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Abstract T.D. Palev laid the foundations of the investigation of Wigner quantum
systems through representation theory of Lie superalgebras. His work has been very
influential, in particular on my own research. It is quite remarkable that the study
of Wigner quantum systems has had some impact on the development of Lie super-
algebra representations. In this review paper, I will present the method of Wigner
quantization and give a short overview of systems (Hamiltonians) that have recently
been treated in the context of Wigner quantization. Most attention will go to a sys-
tem for which the quantization conditions naturally lead torepresentations of the
Lie superalgebraosp(1|2n). I shall also present some recent work in collaboration
with G. Regniers, where generating functions techniques have been used in order
to describe the energy and angular momentum contents of 3-dimensional Wigner
quantum oscillators.

1 Introduction and some history

The main ideas of Wigner quantization go back to a short paperthat Wigner pub-
lished in 1950 [36]. Due to the fact that his method leads to algebraic relations for
operators which are in general very difficult to solve, it took many years before
his work was continued. About 30 years later, when Lie superalgebra theory was
developed, it was T.D. Palev who realized that particular Lie superalgebra genera-
tors satisfy the algebraic relations appearing in the Wigner quantization of certain
systems. This was the real start of Wigner quantization, a program to which Palev
contributed much of his scientific career. He also inspired many other scientists to
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work on the program, including myself. It has been a pleasurefor me to collaborate
with Tchavdar Palev and his former student Neli Stoilova, and to contribute to the
theory.

In this review paper, I will give an introduction to the topic, first by presenting
Wigner’s original example in a contemporary context. In section 2, Palev’s gen-
eral method of Wigner quantization is briefly presented, andthen we give a short
overview of his contributions to the field, and of some other papers on Wigner quan-
tization. Our purpose is to include also some recent work, and therefore the Wigner
quantization of then-dimensional non-isotropic oscillator is discussed in section 3.
This problem stimulated the search for infinite-dimensional unitary representations
of the Lie superalgebraosp(1|2n); a class of these representations were constructed
only a few years ago. Using these representations, we present some interesting as-
pects of this Wigner quantum system in section 3, and its angular momentum con-
tents in section 4. There is no new material in this paper: we only present and sum-
marize some of the main ideas of Wigner quantization and somerecent contribu-
tions.

In his seminal paper [36], Wigner asked the question: “Do theequations of mo-
tion determine the quantum mechanical commutation relations?” It was known at
that time that, for a class of Hamiltonians written as analytic functions of the gen-
eralized position and momentum operators ˆqi and p̂i (i = 1, . . . ,n), the Heisenberg
equations of motion together with the canonical commutation relations (CCRs) im-
ply formally Hamilton’s equations. Vice versa, starting from the operator form of
Hamilton’s equations and using the CCRs, one can derive the Heisenberg equations.
Since Wigner believed that the Heisenberg equations of motion and the operator
form of Hamilton’s classical equations of motion have a deeper physical meaning
than the mathematically imposed CCRs, he wondered whether requiring the com-
patibility of the Heisenberg equations with Hamilton’s equations would automati-
cally lead to the CCRs. Wigner investigated this question for the Hamiltonian of the
one-dimensional harmonic oscillator, given by

Ĥ =
1
2
( p̂2+ q̂2) (1)

under the conventionm = ω = h̄ = 1. The Heisenberg equations are:

˙̂q = i[Ĥ, q̂], ˙̂p = i[Ĥ, p̂], (2)

and the operator form of Hamilton’s equations read:

˙̂q = op(
∂H
∂ p

) = p̂, ˙̂p =−op(
∂H
∂q

) =−q̂. (3)

So for this example the compatibility conditions become:

p̂ = i[
1
2
( p̂2+ q̂2), q̂], −q̂ = i[

1
2
( p̂2+ q̂2), p̂]. (4)
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The goal is to find (self-adjoint) operators ˆp, q̂ satisfying these equations, without
making any assumptions about the commutation relation between ˆp and q̂. Other-
wise said, are there other operator solutions to (4) besidesthe canonical solution
where[q̂, p̂] = i? Wigner found that indeed there are other solutions. In order to de-
scribe these, let us use the language of Lie superalgebras (of course, Wigner used a
different method, as Lie superalgebras were not known at that time).

Rewriting the operators ˆq and p̂ by the linear combinations

b+ =
q̂− ip̂√

2
, b− =

q̂+ ip̂√
2

, (5)

the conditions (4) are equivalent to the two relations

[{b+,b−},b±] =±2b±. (6)

Note that these relations involve both commutators and anti-commutators. This is
why it will be helpful to use Lie superalgebras. In fact, it isknown that (6), the
compatibility conditions to solve, are exactly the definingrelations of the Lie su-
peralgebraosp(1|2) in terms of two odd generatorsb+, b− [5]. Moreover, it should
hold that ˆp† = p̂ andq̂† = q̂, or rewritten in terms of the new operators:(b±)† = b∓.
Thus, we are led to the unitary (or unitarizable) representations of osp(1|2) i.e.
Hilbert space representations in which(b±)† = b∓ holds.

The unitary irreducible representations ofosp(1|2)were classified by Hughes [8];
see also [31] for a more comprehensive method. The unitary irreducible represen-
tations are labelled by a positive real numberp (p/2 is the lowest weight); the
orthonormal basis vectors are|n〉, with n ≥ 0. The action ofb+ andb− is given by:

b+|n〉=√
νn+1 |n+1〉, b−|n〉=√

νn |n−1〉; νn = n+(p−1)(1− (−1)n)/2.
(7)

Using (5) and (7), one can deduce:

Ĥ|n〉= 1
2
{b+,b−}|n〉= (n+

p
2
)|n〉, (8)

[q̂, p̂]|2n〉= ip|2n〉, [q̂, p̂]|2n+1〉= i(2− p)|2n+1〉. (9)

From this it is clear that only the casep = 1 corresponds to the CCRs. All other
solutions (i.e. all other positive values ofp) are non-canonical. Wigner concluded
that requiring the equivalence of Hamilton’s and Heisenberg’s equations is a very
natural approach that may lead to other quantizations besides the canonical one; and
the canonical quantization solution appears as one of the more general solutions.

In the example of Wigner, the apparent difference with the canonical case is
the shift in energy, as is clear from (8). It is interesting tohave also a look at the
wave functions for these non-canonical solutions. This wasin fact not performed by
Wigner, but only much later, when the above operatorsb+ andb− were studied as
“parabosons” [22]. An alternative way of finding these wave functions is described
in the Appendix of [9]. This is obtained by computing the (formal) eigenvectors of
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q̂ = (b++b−)/
√

2 in the above Hilbert space. Writing these formal eigenvectors of
q̂ as

v(q) =
∞

∑
n=0

Ψ (p)
n (q) |n〉, (10)

and expressing ˆqv(q) = qv(q) by means of the action (7) yields a set of recurrence

relation for the coefficientsΨ (p)
n (q). The solution leads to the conclusion that the

spectrum of ˆq is R, and that

Ψ (p)
2n (x) = (−1)n

√

n!
Γ (n+ p/2)

|x|(p−1)/2 e−x2/2L(p/2−1)
n (x2),

Ψ (p)
2n+1(x) = (−1)n

√

n!
Γ (n+ p/2+1)

|x|(p−1)/2 e−x2/2xL(p/2)
n (x2), (11)

in terms of generalized Laguerre polynomials. These coefficientsΨ (p)
n (q) have an

interpretation as the position wave functions of the Wigneroscillator. Alternatively,
one can work in the position representation, where the operator q̂ is still represented
by “multiplication by x”, and the operator ˆp has a realization as−i d

dx + i p−1
2x R,

whereR f (x) = f (−x) is a reflection operator [23, Chapter 23]. Using this real-
ization the time-independent Schrödinger equation can be solved, also yielding the
expressions (11) [22]. Forp = 1, the Laguerre polynomials reduce to Hermite poly-
nomials, and one gets the commonly known wave functions. It is interesting to com-
pare the plots of the wave functions forp 6= 1 with those of the canonical casep= 1,
see Figure 1.
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Fig. 1 Plots of the wave functionsΨ (p)
n (x). The three figures on the left are forp = 1 and corre-

spond to the canonical case; the figures in the middle are forp = 0.6, and three figures on the right
are forp = 4. In each case, we plot the wave functions forn = 0,1,2.
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2 Wigner quantum systems and Palev’s contributions

Wigner’s work on this alternative quantization method for the one-dimensional os-
cillator did not receive much attention originally. This was mainly because of the
mathematical difficulties when trying to apply it to a Hamiltonian different from (1).
In fact, trying to solve Wigner’s compatibility conditionsfor other systems leads to
complicated operator relations, for which often no generalsolutions are known. By
1980 however, Lie superalgebra theory and their representations became well under-
stood [10, 11]. T.D. Palev had worked with Lie superalgebras, mainly in the context
of parabosons and parafermions [24]. He was the first to realize the importance of
Lie superalgebra representations in the context of Wigner quantization. It is also
to him that we owe the term “Wigner quantum system” or “Wignerquantization”.
In one of his first papers on the topic [25], however, he used the term “Dynami-
cal quantization”, referring to the fact that quantizationfollows from compatibility
conditions related to the equations of motion.

Let us briefly summarize the main principles of Wigner quantization, as devel-
oped by Palev. Consider a quantum system withn degrees of freedom and a Hamil-
tonian of the form

Ĥ =
n

∑
j=1

p̂2
j

2m j
+V (q̂1, . . . , q̂n). (12)

In Wigner quantization, one keeps all axioms of quantum mechanics, only the axiom
on the CCRs is replaced. The canonical commutation relations

[q̂k, q̂l ] = [ p̂k, p̂l ] = 0, [q̂k, p̂l ] = ih̄δkl (13)

arereplaced by a different set of operator relations between position and momentum
operators. This set consists of the (operator) Compatibility Conditions (CC) between
the Heisenberg equations and the operator form of Hamilton’s equations.

So, in short, Wigner quantization for a system described by (12) consists of the
following three steps:

1. Rewrite the HamiltonianĤ appropriately in terms of operators ˆpk and q̂k (in
some symmetric form, not assuming any commutativity between the operators).

2. Determine the Compatibility Conditions (CC). This givesrise to a (non-linear)
set of operator relations for the ˆpk and q̂k. The⋆-algebraA is then defined as
an algebra with generators ˆpk andq̂k and defining relations (CC), subject to the
⋆-conditions ˆp⋆k = p̂k andq̂⋆k = q̂k.

3. Find⋆-representations (unitary representations) ofA .

Very often, it is difficult to identifyA as a known algebra, and hence it is too diffi-
cult to find all⋆-representations. So instead of trying to work withA , one looks for
aknown algebraB whose generators also satisfy (CC). Then it remains to construct
the⋆-representations ofB and to determine physical properties (energy, spectrum
of observables,. . .) in these representations. This gives rise to a subset of solutions.
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Note that this approach leads quite naturally tonon-commutative coordinate op-
erators, without any forced or external input as is sometimes done inother ap-
proaches of “non-commutative quantum mechanics”.

In the first main paper on Wigner quantization [25], Palev investigated two par-
ticles interacting via a harmonic potential. After removalof the center of mass,
the remaining Hamiltonian is essentially that of the 3-dimensional isotropic har-
monic oscillator (HO). Palev investigated the CCs, and found that these were sat-
isfied by certain generators of the Lie superalgebragl(1|3). In other words, he
choseB = gl(1|3). Then, he went on to study properties in a particular class of
⋆-representations, namely the so-called Fock space representations. A remarkable
feature here is the finite-dimensionality of these⋆-representations, implying that all
physical operators have adiscrete spectrum. In the same year, Palev showed [26] that
the CCs for then-dimensional HO are satisfied by generators of the orthosymplec-
tic Lie superalgebraosp(1|2n); however, no representations were considered. Later,
Kamupingene, Palev and Tsaneva [12] considered in more detail the 2-dimensional
HO with B = sl(1|2). Interesting physical properties were obtained by Palev and
Stoilova for theosp(3|2) solutions of the 3-dimensional HO. Here, one could
make use of a classification of the⋆-representations ofosp(3|2) [35]. Palev and
Stoilova [27, 28] later compared the solutions of the 3-dimensional isotropic Wigner
HO provided bysl(1|3), osp(1|6) andosp(3|2). The postulates of Wigner quantum
systems were more carefully described in [29]. In this paper, the n-dimensional
isotropic HO is revisited, and for the first time angular momentum operators are
discussed (forn = 3N). In a review paper, Palev and Stoilova [30] describe the al-
gebraic solutions for then-particle 3-dimensional isotropic HO in terms of the Lie
superalgebrassl(1|3n), osp(1|6n) andsl(3|n). Further physical properties for the
sl(1|3) or sl(1|3n) solutions, in particular related to the discrete spacial structure,
were investigated in [14, 15]. Then, a few years ago, Stoilova and Van der Jeugt [34]
made a quite general classification of Lie superalgebra solutions of the CCs for the
n-dimensional isotropic HO.

Lievenset al [16, 17] applied Wigner quantization to more complicated Hamil-
tonians, such as a linear chain of coupled particles. They show how this reduces to
the Hamiltonian for ann-dimensionalnon-isotropic HO, and obtain new solutions
in terms ofgl(1|n).

There appeared also a number of papers related to the fundamentals of Wigner
quantization, or related algebraic quantizations. We mention here in particular the
work of Man’ko, Marmo, Zaccaria and Sudarshan [21], Blasiak, Horzela, Kapus-
cik [13, 7, 4], and that of Atakishiyev, Wolf and collaborators [1, 2, 3] in the context
of finite oscillator models.

More recently, Regniers and Van der Jeugt [32] investigatedone-dimensional
Hamiltonians with continuous energy spectra as Wigner quantum systems.

All these papers make it clear that Wigner quantization has given rise to challeng-
ing mathematical problems, and to interesting physical properties. Wigner quanti-
zation has also raised questions in Lie superalgebra representation theory, and stim-
ulated further research into specific classes of Lie superalgebra representations.
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In the following section we shall review the treatment of then-dimensional non-
isotropic harmonic oscillator in Wigner quantization as our main example. This has
given rise to the study of a new class of representations of the Lie superalgebra
osp(1|2n).

3 Main example: the n-dimensional non-isotropic harmonic
oscillator

For this example, we drop the previous convention withm=ω = h̄= 1, and consider
then-dimensional non-isotropic harmonic oscillator with Hamiltonian:

Ĥ =
1

2m

n

∑
j=1

p̂2
j +

m
2

n

∑
j=1

ω2
j q̂2

j , (14)

wherem stands for the mass of the oscillator andω j for the frequency in direc-
tion j. Let us construct the compatibility conditions CC. Clearly, the operator form
of Hamilton’s equations reads:

˙̂q j = op(
∂H
∂ p j

) =
1
m

p̂ j, ˙̂p j =−op(
∂H
∂q j

) =−mω2
j q̂ j, j = 1, . . . ,n. (15)

The Heisenberg equations are:

˙̂q j =
i
h̄
[Ĥ, q̂ j], ˙̂p j =

i
h̄
[Ĥ, p̂ j], j = 1, . . . ,n. (16)

So the compatibility conditions become:

[Ĥ, q̂ j] =−i
h̄
m

p̂ j, [Ĥ, p̂ j] = ih̄mω2
j q̂ j, j = 1, . . . ,n, (17)

whereĤ is given by (14).
It is useful to write these compatibility conditions in a different form. For this

purpose, introduce the following linear combinations of the operators ˆq j and p̂ j:

a∓j =

√

mω j

2h̄
q̂ j ±

i
√

2mh̄ω j
p̂ j, j = 1, . . . ,n. (18)

Now the expression of the Hamiltonian becomes

Ĥ =
h̄
2

n

∑
j=1

ω j(a
+
j a−j +a−j a+j ) =

h̄
2

n

∑
j=1

ω j{a+j ,a
−
j }. (19)

The new form of the compatibility conditions can be written as:
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[ n

∑
j=1

ω j{a+j ,a
−
j },a±k

]

=±2ωka±k , k = 1, . . . ,n. (20)

In terms of the notation of the previous section,A is the⋆-algebra generated
by 2n generatorsa±j ( j = 1, . . . ,n) with ⋆-relations(a±j )

⋆ = a∓j and with defining
relations (20).

Quite surprisingly, the structure ofA and its unitary Hilbert space representa-
tions is known completely only forn = 1 (in which case it is just Wigner’s example
of section 1). Forn > 1, only some classes of unitary Hilbert space representations
are known.

We shall now describe an algebraic solution for the conditions (20), in other
words we shall determine an algebraB whose generators also satisfy (20) (but for
which (20) are not the defining relations). This is provided by the orthosymplectic
Lie superalgebraosp(1|2n). In fact, it were Ganchev and Palev [5] who discovered
– in the context of parabosons – thatosp(1|2n) can be defined as an algebra with 2n
generatorsb±j subject to the following triple relations:

[{bξ
j ,b

η
k },bε

l ] = (ε −ξ )δ jlb
η
k +(ε −η)δklb

ξ
j , (21)

where j,k, l ∈ {1, . . . ,n}, andη ,ε,ξ ∈ {+,−} (to be interpreted as+1 or−1 in al-
gebraic expressions such asε −ξ ). It is indeed very easy to verify that the operators

a−j = b−j , a+j = b+j (22)

satisfy the compatibility conditions (20). Otherwise said, the triple relations (21)
imply the relations (20). Furthermore, the⋆-relations for the generators ofA imply
the following⋆-relations for theosp(1|2n) generators:

(b±j )
† = b∓j . (23)

So we are led to investigating unitary representation ofosp(1|2n) for these⋆-
conditions.

In order to study theosp(1|2n) solutions, it will be useful to identify some sub-
algebras ofosp(1|2n). First of all, note that due to the triple relations (21), a basis
of osp(1|2n) is given by the 2n odd elementsb±j and by the 2n2+ n even elements

{bξ
j ,b

η
k } ( j,k ∈ {1, . . . ,n}; η ,ξ ∈ {+,−}). The even subalgebra ofosp(1|2n) is the

symplectic Lie algebrasp(2n), so a basis ofsp(2n) consists of all even elements

{bξ
j ,b

η
k } ( j,k ∈ {1, . . . ,n}; η ,ξ ∈ {+,−}). A subalgebra ofsp(2n) is the general

linear Lie algebragl(n), whose standard basis is given by then2 even elements
1
2{b+j ,b

−
k } ( j,k ∈ {1, . . . ,n}). Finally, the Cartan subalgebrah of osp(1|2n) is that

of its even subalgebrasp(2n). A basis ofh is given by then elementsh j =
1
2{b−j ,b

+
j }

( j = 1, . . . ,n). So we have, in this realization ofosp(1|2n), a natural chain of subal-
gebras:

osp(1|2n)⊃ sp(2n)⊃ gl(n)⊃ h. (24)
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Note that for this algebraic solution the Hamiltonian is written as

Ĥ =
h̄
2

n

∑
j=1

ω j{a−j ,a
+
j }=

h̄
2

n

∑
j=1

ω j{b−j ,b
+
j }= h̄

n

∑
j=1

ω jh j, (25)

so it is an element of the Cartan subalgebra. This will facilitate the problem of
determining the spectrum of̂H.

It should be mentioned that a second algebraic solution of the conditions (20) can
be given by means of generators of the Lie superalgebragl(1|n) [19]. This class of
solutions also gives rise to many interesting properties, but these cannot be presented
in this short review.

The algebraicosp(1|2n) solution to (20) is easy to describe. In fact, it was already
known since 1982 for the simpler isotropic case withω1 = · · ·= ωn = ω [26]. The
reason why it was not studied further was because no class of unitary representations
was known (for the⋆-condition (23)). This changed in 2008, when Lievenset al
[18] managed to construct a class of unitary representations. These are the infinite-
dimensional lowest weight representationsV (p) of osp(1|2n) with lowest weight
( p

2 , . . . ,
p
2). For these representations, the authors obtained an appropriate Gelfand-

Zetlin basis, explicit actions of the generators on the basis vectors, and a character
formula [18]. For these results, the subalgebra chain (24) plays an important role,
in particular the decomposition with respect to thegl(n) subalgebra. Irreducible
characters ofgl(n) are given as a Schur functionsλ (x1, . . . ,xn), whereλ is a partition
of lengthℓ(λ ) at mostn (see the standard book [20] for notations of partitions, Schur
functions, etc.). In such character formulas, the exponents of (x1, . . . ,xn) carry the
components of the corresponding weight of the representation according to the basis
(h1, . . . ,hn) of the Cartan subalgebrah. In other words, a termxν1

1 · · ·xνn
n corresponds

to the weight(ν1, . . . ,νn).
The character determined in [18] can be described as follows:

Theosp(1|2n) representationV (p) with lowest weight( p
2 , . . . ,

p
2) is a unitary irre-

ducible representation if and only ifp ∈ {1,2, . . . ,n−1} or p > n−1.

• For p > n−1, one has

charV (p) =
(x1 · · ·xn)

p/2

∏i(1− xi)∏ j<k(1− x jxk)

= (x1 · · ·xn)
p/2∑

λ
sλ (x1, . . . ,xn). (26)

• For p ∈ {1,2, . . . ,n−1}, the character ofV (p) is given by

charV (p) = (x1 · · ·xn)
p/2 ∑

λ , ℓ(λ )≤p

sλ (x1, . . . ,xn) (27)

whereℓ(λ ) is thelength of the partitionλ .

Such characters can be used to determine the spectrum ofĤ in the osp(1|2n)
representationV (p). Indeed, as noted earlier, the character is a weight generating
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function:
charV (p) = ∑

ν1,...,νn

dν1,...,νnxν1
1 · · ·xνn

n , (28)

where(ν1, . . . ,νn) is a weight from the representation anddν1,...,νn stands for the
multiplicity of this weight. Recall that in the current solution

Ĥ =
n

∑
j=1

h̄ω j h j, (29)

i.e. Ĥ is an element from the Cartan subalgebrah. Hence, to get aspectrum gener-
ating function one must make the substitutionx j → t h̄ω j in the character (27). Ex-
pressions likesλ (t

h̄ω1, t h̄ω2, . . . , t h̄ωn) simplify a lot in the isotropic caseω1 = · · · =
ωn = ω, whenx j → t h̄ω ≡ z, since

sλ (z, . . . ,z) = z|λ |sλ (1, . . . ,1). (30)

Formulas forsλ (1, . . . ,1) are well known [20]; after all,sλ (1, . . . ,1) stands for the
dimension of thegl(n) representation characterized by the partitionλ . So from (27)
one obtains a “spectrum generating function” in the representationV (p):

specĤ = znp/2 ∑
λ , ℓ(λ )≤p

sλ (z, . . . ,z)

= ∑
k≥0

∑
λ , |λ |=k, ℓ(λ )≤p

sλ (1, . . . ,1)t
h̄ω(np/2+k). (31)

In this series expansion, the power oft gives the energy levelE, and the coefficient
in front of tE gives the multiplicityµ(E) of the energy levelE. Clearly, we have
equidistant energy levels

E(p)
k = h̄ω(np/2+ k), k = 0,1,2,3, · · · (32)

with spacingh̄ω and with multiplicities (degeneracies)

µ(E(p)
k ) = ∑

λ , |λ |=k, ℓ(λ )≤p

sλ (1, . . . ,1). (33)

In the representationV (1) of osp(1|2n), the CCRs are satisfied, so this is the
representation corresponding to the canonical solution. One finds indeed that:

µ(E(p=1)
k ) =

(

n+ k−1
k

)

, (34)

and (withz = t h̄ω )

specĤ =
zn/2

(1− z)n = ∑
k≥0

(

n+ k−1
k

)

t h̄ω(n/2+k), (35)



Wigner quantization and Lie superalgebra representations 11

which is a classical result.
For a more detailed analysis of spectrum generating functions for the other rep-

resentationsV (p), we refer to [19]. Let us just give the results for the 3-dimensional
oscillator, i.e. the casen = 3. Then there are essentially three distinct cases to be
considered for theosp(1|6) representationsV (p), namelyp = 1, p = 2 andp > 2.
The spectrum generating functions, the energy levels, and the energy multiplicities
are given in the following table [19]:

GF levels multiplicity

p = 1
z1/2

(1− z)3 h̄ω(3
2 + k) µ(E(1)

k ) =
(k+2

2

)

p = 2
z3(1+ z+ z2)

(1− z2)3(1− z)2 h̄ω(3+ k) µ(E(2)
2k ) =

(k+2
2

)2

µ(E(2)
2k+1) =

(k+2
2

)(k+3
2

)

p > 2
z3p/2

(1− z2)3(1− z)3 h̄ω(3p
2 + k) µ(E(p)

2k ) = 4k+5
5

(k+4
4

)

µ(E(p)
2k+1) =

4k+15
5

(k+4
4

)

Expanding the above generating functions, or alternatively working out the above
multiplicities, one finds for the first few energy levels the following results:

µ(E(p)
0 ) µ(E(p)

1 ) µ(E(p)
2 ) µ(E(p)

3 ) µ(E(p)
4 )

p = 1 1 3 6 10 15
p = 2 1 3 9 18 36
p > 2 1 3 9 19 39

So, just as for the one-dimensional Wigner oscillator, thisosp(1|6) approach
to the 3-dimensional Wigner oscillator leads to a shift in energy compared to the
canonical case (p = 1). Moreover, the degeneracies increase from the 3rd energy
level onwards.

4 Recent advances: angular momentum operators and their
spectrum

Now that the structure of the representationsV (p) of osp(1|2n) is well known, we
can also consider the angular momentum contents in the case that n is a multiple
of 3 (i.e. if we work in 3-dimensional space). Let us first concentrate on the simple
case thatn = 3, i.e. a 3-dimensional harmonic oscillator.

In the canonical case, the components of the angular momentum operatorM are
determined byM = q× p, in other words,M j = ∑k,l ε jkl q̂k p̂l ( j = 1,2,3), where
ε jkl is the Levi-Civita symbol. Since the position and momentum operators cannot
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be assumed to commute in Wigner quantization, and since we want Wigner quanti-
zation to coincide with canonical quantization when the CCRs do hold, it is logical
to define the angular momentum operators in Wigner quantization by

M j =
1
2 ∑

k,l

ε jkl{q̂k, p̂l}=
−ih̄
2 ∑

k,l

ε jkl{a+k ,a
−
l } ( j = 1,2,3). (36)

The last expression follows from (18). Now one can investigate whether these opera-
tors satisfy any particular commutation relations. It turns out that using the CCs (20)
do not lead to closed commutation relations between the operatorsM1,M2 andM3.
In other words, in the algebraA , the commutation relations between theM j do
not close. Next, consider theosp(1|6) solution witha±j = b±j satisfying (21). Once
again, the commutation relations between theM j do not close, except when allω j

are equal, i.e. except one works in the isotropic case. In that case, one finds:

[M1,M2] = ih̄M3 (+ cyclic), (37)

just as in the canonical case. For this reason, we shall now continue with the
isotropic case. The above relations imply that we have identified anso(3) subal-
gebra in our chain of subalgebras:

osp(1|6)⊃ sp(6)⊃ gl(3)⊃ so(3)⊕u(1). (38)

Hereinso(3) is generated byM1, M2 andM3, andu(1) by the HamiltonianĤ =
h̄ω(h1+h2+h3). In other words, theso(3)⊕u(1) decomposition of a representation
gives us the angular momentum and energy contents of the Wigner quantum system
in that representation.

In the current situation, the question is: how does the representationV (p) of
osp(1|6) decompose with respect to these subalgebras? As before, theanswer fol-
lows from the expression of the character ofV (p),

charV (p) = (x1x2x3)
p/2 ∑

λ ,ℓ(λ )≤⌈p⌉
sλ (x1,x2,x3) (39)

where there are three distinct cases to be considered:p = 1, p = 2 or p > 2. Since
this character already gives in a straightforward way the decomposition ofV (p) with
respect togl(3), it remains to determine the next step in the “branching”, fromgl(3)
to so(3)⊕ u(1). This step has a well known solution and is known as theU(3) to
SO(3) branching [6]. In our notation, where thegl(3) representation is characterized
by a partitionλ = (λ1,λ2,λ3), thisgl(3) to so(3)⊕u(1) branching rule generating
function reads

G =
1+A2

1A2z3J

(1−A1A2A3z3)(1−A1zJ)(1−A1A2z2J)(1−A2
1z2)(1−A2

1A2
2z4)

. (40)
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In the expansion ofG as a power series, the coefficient ofAλ1
1 Aλ2

2 Aλ3
3 is a polyno-

mial pλ (J,z) = ∑ µλ
j,EJ jzE in J andz. The coefficientµλ

j,E is the multiplicity of the
so(3)⊕ u(1) representation( j,E) = ( j)⊕ (E) in the decomposition of thegl(3)
representation (characterized by)λ .

Using (39) and (40), it now follows that we have generating functions for the
angular momentum and energy contents for the representationsV (p) of osp(1|6).
ForV (1):

G1 =
z3/2

(1− zJ)(1− z2)
.

ForV (2):

G2 =
z3(1+ z3J)

(1− zJ)(1− z2J)(1− z2)(1− z4)
.

ForV (p), p > 2:

Gp =
z3p/2(1+ z3J)

(1− zJ)(1− z2J)(1− z2)(1− z3)(1− z4)
.

Clearly, one can use these generating functions to derive the so(3) representations

that emerge at energy levelE(p)
k . This information can be made accessible by means

of a table in which the element in rowk+ 1 and columnj + 1 (counted from the
bottom) marks the number of representations( j) at energy levelE(p)

k in the angular
momentum decomposition ofosp(1|6). We call this the( j,E)-diagram ofosp(1|6)
for V (p). ForG1, the expansion gives

G1 = z3/2+ J z5/2+(1+ J2)z7/2+(J+ J3)z9/2+(1+ J2+ J4)z11/2+ · · · ,

yielding the following( j,E)-diagram:

... ..
.

11/2 1 1 1
9/2 1 1
7/2 1 1
5/2 1
3/2 1
Ek

j 0 1 2 3 4 · · ·

Of course, this result is already known becausep = 1 represents the canonical case.
This ( j,E)-diagram for instance appears in [37].

For p = 2, the expansion ofG2 gives rise to the following diagram:
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... . .
.

7 2 1 3 1 1
6 2 1 1
5 1 1 1
4 1
3 1

Ek

j 0 1 2 3 4 · · ·

and forp > 2 the expansion ofGp gives:

... ..
.

3p/2+4 2 2 3 1 1
3p/2+3 1 2 1 1
3p/2+2 1 1 1
3p/2+1 1

3p/2 1
Ek

j 0 1 2 3 4 · · ·

Note that for the lower energy levels, the casesp = 2 andp > 2 do not differ very
much from the canonical case. The larger discrepancies are found in higher energy
regions.

So far, we have considered only the 3-dimensional Wigner harmonic oscillator
and its angular momentum contents in theosp(1|6) representationsV (p). In the
more general case ofosp(1|2n) with n = 3N, the HamiltonianĤ can be interpreted
as anN-particle 3-dimensional oscillator. It is common to write the position opera-
tors and momentum operators by a multi-index: e.g. the position operators are ˆq j,α ,
with j = 1,2,3 (referring to the 3 dimensions) andα = 1,2, . . . ,N (referring to the
N particles). The angular momentum operators of particleα are given by

M j,α =
1
2 ∑

k,l

ε jkl{q̂k,α , p̂l,α}=
−ih̄
2 ∑

k,l

ε jkl{a+k,α ,a
−
l,α}

and then the components of the total angular momentum operator are

M j =
N

∑
α=1

M j,α ( j = 1,2,3).

If we want these operators to satisfy the commutation relations (37), we need again
to work in theosp(1|6N) picture wherea±k,α = b±k,α and moreover in the case that all
ω j ’s are equal toω (i.e.N identical isotropic oscillators). Inosp(1|6N)⊃ sp(6N)⊃
gl(3N), the gl(3N) basis elements are{b+j,α ,b

−
k,β}. The relevant subalgebras of

gl(3N) aregl(3) andgl(N), with basis elements:
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gl(3) : E jk =
1
2 ∑

α
{b+j,α ,b

−
k,α} ( j,k = 1,2,3),

gl(N) : Eα ,β =
1
2 ∑

j
{b+j,α ,b

−
j,β} (α,β = 1,2, . . . ,N).

So the total angular momentum operatorsM1,M2,M3 are the basis elements of an
so(3) subalgebra ofgl(3), and one needs to decompose the representationsV (p) of
osp(1|6N) according to

osp(1|6N)⊃ sp(6N)⊃ gl(3N)⊃ gl(3)⊕gl(N)⊃ so(3)⊕u(1)

Although the decomposition ofgl(3N) representations according togl(3N)⊃ gl(3)⊕
gl(N) is in principle known, it turns out to be computationally quite involved when
N ≥ 2. For details, and results with angular momentum and energydecompositions,
see [33].
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