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Abstract T.D. Palev laid the foundations of the investigation of Wégiuantum
systems through representation theory of Lie superalgeblia work has been very
influential, in particular on my own research. It is quite egkable that the study
of Wigner quantum systems has had some impact on the devetdmhLie super-
algebra representations. In this review paper, | will pnesee method of Wigner
guantization and give a short overview of systems (Hamétos) that have recently
been treated in the context of Wigner quantization. Mogtrditbon will go to a sys-
tem for which the quantization conditions naturally leadépresentations of the
Lie superalgebrasp(1|2n). | shall also present some recent work in collaboration
with G. Regniers, where generating functions techniquee bhaen used in order
to describe the energy and angular momentum contents ah8rdiional Wigner
quantum oscillators.

1 Introduction and some history

The main ideas of Wigner quantization go back to a short ptyagrwigner pub-
lished in 1950 [36]. Due to the fact that his method leads gelalaic relations for
operators which are in general very difficult to solve, itkanany years before
his work was continued. About 30 years later, when Lie supebaa theory was
developed, it was T.D. Palev who realized that particular duiperalgebra genera-
tors satisfy the algebraic relations appearing in the Wigjuantization of certain
systems. This was the real start of Wigner quantizationpgnam to which Palev
contributed much of his scientific career. He also inspireshynother scientists to
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work on the program, including myself. It has been a pleafurme to collaborate
with Tchavdar Palev and his former student Neli Stoiloval smcontribute to the
theory.

In this review paper, | will give an introduction to the topfast by presenting
Wigner’s original example in a contemporary context. Inteec2, Palev’'s gen-
eral method of Wigner quantization is briefly presented, #eth we give a short
overview of his contributions to the field, and of some othegugrs on Wigner quan-
tization. Our purpose is to include also some recent wordt tharefore the Wigner
quantization of the-dimensional non-isotropic oscillator is discussed irtisec3.
This problem stimulated the search for infinite-dimensiamétary representations
of the Lie superalgebrasp(1|2n); a class of these representations were constructed
only a few years ago. Using these representations, we freseme interesting as-
pects of this Wigner quantum system in section 3, and its languomentum con-
tents in section 4. There is no new material in this paper: m present and sum-
marize some of the main ideas of Wigner quantization and secent contribu-
tions.

In his seminal paper [36], Wigner asked the question: “Dodtpeations of mo-
tion determine the quantum mechanical commutation rela#d It was known at
that time that, for a class of Hamiltonians written as analfginctions of the gen-
eralized position and momentum operatgrand g (i = 1,...,n), the Heisenberg
equations of motion together with the canonical commutatiations (CCRs) im-
ply formally Hamilton’s equations. Vice versa, startingrir the operator form of
Hamilton’s equations and using the CCRs, one can derive #iseidberg equations.
Since Wigner believed that the Heisenberg equations ofamaind the operator
form of Hamilton’s classical equations of motion have a dggghysical meaning
than the mathematically imposed CCRs, he wondered whetlgeirmg the com-
patibility of the Heisenberg equations with Hamilton’s atjans would automati-
cally lead to the CCRs. Wigner investigated this questionife Hamiltonian of the
one-dimensional harmonic oscillator, given by

12

A=+ &) ®

under the conventiom= w = h = 1. The Heisenberg equations are:

q:'[H7Q]a ﬁZI[HAvﬁL 2

and the operator form of Hamilton’s equations read:

- oH N - oH N
q= Op(Tp) =P, p= _Op(Tq) =—0 )
So for this example the compatibility conditions become:
A_-}Az A2\ & _A_-}Az A
p=il5(p"+67).4l, G=i[5(p"+&), . (4)
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The goal is to find (self-adjoint) operatops § satisfying these equations, without
making any assumptions about the commutation relationdmtyw andd. Other-
wise said, are there other operator solutions to (4) beshieganonical solution
where[q, p] = i? Wigner found that indeed there are other solutions. Inrdmide-
scribe these, let us use the language of Lie superalgelfrasyise, Wigner used a
different method, as Lie superalgebras were not known atitha).

Rewriting the operatorg and p by the linear combinations

o G- G+ip

== ) 5
7 73 (5)

the conditions (4) are equivalent to the two relations
[{b", b7}, b%] = £2b*. (6)

Note that these relations involve both commutators andamimutators. This is
why it will be helpful to use Lie superalgebras. In fact, itkisown that (6), the
compatibility conditions to solve, are exactly the definiegations of the Lie su-
peralgebrasp(1|2) in terms of two odd generatobs’, b~ [5]. Moreover, it should
hold thatp’ = p andd’ = g, or rewritten in terms of the new operatofb®)" = b*.
Thus, we are led to the unitary (or unitarizable) represemts of osp(1|2) i.e.
Hilbert space representations in whigi )" = b¥ holds.

The unitary irreducible representationsef(1|2) were classified by Hughes [8];
see also [31] for a more comprehensive method. The uniteggiticible represen-
tations are labelled by a positive real numie(p/2 is the lowest weight); the
orthonormal basis vectors g, with n > 0. The action ob* andb™ is given by:

bf[n) = VnizIn+1), b7In)=yVnin-1); va=n+(p-1)(1-(-1)"/2

(7

Using (5) and (7), one can deduce:
Aln) = 3 (bb7} ) = (n+ )n), ®
(G, Bl[2n) =ip[2n), [, Bl[2n+1) =i(2—p)[2n+1). 9)

From this it is clear that only the cage= 1 corresponds to the CCRs. All other
solutions (i.e. all other positive values pf are non-canonical. Wigner concluded
that requiring the equivalence of Hamilton’s and Heiseglseequations is a very
natural approach that may lead to other quantizations egsie canonical one; and
the canonical quantization solution appears as one of thie general solutions.

In the example of Wigner, the apparent difference with theooécal case is
the shift in energy, as is clear from (8). It is interestinchtve also a look at the
wave functions for these non-canonical solutions. Thisiwdact not performed by
Wigner, but only much later, when the above operaborandb™ were studied as
“parabosons” [22]. An alternative way of finding these wawedtions is described
in the Appendix of [9]. This is obtained by computing the (fal) eigenvectors of
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G= (b* +b~)/v/2in the above Hilbert space. Writing these formal eigenwsab

gas

v(q) = ijn("’ (a)[n), (10)
n=

and expressingv(q) = qv(q) by means of the action (7) yields a set of recurrence

relation for the coefficientsl/n(p)(q). The solution leads to the conclusion that the

spectrum ofyis R, and that

() () — (10 | (p-D)/2 g %/2) (P/2-1) 2
W00 = (1)) | o b 2e AP )

(P vy _ (10 n! (P=1)/2 ox2/2.y (P/2) (2
(L&nﬁfl()() - ( l) I— (r]‘F [)/:2‘% 1) ‘)(‘ € )(L-n ()( )7 (]-l)

in terms of generalized Laguerre polynomials. These cd:em‘is%p) (g) have an
interpretation as the position wave functions of the Wigreillator. Alternatively,
one can work in the position representation, where the omejias still represented
by “multiplication by X", and the operatop has a realization asi% + ipz;XlR,
whereRf(x) = f(—x) is a reflection operator [23, Chapter 23]. Using this real-
ization the time-independent Sddinger equation can be solved, also yielding the
expressions (11) [22]. Fgr= 1, the Laguerre polynomials reduce to Hermite poly-
nomials, and one gets the commonly known wave functionsifttéresting to com-
pare the plots of the wave functions foe£ 1 with those of the canonical cape- 1,
see Figure 1.
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Fig. 1 Plots of the wave function%(p) (x). The three figures on the left are fpr= 1 and corre-
spond to the canonical case; the figures in the middle ane $00.6, and three figures on the right
are forp = 4. In each case, we plot the wave functionsrfet 0,1, 2.
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2 Wigner quantum systems and Palev’s contributions

Wigner’s work on this alternative quantization method tog bne-dimensional os-
cillator did not receive much attention originally. This svenainly because of the
mathematical difficulties when trying to apply it to a Hamittan different from (1).
In fact, trying to solve Wigner’s compatibility conditiorfier other systems leads to
complicated operator relations, for which often no gensoaltions are known. By
1980 however, Lie superalgebra theory and their represienssbecame well under-
stood [10, 11]. T.D. Palev had worked with Lie superalgebmzsinly in the context
of parabosons and parafermions [24]. He was the first toze#ie importance of
Lie superalgebra representations in the context of Wigm@ntization. It is also
to him that we owe the term “Wigner quantum system” or “Wiggaantization”.
In one of his first papers on the topic [25], however, he usedt¢hm “Dynami-
cal quantization”, referring to the fact that quantizatfoliows from compatibility
conditions related to the equations of motion.

Let us briefly summarize the main principles of Wigner queatton, as devel-
oped by Palev. Consider a quantum system witlegrees of freedom and a Hamil-
tonian of the form

N i .
H= JZJ_W] +/V(qla"wch)' (12)

In Wigner quantization, one keeps all axioms of quantum raeis, only the axiom
on the CCRs is replaced. The canonical commutation rekation

[Gk;Gi] = [P, Bi] =0, [Gk, Bi] = ihd (13)

arereplaced by a different set of operator relations between positichranmentum
operators. This set consists of the (operator) Compdjiliilonditions (CC) between
the Heisenberg equations and the operator form of Hamdltequations.

So, in short, Wigner quantization for a system describedl2y ¢onsists of the
following three steps:

1. Rewrite the Hamiltoniamd appropriately in terms of operatop and dj (in
some symmetric form, not assuming any commutativity betwibe operators).

2. Determine the Compatibility Conditions (CC). This givése to a (non-linear)
set of operator relations for tha anddx. The x-algebra<? is then defined as
an algebra with generatopk anddy and defining relations (CC), subject to the
*-conditionspy = px anddf = Gi.

3. Find*-representations (unitary representationsy/of

Very often, it is difficult to identify as a known algebra, and hence it is too diffi-
cult to find allx-representations. So instead of trying to work with one looks for
aknown algebraZ whose generators also satisfy (CC). Then it remains to natst
the x-representations o4 and to determine physical properties (energy, spectrum
of observables,.) in these representations. This gives rise to a subset aticos.



6 J. Van der Jeugt

Note that this approach leads quite naturallyoo-commutative coordinate op-
erators, without any forced or external input as is sometimes donetlirer ap-
proaches of “non-commutative quantum mechanics”.

In the first main paper on Wigner quantization [25], Palewestigated two par-
ticles interacting via a harmonic potential. After remowélthe center of mass,
the remaining Hamiltonian is essentially that of the 3-disienal isotropic har-
monic oscillator (HO). Palev investigated the CCs, and ébtirat these were sat-
isfied by certain generators of the Lie superalgefifd|3). In other words, he
choseZ = gl(1/3). Then, he went on to study properties in a particular class of
*-representations, namely the so-called Fock space repatioms. A remarkable
feature here is the finite-dimensionality of theseepresentations, implying that all
physical operators havedgscrete spectrum. In the same year, Palev showed [26] that
the CCs for ther-dimensional HO are satisfied by generators of the ortho&enp
tic Lie superalgebrasp(1|2n); however, no representations were considered. Later,
Kamupingene, Palev and Tsaneva [12] considered in mord tlet&-dimensional
HO with #Z = sl(1]2). Interesting physical properties were obtained by Palel an
Stoilova for theosp(3|2) solutions of the 3-dimensional HO. Here, one could
make use of a classification of therepresentations afsp(3|2) [35]. Palev and
Stoilova [27, 28] later compared the solutions of the 3-digienal isotropic Wigner
HO provided bys!(1|3), osp(1|6) andoesp(3|2). The postulates of Wigner quantum
systems were more carefully described in [29]. In this pafier n-dimensional
isotropic HO is revisited, and for the first time angular mooen operators are
discussed (fon = 3N). In a review paper, Palev and Stoilova [30] describe the al-
gebraic solutions for tha-particle 3-dimensional isotropic HO in terms of the Lie
superalgebrasl(1|3n), osp(1|6n) andsl(3|n). Further physical properties for the
s[(13) or sl(1]3n) solutions, in particular related to the discrete spaciaicstire,
were investigated in [14, 15]. Then, a few years ago, Staikovd Van der Jeugt [34]
made a quite general classification of Lie superalgebraisakiof the CCs for the
n-dimensional isotropic HO.

Lievenset al [16, 17] applied Wigner quantization to more complicatedriia
tonians, such as a linear chain of coupled particles. Thew stow this reduces to
the Hamiltonian for am-dimensionahon-isotropic HO, and obtain new solutions
in terms ofgl(1|n).

There appeared also a number of papers related to the funtilmef Wigner
quantization, or related algebraic quantizations. We ioertiere in particular the
work of Man’ko, Marmo, Zaccaria and Sudarshan [21], Blastd&rzela, Kapus-
cik [13, 7, 4], and that of Atakishiyev, Wolf and collaboregdl, 2, 3] in the context
of finite oscillator models.

More recently, Regniers and Van der Jeugt [32] investigateetdimensional
Hamiltonians with continuous energy spectra as Wigner gunarsystems.

All these papers make it clear that Wigner quantization hangise to challeng-
ing mathematical problems, and to interesting physicaperiies. Wigner quanti-
zation has also raised questions in Lie superalgebra remason theory, and stim-
ulated further research into specific classes of Lie sugebah representations.
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In the following section we shall review the treatment of théimensional non-
isotropic harmonic oscillator in Wigner quantization as main example. This has
given rise to the study of a new class of representations ef.tb superalgebra
osp(1]2n).

3 Main example: the n-dimensional non-isotropic harmonic
oscillator

For this example, we drop the previous convention witk w=h=1, and consider
then-dimensional non-isotropic harmonic oscillator with Hétomian:

. n

1 n
H:anl 5; (14)

wherem stands for the mass of the oscillator amxl for the frequency in direc-
tion j. Let us construct the compatibility conditions CC. Cleatie operator form
of Hamilton’s equations reads:

3

s oH 1. Ao JH 24 .
dj —Op(ij)—app Pj = OD(T%)— mawy dj, j=1,...,n. (15)
The Heisenberg equations are:
PO R - [N .

So the compatibility conditions become:

A h A . . .
[Haqj] :_Iaph [vaj] :Iﬁmwquj7 J:17"'vna (17)

whereH is given by (14).
It is useful to write these compatibility conditions in afdiient form. For this
purpose, introduce the following linear combinations & tperators)"and pj:

ar — | g . j=1..n (18)

|
+ ~
! 2h G A /2mh_wj Pi:

Now the expression of the Hamiltonian becomes

i e + )
H:EZ j(afay +aya)) 2ij{aj,J (19)

The new form of the compatibility conditions can be written a
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n
[Z wi{a,*,aj’},aﬂ = +2wa;, k=1,...n (20)
=1

In terms of the notation of the previous sectio#, is the x-algebra generated
by 2n generatoraji (j =1,...,n) with *-relations(aji)* = ajI and with defining
relations (20).

Quite surprisingly, the structure a¥ and its unitary Hilbert space representa-
tions is known completely only far= 1 (in which case it is just Wigner's example
of section 1). Fon > 1, only some classes of unitary Hilbert space representatio
are known.

We shall now describe an algebraic solution for the conati@?0), in other
words we shall determine an algely#awhose generators also satisfy (20) (but for
which (20) are not the defining relations). This is providgdhe orthosymplectic
Lie superalgebrasp(1|2n). In fact, it were Ganchev and Palev [5] who discovered
—in the context of parabosons — thap(1/2n) can be defined as an algebra with 2
generator:bf subject to the following triple relations:

({65, b7 },bF] = (£ — &) 3b + (e — )3, (21)

wherej.k,1 € {1,...,n}, andn,€,& € {+,—} (to be interpreted a$1 or—1 in al-
gebraic expressions suchas &). It is indeed very easy to verify that the operators

- —b + _ pt
a; _bj, a; _bj (22)

satisfy the compatibility conditions (20). Otherwise sdtue triple relations (21)
imply the relations (20). Furthermore, thegelations for the generators of imply
the followingx-relations for thevsp(1|2n) generators:

(b)T =by. (23)

So we are led to investigating unitary representatioro€f(1|2n) for thesex-
conditions.

In order to study thesp(1|2n) solutions, it will be useful to identify some sub-
algebras obsp(1/2n). First of all, note that due to the triple relations (21), aiba
of 0sp(1]2n) is given by the 8 odd element:bf and by the 22 + n even elements

{b‘-‘(,bﬂ} (j.ke{1,...,n}; n,& € {+,-}). The even subalgebra afp(1/2n) is the
symplectic Lie algebrap(2n), so a basis oép(2n) consists of all even elements
{b‘-‘r,bﬂ} (j,ke{1,...,n}; n,&€ € {+,—1}). A subalgebra ofp(2n) is the general
linear Lie algebragl(n), whose standard basis is given by tifeeven elements
%{b-*,blz} (J.k € {1,...,n}). Finally, the Cartan subalgebheof osp(1|2n) is that
of its even subalgebrp(2n). A basis off is given by then elementd; = %{bj*, b]f}

(j =1,...,n). So we have, in this realization ofp(1|2n), a natural chain of subal-

gebras:
osp(12n) D sp(2n) D gl(n) D b. (24)
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Note that for this algebraic solution the Hamiltonian istvemn as
R ﬁ n ﬁ n n
H =szle{aiaﬁ:Ejzle{bibﬁ=ﬁjzlehja (25)

so it is an element of the Cartan subalgebra. This will fed#i the problem of
determining the spectrum éf.

It should be mentioned that a second algebraic solutioneoédmditions (20) can
be given by means of generators of the Lie superalggtian) [19]. This class of
solutions also gives rise to many interesting propertiestiese cannot be presented
in this short review.

The algebraiosp(1|2n) solution to (20) is easy to describe. In fact, it was already
known since 1982 for the simpler isotropic case with= - -- = w, = w [26]. The
reason why it was not studied further was because no classtafyirepresentations
was known (for thex-condition (23)). This changed in 2008, when Lieveshsl
[18] managed to construct a class of unitary representatibimese are the infinite-
dimensional lowest weight representatidh@) of asp(1|2n) with lowest weight
(jp, ey ip). For these representations, the authors obtained an aieo@elfand-
Zetlin basis, explicit actions of the generators on thesweasctors, and a character
formula [18]. For these results, the subalgebra chain (24)span important role,
in particular the decomposition with respect to #lén) subalgebra. Irreducible
characters of((n) are given as a Schur functigp(xi, . . ., X,), whereA is a partition
of length?(A ) at mostn (see the standard book [20] for notations of partitionsBch
functions, etc.). In such character formulas, the expanehfxs,...,x,) carry the
components of the corresponding weight of the representaticording to the basis
(hy,...,hy) of the Cartan subalgebtaln other words, aterm‘l’l - Xph corresponds
to the weight(vy, ..., vy).

The character determined in [18] can be described as follows
The osp(1]2n) representatiol (p) with lowest weight(5, ..., 5) is a unitary irre-
ducible representation if and onlypfe {1,2,...,n—1}orp>n—1.

e Forp>n—1,one has

B (Xl"'xn)p/z
chalv(p) = i (2= %) MMj<x(1—XjX)
= (xa%0)P 2y S (X %), (26)
A

e Forpe{1,2,...,n—1}, the character 0¥ (p) is given by

chav(p) = (x1---%)P? S 8 (e, %) (27)
A, (F)<p

wherel(A) is thelength of the partitionA.

Such characters can be used to determine the spectridnimfthe osp(1/2n)
representatioV (p). Indeed, as noted earlier, the character is a weight gengrat
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function:
chaV/(p)= 3 duuXg" o, (28)

V1,--sVn

where (vy,...,Vn) is a weight from the representation adg ..., stands for the
multiplicity of this weight. Recall that in the current stin

n
H=S hwjhj, (29)
2

i.e.H is an element from the Cartan subalgebraience, to get apectrum gener-
ating function one must make the substitutien — t"@i in the character (27). Ex-
pressions likes, (th@ th@z . then) simplify a lot in the isotropic casey = - -- =
wh = w, whenxj — t" = z, since

s\(z...,2)=72"s,(1,...,1). (30)

Formulas fors) (1,...,1) are well known [20]; after alls, (1,...,1) stands for the
dimension of thgl(n) representation characterized by the partiiorso from (27)
one obtains a “spectrum generating function” in the repreg®nV (p):

sped = 2'P/? s\ (z...,2)

= sy (1,..., Dthwmnp/2+k), (31)
K20 A, [A|=kt(A)<p

In this series expansion, the powertafives the energy levéd, and the coefficient
in front of t& gives the multiplicityu(E) of the energy leveE. Clearly, we have
equidistant energy levels

E(” = Row(np/2+k), k=0,1,2,3,-- (32)
with spacinghw and with multiplicities (degeneracies)

HEP) = si(L,....1). (33)
A A=k e <p

In the representatiol (1) of osp(1/2n), the CCRs are satisfied, so this is the
representation corresponding to the canonical solutior. fihds indeed that:

HES™) = (ME_ 1), (34)

and (withz = t"®)

. /2 _
spedi — (lzi - _ <n+||z 1>th‘w(n/2+k), (35)
k>0
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which is a classical result.

For a more detailed analysis of spectrum generating fumstior the other rep-
resentation¥ (p), we refer to [19]. Let us just give the results for the 3-digienal
oscillator, i.e. the case = 3. Then there are essentially three distinct cases to be
considered for thesp(1|6) representation¥ (p), namelyp=1, p=2 andp > 2.

The spectrum generating functions, the energy levels, leménergy multiplicities
are given in the following table [19]:

GF levels multiplicity
1/2
p=1 (12772)3 ﬁw(% +k) IJ(EIEJ')) = (kJZVZ)
B(1+2+2) O a2
=2 Goppagp OB wED)= ()
2
2 W(ER,) = (35
2 L heo( 3P Lk E(P)y _ 4ki5 k4
P> 1-2)3(1-2° w(F k) uE) =2 (%
H(Eélz)rl) _ 4kqg15 (kz4)

Expanding the above generating functions, or alternatiwerking out the above
multiplicities, one finds for the first few energy levels tledidwing results:

wE”) wE”) pE) pEY)  pE)

p=1 1 3 6 10 15
p=2 1 3 9 18 36
p>2 1 3 9 19 39

So, just as for the one-dimensional Wigner oscillator, thig(1/6) approach
to the 3-dimensional Wigner oscillator leads to a shift irergly compared to the
canonical casep(= 1). Moreover, the degeneracies increase from the 3rd energy
level onwards.

4 Recent advances. angular momentum operators and their
Sspectrum

Now that the structure of the representatid{p) of osp(1/2n) is well known, we
can also consider the angular momentum contents in the base is a multiple
of 3 (i.e. if we work in 3-dimensional space). Let us first cenirate on the simple
case thah = 3, i.e. a 3-dimensional harmonic oscillator.

In the canonical case, the components of the angular momenperato™M are
determined byM = g x p, in other wordsM; = S, g Gkfr (j = 1,2,3), where
gju is the Levi-Civita symbol. Since the position and momentyerators cannot
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be assumed to commute in Wigner quantization, and since weWgner quanti-
zation to coincide with canonical quantization when the G@R hold, it is logical
to define the angular momentum operators in Wigner quardizat

Mj:;ggm{@lk, f)l}:_ziﬁggjkl{a;’ai} (1=1,273). (36)

The last expression follows from (18). Now one can investigehether these opera-
tors satisfy any particular commutation relations. It tionit that using the CCs (20)
do not lead to closed commutation relations between the operitorsl, andMs.

In other words, in the algebra’, the commutation relations between thlg do
not close. Next, consider thap(1/6) solution witha;” = b;" satisfying (21). Once
again, the commutation relations betweenMhiedo not close, except when ali;
are equal, i.e. except one works in the isotropic case. lrctee, one finds:

M1, Mg] =ifMs  (+ cyclic) (37)

just as in the canonical case. For this reason, we shall novinee with the
isotropic case. The above relations imply that we have ifledtanso(3) subal-
gebra in our chain of subalgebras:

0s5p(1]6) D sp(6) D gl(3) D so(3) Du(l). (38)

Hereinso(3) is generated b, Mz and Mg, andu(1) by the HamiltoniarH =
hew(h1+hy+hg). In other words, theo(3) @ u(1) decomposition of a representation
gives us the angular momentum and energy contents of theeMigrantum system
in that representation.

In the current situation, the question is: how does the sgmtionV (p) of
osp(1)6) decompose with respect to these subalgebras? As beforansher fol-
lows from the expression of the characteMgp),

chalV (p) = ()P 5 5 (1%, %) (39)
AL(A)=<Tp]

where there are three distinct cases to be considgredi, p =2 or p > 2. Since
this character already gives in a straightforward way tleed®osition o/ (p) with
respect tgl(3), it remains to determine the next step in the “branchingifyl(3)

to so(3) ®u(1). This step has a well known solution and is known asuii8) to
SO(3) branching [6]. In our notation, where tigé 3) representation is characterized
by a partitionA = (A1,A2,A3), thisgl(3) to so(3) ®u(1) branching rule generating
function reads

14+ A2AZ3)
(11— AAAGZ) (1 A1Z))(1— AtAoZ2)) (1 - AZ22) (1 — AZASZY)

G= (40)
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In the expansion o6 as a power series, the coefficientAiFAng§3 is a polyno-
mial py (J,2) = 3 42 in J andz The coefficientu]¢ is the multiplicity of the
s0(3) ®u(1) representatiorij,E) = (j) @ (E) in the decomposition of thgl(3)
representation (characterized hy)

Using (39) and (40), it now follows that we have generatingctions for the
angular momentum and energy contents for the represematip) of osp(1|6).
ForV(1):

2/?

)
ForV(2): S
+

= A 2a-2a-2

ForV(p), p> 2:

BP2(14-2))

S = T A-2) -2 A-B)A-2)

Clearly, one can use these generating functions to dereveoi{8) representations

that emerge at energy Ie\)é‘ip). This information can be made accessible by means
of a table in which the element in rol+ 1 and columnj 41 (counted from the

bottom) marks the number of representatiojisat energy IeveElﬁp) in the angular
momentum decomposition ofp(1|6). We call this the( j, E)-diagram ofosp(1|6)
for V(p). For Gy, the expansion gives

G =213+ (1+ 372+ 3+ 33 P2+ 1+ P+ 32V

yielding the following(j, E)-diagram:

11/2 1 1 1

9/2 1 1
712 1 1
5/2 1

3/2 1

Ex

ilo1234..

Of course, this result is already known becapse 1 represents the canonical case.
This (], E)-diagram for instance appears in [37].
For p = 2, the expansion db; gives rise to the following diagram:
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7 21311
6 2 11
5 111
4 1
3 1
Ex
j 012 3 4.
and forp > 2 the expansion dB, gives:
3p/2+4 2 2311
3p/2+3 1211
3p/2+2 111
3p/2+1 1
3p/2 1
Ex
i 012 3 4.

Note that for the lower energy levels, the capes 2 andp > 2 do not differ very
much from the canonical case. The larger discrepancieoarelfin higher energy
regions.

So far, we have considered only the 3-dimensional Wignembaic oscillator
and its angular momentum contents in @ (1|6) representation¥ (p). In the
more general case ofp(1|2n) with n= 3N, the HamiltoniarH can be interpreted
as anN-particle 3-dimensional oscillator. It is common to writetposition opera-
tors and momentum operators by a multi-index: e.g. the ijpositperators arg; o,
with j = 1,2, 3 (referring to the 3 dimensions) amd=1,2,...,N (referring to the
N particles). The angular momentum operators of partickre given by

1 O —ih _
Mja =3 ggjkl{Qk,m Prat=—" gsm{a{a,am}
and then the components of the total angular momentum apenat
N .
Mj: ZMj’a (121,2,3).
a=1
If we want these operators to satisfy the commutation @iat(37), we need again
to work in theosp(1|6N) picture Whereaafa = bﬁa and moreover in the case that all

wj’s are equal taw (i.e. N identical isotropic oscillators). lnsp(1|6N) O sp(6N) O
gl(3N), the gl(3N) basis elements ar@bta,blzﬁ}. The relevant subalgebras of

gl(3N) aregl(3) andgl(N), with basis elements:
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1 _ .
03):  Ejp=53{bab,}t  (1k=123)
a
1 _
g[(N) : gaﬁzéz{bravbhl}} (aHB:lvza'-'vN)'

So the total angular momentum operatbtg M, M3 are the basis elements of an
s0(3) subalgebra ofl(3), and one needs to decompose the representatigsof
osp(1|6N) according to

0sp(1|6N) D sp(6N) D gl(3N) D gl(3) @ gl(N) D s0(3) B u(l)

Although the decomposition gf(3N) representations accordinggti3N) D gl(3) ®
gl(N) is in principle known, it turns out to be computationally ginvolved when
N > 2. For details, and results with angular momentum and ersgsgggmpositions,
see [33].
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