1 — € €2 — €3 €m — €mt+1 €mt1—01 O61—02  Op—Ony1
A(min) O—O0—---- O—--—0
1 2 m m+1 m+2 m+n+1
Ony1 — €1

€1 — €y € €m+1 — 01 01— 62
,,,,, O—---
1 2 m m—+1 m+ 2 m+n+1

« (each dot can be white or gray)

61 - 52 62 - 53 67171 - 611 5n — €] €1 — €2 €m—1— €Em €m
B(mln) O—O0— - —O0—®—O0—--- —r—0
1 2 n—1 n n+1 m+n—1m+n
=26, 61— 2 — 53 Opn—1—0n Op—€1 €1 — €2 €Em—1 — €m €m
0 1 2 n—1 n n+1 m+n—1m+n
B(O]n) 0y — 02 02— 03 Op—1 — On On —26; 81— 6y 0y — 63 On1 — O 5,
( ) ( ) ,,,,, < ):m < :Z >407 ,,,,, < ):D
1 2 n—1 n 0 1 2 n—1 n

D(m|n)

1 n—1 n




—201 01 — 0o Op—1—0n o — €1
@) O—-----
0 1 n—1 n
m-+n
€m—1 1+ €m
20,
: T T : i@ (Each dot can be white or gray)
1 2 m+n—1m+n
C’(n) €— 01
1
61 - 52 671—2 - (sn—l an—l
fffff —O—=0
. - 2 n—1 n
€—01 01 — 02 Op—2 — On—1 2051
&—O0—----- — 0
1 2 n—1 n —€— 01
262
02
€1 — €2 — €3
1
3
O
D(2,1;a) 2e3
0+ e €9 —€y+€3 —20 0+ €1 €9 —€o2 + €3
& O O= O
G(3) 1 2 3 0 1 2 3
-0 — €1 0—€3 —€3+e€3
20)
1 2 3
-0 — €1 0—€3 —€3+e€3
& >O €1 — (5
1 2 3 0
—€x+€3 —0+ € 1) €1 —€3 —€x+€3 —0+ €9 1)
O—xR——@ O———O—x—@
1 2 3 0 1 2 3
%(—61—62—634—5) €3 €9 — €3 €1 — €2
Q—X—O——O
F(4) 1 2 3 4
1) %(— Z?:l € + 6) €3 €3 — €3 €1 — €2
O= X——O—0O
0 1 2 3 4
—2(e1+ €2 —e3—0)
s(e1+e2+e3—0) €y —€3 €1 — €
&= O
1 2 3 4




Table 4. Summary of the classification for basic classical Lie superalgebras: all non-isomorphic
GQS are given. For each GQS, we list: the subalgebra G (each G contains the complete Cartan

subalgebra H, so we only list the remaining part of Go = H + - -

-); the length ¢ of the Z-grading;

dim G_; = dim G 41, which is also the number N of creation or annihilation operators

A(mln) | sl(k[l) @ sl(plq) 3| (k+Dp+9)
(k+p=m+1,l+qg=n+1,
E+1#0,p+q+#0)
sl(k|l) @ sl(plq) @ si(r]s) 50(k+D)p+qg+r+s)
(k+p+r=m+1, 50 (p+q)k+1+7+3)
l+q+s=n+1, 50 (+s)k+1l+p+q)
k+1#0,p+q#0,7r+s#0)
B(m|n) sl(k|l) ® B(m — kln —1) 51 (kE+0)(2m—2k+2n—-20+1),
(k=0,...,m;1=0,...,n;
(k,1) ¢ {(0,0), (1,0)}
B(m —1|n) [(k, 1) = (1,0)] 3|2m+2n—1
B(0|n) sl(i) @ B(0|n — 1) 51 4(2n—2i+1)
(i=1,...,n)
D(m|n) sl(k|l) @ D(m — k|n —1) 512k+)(m+n—-k-=1),
(k=0,1,...,m;
l=0,1,...,m
(/ﬂ, l) ¢ {(07 0)’ (17 )7 (m - 17”)7 (m, TL)})
D(m —1|n) (k,1) = (1,0)] 312m+n-—1)
si(mln) (k1) = [m,n)] 3| (m+n)m+n+1)/2-m
sl(m — 1Jn) [(k,]) = (m —1,n)] 5/ (m+n)(m+n+1)/2—m
sl(m — 1|n) [(k,]) = (m —1,n)] 51 2(m+n—1)
C(n) sli(k|ll)® D(1 —kln—1-1) 512k+0)n—Fk—1)
(k=01;1=1,....,n—2)
Coon [05D) = (1,0)] 3| 2n-1)
sl(1ln —1) [(k,1) =(1,n—1)] 3| nn+1)/2-1
sl(n—1) [(k,]) = (0,n—1)] 5| nn+1)/2-1
sl(n—1) [(k,]) =(0,n—1)] 512(n-1)
D(2,1;a) | sl(2) & sl(2) 514
sl(1]2) 314
si(1]1) 514
G3) Gs 517
sl(1]2) 517
si(3]1) 318
0sp(3|2) 518
sl(3) @ osp(1]2) 319
F(4) s0(7) 5|8
sl(1)2) @ sl(2) 5| 10
osp(2|4) 3|10
sl(2) @ so(5) 518
D(2,1;-1/3) 5110
sl(3]1) 518
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