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Abstract

Let g be the Lie superalgebra gl(m|n). We show how to associate a gl(m|n) weight Λ to a
composite partition ν;µ with composite Young diagram F (ν;µ). Based upon the definition of
critical representations, the notion of “critical composite partition” is introduced. It is shown
that for critical composite partitions (subject to a technical restriction) the corresponding
gl(m|n) representation VΛ is tame, so its character formula can be computed. This character
is shown to coincide with the composite S-function sν;µ(x/y).
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1 Introduction

Lie superalgebras and their representations continue to play an important role in the under-

standing and exploitation of supersymmetry in physical systems. The Lie superalgebras under

consideration here, namely gl(m|n) or sl(m|n) (sometimes denoted by U(m|n) or SU(m|n)), have

applications in quantum mechanics [1, 2], nuclear physics [3, 4, 5], string theory [6, 7], conformal

field theory [8], supergravity [9, 10], M-theory [11], lattice QCD [12, 13, 14], solvable lattice

models [15], spin systems [16] and quantum systems [17]. Also their affine extensions [8, 16] or

q-deformations [1, 17] play an important role. In most of the applications, it are the irreducible

representations or “multiplets” of gl(m|n) that play a role.

This paper is presenting some new results for irreducible representations of the Lie superalge-

bra gl(m|n) (sometimes referred to as simple gl(m|n) modules). Representation theory of Lie

superalgebras, and in particular of gl(m|n) or its simple counterpart sl(m|n), is not a straight-

forward copy of the corresponding theory for simple Lie algebras. The development of gl(m|n)

representation theory is quite remarkable. Shortly after the classification of finite-dimensional

simple Lie superalgebras [18, 19], Kac considered the problem of classifying all finite-dimensional

irreducible representations (irreps) of the basic classical Lie superalgebras [20]. For a subclass

of these irreps, known as “typical” representations, Kac derived a character formula closely

analogous to the Weyl character formula for irreps of simple Lie algebras [20]. The problem

of obtaining a character formula for the remaining “atypical” irreps has been the subject of

intensive investigation, both in the mathematics and physics literature. In the early days of

Lie superalgebra representation theory, the notion of graded tensors was introduced [21], and it

was believed [22, 23] that the standard methods of covariant, contravariant and mixed tensor

representations with the corresponding Young techniques yield the characters of gl(m|n) irreps

in terms of supersymmetric S-functions. Although this is certainly true for the covariant and

contravariant tensor representations [21, 24], it is not so for the mixed tensor representations,

as already observed in [25, 26]. The problem is well described and analysed in [27], where

furthermore a character formula for atypical gl(m|n) irreps is conjectured. Since then, some

partial solutions to this problem were given, e.g. for so-called generic representations [28], for

singly atypical representations [29, 30, 31], or for tame representations [32]. More recently, the

character problem for gl(m|n) was principally solved by Serganova [33], who gave an algorithm

to compute composition factor multiplicities of so-called Kac-modules, and thus indirectly the

character. In [34], a substantially simpler method was conjectured to compute these composi-

tion factor multiplicities; this conjecture was proved by Brundan [35]. Still, the method using

composition factor multiplicities of Kac-modules remains a rather indirect way of computing
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characters. Recently, there was a further breakthrough for this problem. Developing on the

work of Brundan, Yucai Su and Zhang [36] managed to compute the generalized Kazhdan-

Lusztig polynomials of gl(m|n) irreps, leading to a relatively explicit character formula for all

these irreps, and thus proving that the character formula conjectured in [27] holds.

From a computational and practical point of view, it is useful to identify characters with su-

persymmetric S-functions, since it is easy to work with S-functions, for which many properties

are known (see Appendix). As just mentioned, this identification holds for covariant and con-

travariant irreps [21, 24], where the corresponding S-function is labelled by a single partition λ,

but fails for mixed tensor irreps, where the corresponding S-function is labelled by a composite

partition ν; µ. In the present paper, we show that there is still another family of atypical rep-

resentations for which the character is given by a (composite) S-function, namely the so-called

critical gl(m|n) representations.

The notion of a critical atypical representation was already introduced in [37]. It is expressing

how the “atypical roots” with respect to the highest weight of the representation are related

to each other. In [37], the highest weight of the irrep is labelled by its Dynkin labels, or by

its components in a standard basis. In order to make a connection with S-functions, we shall

describe the highest weight here by means of a composite partition ν; µ. In terms of this labelling,

there is a combinatorial way of characterizing critical atypical representations.

Next, we use essentially the method of [38] to show (under the technical restriction of “no

overlap”) that these critical atypical representations are “tame”, in the sense of Kac and Waki-

moto [32]. Using their results, we construct an explicit character formula for these irreps, and

we show how this formula can be rewritten in a determinantal form. Using this determinantal

form, it can be shown that the character coincides with a supersymmetric composite S-function.

For this last step, the technical details of the proof are given in an Appendix.

We end this section by fixing some notation for the Lie superalgebra gl(m|n).

Let g be the Lie superalgebra gl(m|n). The general linear Lie superalgebra is one of the standard

families of classical Lie superalgebras. Lie superalgebras are characterized by a Z2-grading

g = g0̄ ⊕ g1̄. For the general theory on classical Lie superalgebras and their representations, we

refer to [18, 19, 20].

Let h ⊂ g be the Cartan subalgebra of g, and g = g−1 ⊕ g0 ⊕ g+1 be the Z-grading that is

consistent with the Z2-grading of g. Note that g0 = g0̄ = gl(m) ⊕ gl(n). The dual space h∗ of h

has a natural basis {ǫ1, . . . , ǫm, δ1, . . . , δn}, and the roots of g can be expressed in terms of this

basis. In the so-called distinguished choice [18] for a triangular decomposition of g, the simple
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root system is given by

Π = {ǫ1 − ǫ2, . . . , ǫm−1 − ǫm, ǫm − δ1, δ1 − δ2, . . . , δn−1 − δn}. (1.1)

In that case, the positive even roots are given by ∆0,+ = {ǫi − ǫj |1 ≤ i < j ≤ m} ∪ {δi − δj |1 ≤

i < j ≤ n}, and the positive odd roots by ∆1,+ = {ǫi − δj |1 ≤ i ≤ m, 1 ≤ j ≤ n}.

In the distinguished basis there is only one simple root which is odd. As usual, we put

ρ0 =
1

2

(

∑

α∈∆0,+

α
)

, ρ1 =
1

2

(

∑

α∈∆1,+

α
)

, ρ = ρ0 − ρ1. (1.2)

There is a symmetric form ( , ) on h∗ induced by the invariant symmetric form on g, and in the

natural basis it takes the values (ǫi, ǫj) = δij , (ǫi, δj) = 0 and (δi, δj) = −δij . The odd roots are

isotropic: (α, α) = 0 if α ∈ ∆1.

The Weyl group of g is the Weyl group W of g0, hence it is the direct product of symmetric

groups Sm × Sn. For w ∈ W , we denote by ε(w) its signature.

Let V be a finite-dimensional irreducible representation of g. Such representations are h-

diagonalizable with weight decomposition V = ⊕µV (µ), and the character is defined to be

chV =
∑

µ dimV (µ) eµ, where eµ (µ ∈ h∗) is the formal exponential. The irreps of g are

characterized by their highest weight Λ, and denoted by VΛ. There is a one-to-one correspon-

dence [20] between finite-dimensional irreps and highest weights Λ =
∑m

i=1 aiǫi +
∑n

j=1 bjδj with

all ai − ai+1 and bj − bj+1 nonnegative integers. Here, it is sufficient to consider integral highest

weights Λ; that is: all ai and bj are integers and all ai −ai+1 and bj − bj+1 nonnegative integers.

Finally, we shall use in this paper the classical notations of partitions and symmetric func-

tions [46], such as λ′ for the conjugate of a partition λ, ℓ(λ) for its length, F (λ) for its Young

diagram, etc.

2 Composite Young diagrams and composite partitions

The composite Young diagram F (ν; µ) = F (. . . ,−ν2,−ν1; µ1, µ2, . . .), specified by the pair of

partitions µ = (µ1, µ2, . . .) and ν = (ν1, ν2, . . .), consists of two conventional Young diagrams

F (µ) and F (ν). The former is composed of boxes arranged in left-adjusted rows of lengths

µ1, µ2, . . . (from top to bottom), and the latter of boxes arranged in right-adjusted rows of

lengths ν1, ν2, . . . (from bottom to top). A manner of junxtaposition of F (µ) and F (ν) to form

F (ν; µ) was given in [39]. To some extent this is a refining of the back-to-back notation of [40]
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and [41]. By way of illustration, for ν; µ = (3, 8); (5, 3, 1) the composite Young diagram is

displayed in (2.1)(a). Note that in (3, 8) we have used the convention of putting the minus-signs

on top of the integers; so in this example µ = (5, 3, 1) and ν = (8, 3). We shall refer to ν; µ as

being a “composite partition”.

Let m and n be fixed. In the process of associating a weight of gl(m|n) to a composite partition

ν; µ, there is another way to visualize ν; µ by putting them together in a (m × n)-rectangle.

The partition µ is now composed of boxes arranged in left-adjusted rows of lengths µ1, µ2, . . .

starting at the top left-hand corner of this rectangle, and the partition ν of boxes arranged in

right-adjusted rows of lengths ν1, ν2, . . . starting at the bottom right-hand corner of the rectangle.

For ν; µ = (1, 1, 2, 5, 5, 9); (5, 4, 4, 1) and (m|n) = (5|7) this is illustrated in (2.1)(b). Observe

that in this second visualisation, there can be overlap between the two diagrams.

(a) (b)

(2.1)

When ν = 0, the (ordinary) partition µ labels a covariant representation of gl(m|n) if µm+1 ≤

n; and when µ = 0, ν labels (under similar conditions) a contravariant representation of

gl(m|n) [24]. In both cases, the partition determines a certain highest weight Λ of the cor-

responding irreducible representation (or simple module) VΛ. In [27], it was shown how to

determine the highest weight Λ for the given partition µ or ν. Following this, we associate with

any given composite partition ν; µ a certain gl(m|n) weight Λν;µ as follows, in the standard

ǫ-δ-basis:

Λν;µ =
m

∑

i=1

(

µi − 〈νm−i+1 − n〉

)

ǫi +
n

∑

j=1

(

〈

µ′
j − m

〉

− ν ′
n−j+1

)

δj (2.2)

where 〈a〉 = max(0, a). Conversely, we wish to associate with any given (integral) weight Λ,

in an unique way, a composite partition ν; µ. In order to make this unique, it is necessary to

consider “standard” composite partitions ν; µ.

Definition 2.1 A composite partition ν; µ is said to be standard if and only if one of the fol-

lowing conditions is fulfilled

1. ν = 0 and µm+1 ≤ n, (i.e. labelling a covariant representation);

2. µ = 0 and ν ′
n+1 ≤ m, (i.e. labelling a contravariant representation);
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3. µm = 0 and µ′
1 + ν ′

n ≤ m;

4. ν ′
n = 0 and µm + ν1 ≤ n.

These conditions are stronger than those given in [39, §3] or [42], but necessary for the unique-

ness. The possibilities 3 and 4 are illustrated in Figure 1.

n

m

ν

µ

n

m

ν

µ

Figure 1: F (ν; µ) with ν; µ standard

In order to see that the conditions µ′
1+ν ′

n ≤ m and µm+ν1 ≤ n are needed for a unique correspon-

dence, consider the weight Λ = (5, 2, 1; 1, 2, 3, 4) in gl(3|4). All three of the composite partitions

ν; µ = (1, 2, 3, 3); (5, 2, 1, 1), ν; µ = (1, 2, 3, 4); (5, 2, 1, 1, 1) or ν; µ = (1, 3, 4, 5); (5, 2, 2, 2, 1, 1)

would lead, by (2.2), to Λ as the corresponding weight. However, only the first satisfies the

condition ν ′
n = 0 and µm + ν1 ≤ n.

Observe that the conditions of Definition 2.1 also impose a limitation on the possible weights.

E.g. Λ = (2, 1, 1; 1, 1, 2, 3) is a highest weight in gl(3|4), but it is impossible to find a corre-

sponding standard composite partition ν; µ. This, however, is not a real problem in the present

context. Indeed, suppose that Λ′ = Λ + r(
∑m

i=1 ǫi −
∑n

j=1 δj), then the characters of the cor-

responding irreducible representations satisfy chVΛ′ =
(

∏m
i=1 eǫi

∏n
j=1 e−δj

)r
chVΛ, with r ∈ Z.

And for any given Λ′, one can determine the corresponding Λ such that it can be linked to a

standard composite partition. This means that we are working in sl(m|n) rather than in gl(m|n):

in sl(m|n) the weights Λ and Λ′ coincide. For example, Λ = (2, 1, 1; 1, 1, 2, 3) can be rewritten as

Λ = (1, 0, 0; 0, 0, 1, 2) + (1, 1, 1; 1, 1, 1, 1). The standard composite partition ν; µ corresponding

to (1, 0, 0; 0, 0, 1, 2) is now ν; µ = (1, 2); (1).

One can show that this yields a unique correspondence between integral highest weights of

sl(m|n) and standard composite partitions.
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Given a composite partition ν; µ, one can define the corresponding S-function [22, 23]. The

complete supersymmetric polynomials are hr(x/y) =
∑r

k=0 hr−k(x)ek(y), with hr−k the com-

plete symmetric polynomials and ek the elementary symmetric polynomials [46]. Furthermore,

let ḣr(x/y) = hr(x/y), where xi = 1/xi and yj = 1/yj . Then:

sν;µ(x/y) = det

(

ḣνl+k−l(x/y) hµj−k−j+1(x/y)

ḣνl−i−l+1(x/y) hµj+i−j(x/y)

)

(2.3)

where i, j, k resp. l runs from top to bottom, from left to right, from bottom to top, resp. from

right to left. For ν = 0, this S-function is a so-called supersymmetric Schur function, and it yields

the character of the (covariant) representation with highest weight Λ0;µ. Similarly, for µ = 0, this

yields the character of a contravariant representation. For a genuine composite partition, the

functions sν;µ(x/y) have many properties similar to ordinary Schur functions [39, 42, 43, 44, 45]

(see also the Appendix to this paper). In the early days of representation theory, it was therefore

believed that sν;µ(x/y) always yields the character of a gl(m|n) representation [22, 23]. This

turned out to be false, making the character problem for gl(m|n) a difficult one. Despite this

negative answer, it is still surprising how often sν;µ(x/y) yields the correct character of a gl(m|n)

irrep. So far, there were no conditions known when this is actually the case, except the rule

that “m and n should be sufficiently large compared to the number of boxes in ν; µ” [26]. In

the present paper, we give a clear condition (criticality) under which sν;µ(x/y) is actually the

character of an irreducible gl(m|n) representation. Note that also for typical representations,

sν;µ(x/y) yields the correct character (an unpublished result obtained by R.C. King).

3 Atypical and critical representations in gl(m|n).

Let Λ ∈ h∗; the atypicality of Λ, denoted by atyp(Λ), is the maximal number of linearly inde-

pendent roots βi such that (βi, βj) = 0 and (Λ, βi) = 0 for all i and j [32]. Such a set {βi} is

called a Λ-maximal isotropic subset of ∆. If atyp(Λ) = 0, Λ is called typical.

For a simple g module VΛ with highest weight Λ, the atypicality of VΛ is atyp(Λ + ρ). Given a

composite partition ν; µ, let us consider the atypicality of VΛν;µ (to be denoted by Vν;µ), first in

the distinguished basis. For this purpose it is sufficient to compute the numbers (Λν;µ + ρ, βij),

with βij = ǫi − δj , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and count the number of zeros. It is convenient

to put the numbers (Λν;µ + ρ, βij) in a (m×n)-matrix (the atypicality matrix A(Λν;µ) [27, 30]),

and give the matrix entries in the (m, n)-rectangle. This is illustrated for gl(5|7) and ν; µ =
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(4, 6, 6, 6); (3, 3, 2, 2) in (3.1).

–10–9–8–7–5–40

4

–3–2–10237

–4–3–2–1126

–6–5–4–3–10

–7–1 –6–5–4–23

(3.1)

With the notations of [37], we distinguish between normal, critical and quasicritical related

roots of the (Λ + ρ)-isotropic set. Consider the set of odd roots {γ1, . . . , γa} with γs = βis,js

such that (Λν;µ + ρ, βis,js) = 0 where j1 < j2 < · · · < ja. Notice that a =atyp(Λν;µ) and that

γ1, . . . , γa are ordered from the bottom left-hand corner to the top right-hand corner. Let xpq

with 1 ≤ p < q ≤ a be the entry in A(Λν;µ) at the intersection of the column containing the

γp zero with the row containing the γq zero and xqp the entry at the intersection of the row

containing the γp zero and the column containing the γq zero. As shown in [37], xpq = −xqp and

therefore A(Λν;µ) has the following form:

A(Λν;µ) =

















































...
...

...
...

. . . x1t . . . x2t . . . . . . 0 . . .
...

...
...

...
. . . . . . . . . . . . . . .

...
...

...
...

. . . x13 . . . x23 . . . 0 . . . −x3t . . .
...

...
...

...
. . . x12 . . . 0 . . . −x23 . . . −x2t . . .

...
...

...
...

. . . 0 . . . −x12 . . . −x13 . . . −x1t . . .
...

...
...

...

















































(3.2)

Let hpq be the hook length between the zeros corresponding to γp and γq, i.e. the number of

steps needed to go from the γp zero of A(Λν;µ) via xpq to the γq zero, where the zeros themselves

are included in the count. In example (3.1), Λ is threefold atypical with γ1 = β51, γ2 = β32 and

γ3 = β14. The hook lengths are h12 = 4, h13 = 8 and h23 = 5.

Definition 3.1 Let Λ be a highest weight of gl(m|n) with atyp(Λ) = a and atypical roots

{γ1, . . . , γa}. Then for every 1 ≤ p < q ≤ a: γp and γq are normally related if and only if
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xpq + 1 > hpq; γp and γq are quasicritically related if and only if xpq + 1 = hpq; γp and γq are

critically related if and only if xpq + 1 < hpq.

In example (3.1), x12 +1 = 5, x13 +1 = 8 and x23 +1 = 4. Thus, γ1 and γ2 are normally related,

γ1 and γ3 are quasicritically related and γ2 and γ3 are critically related.

If each couple (γi, γi+1) (i = 1, 2, . . . , a− 1) is critically related, then all elements of {γ1, . . . , γa}

are critically related. Then the composite partition ν; µ, the highest weight Λν;µ and the repre-

sentation VΛν;µ ≡ Vν;µ are called critical. This coincides with the notion of totally connected, as

described in [34, 36]. There is a simple combinatorial way to check criticality:

Proposition 3.2 Suppose ν; µ is standard in gl(m|n) with atyp(Λν;µ + ρ) = a. Let γs = βis,js

so that (Λν;µ + ρ, γs) = 0 (s = 1, . . . , a) and

M = {µi1 + m − i1, µi1−1 + m − i1 + 1, . . . , µia + m − ia},
N = {ν ′

j1
+ n − j1, ν

′
j1−1 + n − j1 + 1, . . . , ν′

ja
+ n − ja}.

Then the composite partition ν; µ is critical for gl(m|n) if and only if

M∪N = {µi1 + m − i1, µi1 + m − i1 + 1, . . . , µi1 + m − ia + ja − j1 − a + 1},

i.e. if and only if M∪N is a set of consecutive integers.

Proof. Suppose M∪N 6= {µi1 + m − i1, µi1 + m − i1 + 1, . . . , µi1 + m − ia + ja − j1 − a + 1}.

This means that at least one integer is missing between µi1 + m− i1 and µia + m− ia. So, there

exists a p such that

xp,(p+1) > ip − ip+1 + jp+1 − jp − 1 = hp,(p+1) − 2 ⇔ xp,(p+1) + 1 ≥ hp,(p+1),

a contradiction. Conversely, suppose M∪N is a set of consecutive numbers. Define, with p < q,

the sets M(pq) and N (pq) as:

M(pq) = {µip + m − ip, µip−1 + m − ip + 1, . . . , µiq + m − iq},

N (pq) = {ν ′
jp

+ n − jp, ν
′
jp−1 + n − jp + 1, . . . , ν′

jq
+ n − jq}.

The set M(pq) ∪ N (pq) = {µip + m − ip, µip + m − ip + 1, . . . , µiq + m − iq + jq − jp − q + p} is

also a set of consecutive numbers. This implies that

µiq + m − iq = µip + m − iq + jq − jp − q + p ⇔ µiq − µip = jq − jp − q + p
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for every p < q. So, with hpq = jq − jp − iq + ip + 1,

xpq + 1 = µiq + m − iq − (ν ′
jp

+ n − jp) + 1

= µiq + m − iq − (µip + m − ip) + 1
= hpq + p − q < hpq,

meaning that γp and γq are critically related for every p, q (p < q). 2

This property is illustrated for gl(5|7) in example (3.3) of a critical composite partition. Note

how the Young diagrams, together with the (m×n)-rectangle, determine the numbers attached

to these diagrams; how the differences of these numbers determine the entries in the (m × n)-

rectangle and hence also the zeros; and how criticality can be read off from these numbers.

10

7

5

3

2

1

0

0

3

4

6

7–3024567

–4–113456

–6–3–11234

–7–4–20123

–10–7–5–3–2–10

ν; µ = (1, 1, 2, 3); (3, 3, 2, 2)

(γ1, γ2, γ3) = (β5,1, β4,4, β1,6)
M = {0, 3, 4, 6, 7}
N = {0, 1, 2, 3, 5, 7}

M∪N = {0, 1, 2, 3, 4, 5, 6, 7}

x12 = 3, h12 = 5
x13 = 7, h13 = 10
x23 = 4, h23 = 6

(3.3)

It is easy to verify that covariant or contravariant representations are always critical. The class

of critical representations is however much larger. To understand this, let us concentrate again

on the above example. In particular, consider µ = (3, 3, 2, 2) fixed in gl(5|7), and let us determine

all possible ν 6= 0 such that ν; µ is critical. Using Proposition 3.2, one finds, listed according to

the length of ν ′:

• if ℓ(ν ′) = 1, all ν; µ are critical;

• if ℓ(ν ′) = 2, all ν; µ are critical as long as ν ′
2 6∈ {1, 2};

• if ℓ(ν ′) = 3, all ν; µ are critical as long as ν ′
3 6∈ {2, 3}.

One can continue with this description for ℓ(ν ′) ≥ 4, but it becomes slightly more intricate

(some of the representations are no longer multiply atypical, and thus also not critical). In

any case, this illustrates that for given m, n and µ, one can describe the corresponding critical

representations ν; µ using Proposition 3.2, and that the class of critical representations is indeed
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much larger than just the covariant representations (those with ν = 0) and the contravariant

representations (those with µ = 0). In general, it illustrates that ν; µ is critical if the size of µ

and ν is sufficiently small compared to m and n.

In this paper we shall construct a formula for ch(Λν;µ) where ν; µ is standard, critical and such

that ν; µ do not overlap if represented in a (m×n)-rectangle (see (2.1)(b)). In what follows, we

will only consider such composite partitions ν; µ. Let Λν;µ be the highest weight corresponding

to ν; µ. We can generalize the definition of the (m, n)-index of an ordinary partition λ (cf. [38])

to composite partitions ν; µ in gl(m|n):

Definition 3.3 For ν; µ a standard composite partition, the (m, n)-index of ν; µ is the number

k = min

({

i ∈ {1, . . . , m}|∃j ∈ {1, . . . , n} :

µi +
〈

µ′
n−j+1 − m

〉

+ (m − i) = ν ′
j + 〈νm−i+1 − n〉 + (n − j)

}

∪ {m + 1}

)

(3.4)

In what follows, k will always denote this number. In the special case where ν = 0, this definition

coincides with the one given in [38]. When the representation is typical k will be equal to m+1;

otherwise k corresponds to the smallest row number in the atypicality matrix in which there

occurs a zero. Thus in the following we shall assume that k ≤ m.

Recall that ∆+ corresponds to the distinguished choice, and Π is the distinguished set of simple

roots (1.1). The highest weight of Vν;µ is given by Λν;µ. With respect to another set of simple

roots Π′ (with the corresponding ρ′), Vν;µ has a different highest weight Λ′. We shall follow the

technique of simple odd reflections, described in [38]. Denote Λ(1) = Λν;µ, ρ(1) = ρ and Π(1) = Π.

Now we perform a sequence of simple odd α(i)-reflections [38]; each of these reflections preserve

∆0,+ but may change Λ(i) + ρ(i) and Π(i). Denote the sequence of reflections by:

Λ(1) + ρ(1), Π(1) α(1)

−→ Λ(2) + ρ(2), Π(2) α(2)

−→ · · ·
α(f)

−→ Λ′ + ρ′, Π′ (3.5)

where, at each stage, α(i) is an odd root from Π(i). For given ν; µ, consider the following sequence

of odd roots (with positions on row m, row m − 1, . . ., row k):

row m : βm,1, βm,2, . . . , βm,min{n,µk−k+m}

row m − 1 : βm−1,1, βm−1,2, . . . , βm−1,min{n,µk−k+m−1}
...

...
row k : βk,1, βk,2, . . . , βk,µk

(3.6)

in this particular order (i.e. starting with βm,1 and ending with βk,µk
). Then we have:
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Lemma 3.4 Let ν; µ be standard and critical in gl(m|n) and suppose ν and µ do not overlap

in the (m× n)-rectangle. Then the sequence (3.6) is a proper sequence of simple odd reflections

for Λν;µ, i.e. α(i) is a simple odd root from Π(i). At the end of the sequence, one finds:

Π′ = {ǫ1 − ǫ2, ǫ2 − ǫ3, . . . , ǫk−2 − ǫk−1, ǫk−1 − δ1, δ1 − δ2, δ2 − δ3, . . . , δµk−1 − δµk
,

δµk
− ǫk, ǫk − δµk+1, δµk+1 − ǫk+1, ǫk+1 − δµk+2, . . . , δµk+m−k − ǫm, ǫm − δµk+m+1−k,

δµk+m+1−k − δµk+m+2−k, . . . , δn−1 − δn}. (3.7)

Furthermore,

Λ′ + ρ′ = Λλ + ρ +
k+a−1
∑

i=k+1

µk−k+i
∑

j=µi+1

βi,j +
m

∑

i=k+a

max{0,n−νm−i+1}
∑

j=µi+1

βi,j . (3.8)

Proof. This proof is similar to the proof of Lemma 2.3 in [38]. But observe that in the first

stage (i.e. the reflections with respect to odd roots of row m), µk − k + m < n is not necessarily

true. So the sequence of odd reflections will end either with βm,µk−k+m or with βm,n. In the

first case, Π(µk−k+m+1) has three odd roots; in the second case, Π(n+1) contains only two odd

roots. However, in both cases the set is ready to continue the reflections with respect to the

elements of row m − 1, since βm−1,1 belongs to Π(λk−k+m+1) as well as to Π(n+1). Continuing

with the other stages of (3.6) leads to (3.7). Remark that this sequence of simple odd reflections

can always be performed, independent of whether ν; µ is critical or not.

Criticality does, however, play an important role in (3.8), since the changes of the atypicality

matrix at each step of the sequence are governed by

Λ(i+1) + ρ(i+1) = Λ(i) + ρ(i) if (Λ(i) + ρ(i), α(i)) 6= 0,

Λ(i+1) + ρ(i+1) = Λ(i) + ρ(i) + α(i) if (Λ(i) + ρ(i), α(i)) = 0. (3.9)

Suppose that in the original situation the first zero is in the last row, so γ1 = βm,µm+1. This

assumption does not harm the generality, as Λν;µ + ρ will not change anyway until the first

zero is reached in the atypicality matrix, according to (3.9). Examining the sequence of odd

reflections explicitly for the elements of row m yields

Λ(min{n,µk−k+m}+1) + ρ(min{n,µk−k+m}+1) = Λν;µ + ρ +

min{n−ν1,µk−k+m}
∑

j=µm+1

βm,j . (3.10)

More generally, we have that µk − k + i ≤ n− νm−i+1 if k + 1 ≤ i ≤ k + a− 1, and µk − k + i >

n − νm−i+1 if k + a ≤ i ≤ m. This explains the two different contributions in (3.8). To see
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that criticality is necessary, consider two consecutive roots γp and γp+1. For simplicity, consider

again γ1 and γ2 with γ1 on row m. If γ1 and γ2 are critically related, then there appears a zero

on row m− 1 of the atypicality matrix after finishing the first stage, and one can continue until

there appears an extra zero in the row of γ2. If they are are not critically related, then no extra

zero can be obtained in this row. To follow the argument, this is illustrated in the following

examples, where the atypicality matrix is given in the initial situation, after finishing the first

stage, and after finishing the second (and in this case final) stage:

Critically related roots:

–4–3–10

–2–112

0134

−→
–2–101

–2–101

0123

−→
–2–2–11

0013

0013

Non critically related roots:

–5–3–10

–3–112

0245

−→
–3–101

–3–101

0234

−→

124

–3–2–11

–1013

0

Thus, if ν; µ is critical, there is at least one zero at row m − 1 after the first stage. This zero

corresponds to βm−1,µm−1+1. At the second stage, the elements of row m− 1 play the same role

as the elements of row m in the first stage, and one continues the process. Schematically, the

zeros in the atypicality matrix move up along those positions corresponding to boxes that are

not covered by the Young diagrams F (µ) and F (ν). Continuing with the remaining stages leads

to (3.8). 2

Corollary 3.5 The critical representation Vν;µ is tame.

Proof. Having performed the simple odd reflections (3.6), one can compute the atypicality

matrix for Λ′ + ρ′ using (3.8). This gives:

(Λ′ + ρ′, βij) = 0 for all (i, j) with k ≤ i ≤ k + a − 1, µk + 1 ≤ j ≤ µk + a. (3.11)

Therefore the set

SΛ′ = {ǫk − δµk+1, ǫk+1 − δµk+2, . . . , ǫm − δµk+a} (3.12)

is a (Λ′ + ρ′)-maximal isotropic subset. Furthermore, SΛ′ ⊂ Π′, see (3.7). This implies that Vν;µ

is tame [38]. If ν; µ is not critical, (3.11) does not hold, as explained in the proof of Lemma 3.4.

2
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Let us illustrate some of these notions for ν; µ = (3, 3); (9, 5, 3, 3, 2, 2, 1) in gl(5|7):

(a) (b) (c)

–6–5–4–1024

–4–3–21246

–3–2–12357

01256810

56710111315

k

k

x
xxxxxxx
xxxxxx
ixxxxxx

ixxxxx

* *
*

i***
ik

(3.13)

In (3.13)(a), the atypicality matrix associated with ν; µ is given. In (3.13)(b) the positions

marked with “i” refer to the (Λ′ + ρ′)-maximal isotropic set (3.12). For convenience, let us

refer to these positions as “the isotropic diagonal.” The positions of the odd roots that have

been used for the sequence of reflections to go from Λν;µ and Π to Λ′ and Π′ are marked by

“x” in (3.13)(b). So, they are simply all positions to the left of the isotropic diagonal. Finally,

(3.13)(c) shows the positions of those βij that appear on the right hand side of (3.8); they are

marked by “*”. These are all positions to the left of the isotropic diagonal that are not inside

F (ν; µ). One can see from this example and others that the (m, n)-index k determines all other

necessary ingredients.

4 A determinantal formula for ch(Vν;µ) and sν;µ(x/y).

Let ν; µ be a standard and critical composite partition without overlap in the (m×n)-rectangle.

As the g-module Vν;µ is tame, a character formula is known due to Kac and Wakimoto [32]. It

reads, in terms of Λ′:

chVν;µ = j−1
Λ′ e−ρ′R′−1

∑

w∈W

ε(w)w
(

eΛ′+ρ′
∏

β∈SΛ′

(1 + e−β)−1
)

, (4.1)

where

R′ =
∏

α∈∆0,+

(1 − e−α)
/

∏

α∈∆′

1,+

(1 + e−α) (4.2)

and jΛ′ is a normalization coefficient to make sure that the coefficient of eΛ′

on the right hand

side of (4.1) is 1. By definition of ρ and R

e−ρ′R′−1 = e−ρR−1.

As usual in this context we put

xi = eǫi , yj = eδj (1 ≤ i ≤ m, 1 ≤ j ≤ n). (4.3)
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Now we have

chVν;µ = j−1
Λ′

ν;µ
D−1

∑

w∈W

ε(w)w(tν;µ),

with

D =

∏

1≤i<j≤m(xi − xj)
∏

1≤i<j≤n(yi − yj)
∏m

i=1

∏n
j=1(xi + yj)

(4.4)

and

tν;µ =

k−1
∏

i=1

xµi+m−i−n
i

l−1
∏

j=1

y
µ′

j+n−j−m

j

k+a−1
∏

i=k

yr
i−k+l

xr
i (xi + yi−k+l)

n
∏

i=k+a

x
m−i−νm−i+1

i

n
∏

j=l+a

y
n−j−ν′

n−j+1

j

(4.5)

where l = µk + 1 and r = n − m + k − l and jΛ′

ν;µ
= a! (due to symmetry there are a! elements

of Sm × Sn that leave tν;µ invariant).

This expression can be written in a nicer form:

Theorem 4.1 Let tν;µ be given by (4.5) and r = n − m + k − µk − 1. Then

1

a!

∑

w∈Sm×Sn

ε(w)w(tν;µ) = (−1)(m−a)(l−1)+n(m−a−k+1) det(C), (4.6)

where C is the following square matrix of order n + m − a:

C =





0 Yµ′ 0

Xµ R(r) Xν

0 Yν′ 0



 with R(r) =

(

yr
j

xr
i (xi + yj)

)

1≤i≤m, 1≤j≤n

(4.7)

and with

Xµ =
(

x
µj+m−n−j
i

)

1≤i≤m, 1≤j≤k−1
, Xν =

(

x
m−j−νm−j+1

i

)

1≤i≤m, k+a≤j≤m
,

Yµ′ =
(

y
µ′

i+n−m−i
j

)

1≤i≤l−1, 1≤j≤n
, Yν′ =

(

y
n−i−ν′

n−i+1

j

)

l+a≤i≤n, 1≤j≤n
.

Proof. The proof is similar to that of [38][Lemma 3.1]. Apply Laplace’s theorem for the expansion

of det(C) with respect to columns 1, 2, . . . , k − 1, k + n, k + n + 1, . . . , n + m− a. Keeping track

of the zero blocks, one finds

det(C) = (−1)
(m−a)(m−a+1)

2

∑

1≤i1<···<im−a≤m

(−1)i1+···+im−a+(m−a)(l−1) det(Cx) det(Cy), (4.8)
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where Cx is the (m − a) × (m − a)-matrix consisting of rows i1, i2, . . . , im−a of the matrix
(

Xµ Xν

)

, and Cy is the n × n-matrix





Yµ′

R̃(r)

Yν′



 ,

where R̃(r) is obtained by removing rows i1, i2, . . . , im−a in R(r). The number of terms on the rhs

of (4.8) is
(

m
m−a

)

(m − a)!n! = m!n!/a!; due to symmetry considerations this is the same as the

number of distinct terms on the lhs of (4.6). For (i1, . . . , im−a) = (1, . . . , k−1, k+n, ..., n+m−a),

and the diagonal term in detCx and detCy, the contribution on the rhs of (4.8) is now easily

seen to be (−1)(m−a)(l−1)+n(m−a−k+1)tν;µ. But by definition of the determinant, every term on

the rhs of (4.8) is (up to the overall sign factor (−1)(m−a)(l−1)) of the form ε(w)w(tν;µ) with

w ∈ Sm × Sn. Conversely, every term of the form ε(w)w(tν;µ) appears as a term on the rhs

of (4.8). It follows that (4.6) holds. 2

With the same notation, one finds

Corollary 4.2 The character of a critical representation labelled by a standard composite par-

tition ν; µ (without overlap) has the following determinantal form:

chVν;µ = (−1)(m−a)(l−1)+n(m−a−k+1)D−1 det(C).

As an example, let m = 4, n = 5 and ν; µ = (1, 1, 4); (3, 1). One finds

–7–4–3–20

–6–3–2–11

–4–1013

–12346 k = 2
l = µk + 1 = 2
a = 2

⇒ r = n − m + k − l = 1
⇒ n + m − a = 7

Thus, according to formula (4.7),

chV(1,1,4);(3,1) = D−1 det



























0 y2
1 y2

2 y2
3 y2

4 y2
5 0

x1
y1

x1(x1+y1)
y2

x1(x1+y2)
y3

x1(x1+y3)
y4

x1(x1+y4)
y5

x1(x1+y5) x−4
1

x2
y1

x2(x2+y1)
y2

x2(x2+y2)
y3

x2(x2+y3)
y4

x2(x2+y4)
y5

x2(x2+y5) x−4
2

x3
y1

x3(x3+y1)
y2

x3(x3+y2)
y3

x3(x3+y3)
y4

x3(x3+y4)
y5

x3(x3+y5) x−4
3

x4
y1

x4(x4+y1)
y2

x4(x4+y2)
y3

x4(x4+y3)
y4

x4(x4+y4)
y5

x4(x4+y5) x−4
4

0 y0
1 y0

2 y0
3 y0

4 y0
5 0

0 y−3
1 y−3

2 y−3
3 y−3

4 y−3
5 0



























.
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Thus the determinantal formula is very explicit. The main goal of this determinantal formula

however is that it allows us to make the link with another explicit formula that is even more

useful, namely:

Theorem 4.3 Let ν; µ be a standard and critical composite partition with no overlap. The

character chVν;µ is equal to sν;µ(x/y) as defined in (2.3).

The proof depends upon a double Laplace expansion of det(C), various lemmas and compu-

tational rules for ordinary and supersymmetric S-functions (labelled by ordinary or composite

partitions), and an induction argument. The double Laplace expansion is similar as in the proof

of [38, Theorem 5.5]. The details of this proof are given in the Appendix.

A Appendix

We shall provide here a proof of Theorem 4.3. First, we need to collect some formulas for (ordi-

nary) S-functions labelled by a composite partition (often referred to as “mixed” S-functions).

Then we shall construct a set of formulas for the supersymmetric S-functions labelled by a com-

posite partition. The rest of the proof follows the lines set out in section 5 of [38], however there

are many technical details which need to be reinvestigated in the current case. We shall assume

that the reader is familiar with notations of ordinary S-functions [46], such as sλ(x), sλ/µ(x),

cν
λµ for Littlewood-Richardson coefficients, vertical strips, etc.

The “contravariant” S-functions are usually defined in terms of the ordinary (or “covariant”)

S-functions. Suppose we have a set of variables x = (x1, . . . , xm). For a partition λ, let λ =

(−λ1,−λ2, . . .) and denote by xi = 1
xi

, for all i = 1, . . . , m, then,

sλ(x) = sλ(x). (A.1)

Similarly, s
λ/µ

(x) = sλ/µ(x). Using the contravariant S-functions, the composite or “mixed”

S-functions are defined [42] by

sν;µ(x) =
∑

ζ

(−1)|ζ|s
ν/ζ

(x)sµ/ζ′(x). (A.2)

The product of a covariant and a contravariant S-function is given by

sν(x)sµ(x) = sν(x)sµ(x) =
∑

η

s
ν/η;µ/η

(x) (A.3)
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where

s
ν/η;µ/η

(x) =
∑

ϕ,ψ

cν
ϕηc

µ
ψ,ηsϕ;ψ(x). (A.4)

The composite S-functions can also be written in terms of a decomposition [25] of x = x′ + x′′,

namely

sν;µ(x) =
∑

ρ,σ,τ

s
ν/σ;µ/τ

(x′)s
σ/ρ;τ/ρ

(x′′). (A.5)

In [39] the composite supersymmetric S-functions are defined in terms of ordinary composite

S-functions, namely:

sν;µ(x/y) =
∑

η,ζ,ξ

s
ν/ξ;µ/ζ

(x)s
ξ′/η;ζ′/η

(y) =
∑

ρ,ζ,ξ

s
ν/ξ;µ/ζ

(x)s
(ξ/ρ)′;(ζ/ρ)′

(y). (A.6)

In the same article, the authors prove that this expression is equivalent with the definition (2.3).

With formula (A.6), it is possible to prove [42, Appendix 2] that (A.3) also holds in the super-

symmetric case. Thus,

sν(x/y)sµ(x/y) =
∑

η

s
ν/η;µ/η

(x/y) (A.7)

where

s
ν/η;µ/η

(x/y) =
∑

ϕ,ψ

cν
ϕηc

µ
ψ,ηsϕ;ψ(x/y). (A.8)

We need also the definition of

sλ/νµ(x) ≡
∑

ϕ

cϕ
νµsλ/ϕ(x), (A.9)

and the equality
∑

σ

cλ
ρσcσ

µν =
∑

η

cλ
µηc

η
ρν =

∑

τ

cλ
ντc

τ
µρ, (A.10)

following from the three different ways in which the product sµ(x)sν(x)sρ(x) can be expanded.

Using (A.4) and (A.9) it is easy to see that (A.6) can be written as

sν;µ(x/y) =
∑

ρ,ζ,ξ

s
ν/ξ;µ/ζ

(x)s
ξ′/ρ′;ζ′/ρ′

(y) =
∑

ρ,ϕ,ψ

s
ν/ϕρ;µ/ψρ

(x)sϕ′;ψ′(y). (A.11)

Formulas (A.6) and (A.11) are generalizations of (cfr. [46, p.90 Ex. 23])

sλ(x/y) =
∑

µ

sµ(x)sλ′/µ′(y) =
∑

ν

sλ/ν(x)sν′(y), (A.12)

and they can themselves be generalized to composite skew partitions:

s
ν/η;λ/µ

(x/y) =
∑

ρ,σ,τ

s
ν/ησ;λ/µτ

(x)s
(σ/ρ)′;(τ/ρ)′

(y). (A.13)
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Indeed,

s
ν/η;λ/µ

(x/y) =
∑

α,β

cν
αηc

λ
βµsα;β(x/y) (Formula (A.8))

=
∑

ρ,σ,τ

∑

α,β

cν
αηc

λ
βµs

α/σ;β/τ
(x)s

(σ/ρ)′;(τ/ρ)′
(y) (Formula (A.6))

=
∑

ρ,σ,τ

∑

γ,δ





∑

α,β

cν
αηc

λ
βµcα

σγcβ
τδ



 sγ;δ(x)s
(σ/ρ)′;(τ/ρ)′

(y) (Formula (A.4))

=
∑

ρ,σ,τ

∑

γ,δ





∑

ζ,ξ

cν
ζγcλ

ξδc
ζ
σηc

ξ
τµ



 sγ;δ(x)s
(σ/ρ)′;(τ/ρ)′

(y) (Formula (A.10))

=
∑

ρ,σ,τ

∑

ζ,ξ

cζ
σηc

ξ
τµs

ν/ζ;λ/ξ
(x)s

(σ/ρ)′;(τ/ρ)′
(y) (Formula (A.4))

=
∑

ρ,σ,τ

s
ν/ησ;λ/µτ

(x)s
(σ/ρ)′;(τ/ρ)′

(y). (Formula (A.9))

Next, we introduce some further notation. Let

D(x) =
∏

1≤i<j≤m

(xi − xj) and E(x, y) =
m
∏

i=1

n
∏

j=1

(xi − yj). (A.14)

Suppose |x| = m and |y| = n. From the definition of D(x) and E(x, y) we derive that

D(x) = (−1)
m(m−1)

2 D(x)

(

m
∏

i=1

x−m+1
i

)

, (A.15)

E(x, y) = (−1)mn

(

m
∏

i=1

x−n
i

)





n
∏

j=1

y−m
j



E(x, y), (A.16)

D(x)D(y)

E(x, y)
= (−1)

m(m−1)
2

+
n(n−1)

2
+mn

(

m
∏

i=1

xn−m+1
i

)





n
∏

j=1

ym−n+1
j





D(x)D(y)

E(x, y)
. (A.17)

Lemma A.1 Suppose ν is a partition, then sν(x) =
(−1)

m(m−1)
2

D(x)

∣

∣

∣
x−νi+i−1

j

∣

∣

∣
=

∣

∣

∣
x
−νm−i+1+m−i
j

∣

∣

∣

D(x)
.

Proof. This formula is derived from the determinantal formula for S-functions [46], applying

properties of determinants:

sν(x) = sν(x) =

∣

∣

∣x
νi+m−i
j

∣

∣

∣

D(x)
= (−1)

m(m−1)
2

m
∏

i=1

xm−1
i

∣

∣

∣x
−νi−m+i
j

∣

∣

∣

D(x)

= (−1)
m(m−1)

2

∣

∣

∣
x−νi+i−1

j

∣

∣

∣

D(x)
=

∣

∣

∣
x
−νm−i+1+m−i
j

∣

∣

∣

D(x)
.
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2

The following lemma will be crucial in our induction argument.

Lemma A.2 Suppose y = y(n) = (y1, . . . , yn). Let ν and µ be partitions, then

sν;µ(x/y) =
∑

a,b

s
ν/(1b);µ/(1a)

(x/y(n−1))ya−b
n .

Proof. We prove this statement using the formulas given earlier in this Appendix.

sν;µ(x/y) =
∑

ϕ,ψ,ρ

s
ν/(ρϕ);µ/(ρψ)

(x)sϕ′;ψ′(y) (Formula (A.11))

=
∑

ϕ,ψ,ρ

s
ν/(ρϕ);µ/(ρψ)

(x)

(

∑

η,κ,τ

s
(ϕ/κ)′;(ψ/τ)′

(y(n−1))s
κ/η′;τ ′/η′

(yn)

)

(Formula (A.5))

=
∑

κ,τ

∑

ϕ,ψ,ρ

s
ν/(ρϕ);µ/(ρψ)

(x)s
(ϕ/κ)′;(ψ/τ)′

(y(n−1))
∑

η

s
κ′/η′;τ ′/η′

(yn)

=
∑

κ,τ

s
ν/κ;µ/τ

(x/y(n−1))sκ′(yn)sτ ′(yn). (by (A.13) and (A.3))

As sλ(x(m)) = 0 if ℓ(λ) >
∣

∣x(m)
∣

∣ = m, the right hand side equals

∑

a,b

s
ν/(1b);µ/(1a)

(x/y(n−1))s(b)(yn)s(a)(yn) =
∑

a,b

s
ν/(1b);µ/(1a)

(x/y(n−1))ya−b
n .

2

If ν is an arbitrary t-tuple over Z and µ an arbitrary s-tuple over Z, we can still define sν;µ(x|y)

through formula (2.3). Note that ν + δt and µ + δs must be nonnegative distinct integers for

sν;µ(x|y) to be nonzero. We need the following generalization of the previous lemma.

Lemma A.3 Suppose y = y(n) = (y1, . . . , yn). Let ν be an arbitrary t-tuple over Z and µ an

arbitrary s-tuple over Z, then

sν;µ(x/y) =
∑

α,β

sβ;α(x/y(n−1))ya−b
n , (A.18)

where a = |µ−α|, b = |ν−β|, and the sum is taken over all α and β such that (ν−β)i ∈ {0, 1}.

Proof. (Compare with the proof of [38, Lemma 5.3].) This follows from the previous lemma

and the determinant (2.3) for sν;µ(x/y). If there are two identical columns in this determinant,

then sν;µ(x/y) ≡ 0. But then also in the right hand side of (A.18), the terms will either vanish
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or else cancel each other two by two. If all columns in the determinant are different, they

can be permuted such that sν;µ(x/y) = ±sφ;ψ(x/y) where φ and ψ are partitions. Applying

Lemma A.2 and performing the inverse permutation for the S-functions in the right hand side

yields the result. 2

Lemma A.4 For m = p + q, let ϕ = (ϕ1, . . . , ϕp) and σ = (σ1, . . . , σq) be two partitions and

λ = (ϕ1 + g − q, . . . , ϕp + g − q,−σq + h, . . . ,−σ1 + h). Suppose g, h ∈ Z, then

∑

x′+x′′

(
∏

x′)g(
∏

x′′)hsϕ(x′)sσ(x′′)

E(x′, x′′)
= sλ(x), (A.19)

where the sum is over all possible decompositions x = x′ + x′′ with the size of x′ equal to p and

the size of x′′ equal to q.

Proof. We can rewrite the left hand side of (A.19) using the determinantal formula for S-

functions and the equality

D(x) = (−1)
p(p+1)

2
+r1+···+rpD(x′)D(x′′)E(x′, x′′), (A.20)

with the elements of x′ denoted by xr1 , . . . , xrp (r1 < · · · < rp) and those of x′′ by xs1 , . . . , xsq

(s1 < · · · < sq):

∑

x′+x′′

(
∏

x′)g(
∏

x′′)hsϕ(x′)sσ(x′′)

E(x′, x′′)

=
∑

x′+x′′

(
∏

x′)g(
∏

x′′)h

E(x′, x′′)
·

∣

∣

∣

∣

(

xri

ϕj+p−j
)

i=1...p
j=1...p

∣

∣

∣

∣

D(x′)
·

∣

∣

∣

∣

(

xsi

−σq−j+1+q−j
)

i=1...q
j=1...q

∣

∣

∣

∣

D(x′′)

=
1

D(x)

∑

x′+x′′

(−1)
p(p+1)

2
+r1+···+rp

∣

∣

∣

∣

∣

(

xri

(ϕj+g−q)+(p+q−j)
)

i=1...p
j=1...p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

xsi

(−σm−j+1+h)+(m−j)
)

i=1...q
j=p+1...m

∣

∣

∣

∣

∣

.

The numerator of this sum is the Laplace expansion of the following determinant with respect

to columns 1, . . . , p:

∣

∣

∣x
(ϕj+g−q)+(m−j)
i x

(−σm−j+1+h)+(m−j)
i

∣

∣

∣ =
∣

∣

∣xλ+δm

∣

∣

∣

with λ = (ϕ1 + g − q, . . . , ϕp + g − q,−σq + h, . . . ,−σ1 + h) and δm = (m − 1, m − 2, . . . , 0), so

the result follows. 2

Observe that in this result, λ is not necessarily a partition, but it could be an arbitrary integer

m-tuple. In such a case, sλ(x) is still well defined by |xλ+δm |/|xδm |.
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Lemma A.5 Suppose |x| = m, |y| = n, and h, p and q positive integers with m = p + q. Let

κ = (κ1, . . . , κq), η = (η1, η2, . . .), and µ be partitions, and ν = (κ1, . . . , κq, η1, η2, . . .). Then

∑

x′+x′′

(
∏

x′)q(
∏

x′′)hsη;µ(x′/y)sκ+(hq)(x
′′/y)

E(x′, x′′)
= sν;µ(x/y) (A.21)

where the sum is over all possible decompositions x = x′ + x′′ with the size of x′ equal to p and

the size of x′′ equal to q.

Proof. We shall use induction on the number n of variables y. Suppose n = 0. Since,

sη;µ(x) = (
∏

i xi)
−η1 sξ(x) with ξ = (µ1 + η1, µ2 + η1, . . . , η1 − η2, 0) [47], this lemma coincides

with Lemma A.4 with g = q − η1, ϕ = ξ and σ = κ + (hp). Suppose that n > 0 and denote by

y(n) = (y1, . . . , yn). We can use Lemma A.2 to isolate yn, giving:

∑

x′+x′′

(
∏

x′)q(
∏

x′′)hsη;µ(x′/y)sκ+(hq)(x
′′/y)

E(x′, x′′)

=
∑

x′+x′′

(
∏

x′)q(
∏

x′′)h

E(x′, x′′)





∑

α,β

sβ;α(x′/y(n−1))ya−b
n





(

∑

γ

sγ+(hq)(x
′′/y(n−1))y−c

n

)

where µ/α, η/β and κ/γ are vertical strips of length a, b and c respectively. Rearranging terms,

this sum equals

∑

α,β,γ

(

∑

x′+x′′

(
∏

x′)q(
∏

x′′)h

E(x′, x′′)
sβ;α(x′/y(n−1))sγ+(hq)(x

′′/y(n−1))

)

ya−b−c
n .

Let τ = (γ1, . . . , γq, β1, β2, . . .). Using induction, the sum reduces to
∑

α,τ

sτ ;α(x/y(n−1))ya−(b+c)
n

where µ/α is a vertical strip of length a and (ν − τ)i ∈ {0, 1} with |ν − τ | = b + c. Using

Lemma A.3, this is equal to sν;µ(x/y) . 2

Now we are in a position to prove the main theorem, first for a special case (Theorem A.6), and

using this finally the general case (Theorem A.8). The special case consists of a subclass of all

standard and critical composite partitions without overlap. This subclass is characterized by

n = l+a−1; in other words, we will consider standard composite partitions where the first zero

in the atypicality matrix (the zero in the row with index k) is in the last column. An example

is given in Figure 2, with ν; µ = (2, 6); (6, 4, 2, 2, 1) in gl(8|5). In this case k = 4, l = 3, a = 3

and r = −2.

22



0

0

0

Figure 2: ν; µ = (2, 6); (6, 4, 2, 2, 1)

Theorem A.6 Suppose ν; µ is a standard and critical composite partition with no overlap in

gl(m|n) with n = l + a − 1. Then

ch(Vν;µ) = ±sν;µ(x/y).

Proof. Let p = k + a − 1 and q = m − k − a + 1. Note that in this special case r = −q.

First substitute yj by −yj in the determinantal formula (Corallary 4.2) of ch(Vν:µ). Next, take

the Laplace expansion of this determinant with respect to columns 1, 2, . . . , n + k − 1. So, with

the elements of x′ denoted by xr1 , . . . , xrp and those of x′′ by xs1 , . . . , xsq , we have the following

expression for the chacacter:

E(x, y)

D(x)D(y)
det









0
(

y
µ′

i+n−m−i
j

)

i=1,...,n−a
j=1,...,n

0

(

x
µj+m−n−j
i

)

i=1,...,m
j=1,...,k−1

(

yr
j

xr
i (xi−yj)

)

i=1,...,m
j=1,...,n

(

x
−ν′

m−j+1+m−j

i

)

i=1,...,m
j=k+a,...,m









=
E(x, y)

D(x)D(y)

∑

x′+x′′

(−1)P

∣

∣

∣

∣

∣

∣

∣

0
(

y
µ′

i+n−m−i
j

)

i=1,...,n−a
j=1,...,n

(

x
µj+m−n−j
ri

)

i=1,...,p
j=1,...,k−1

(

yr
j

xr
ri

(xri
−yj)

)

i=1,...,n−a
j=1,...,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

x
−ν′

j+j−1
si

)

i=1,...,q
j=1,...,q

∣

∣

∣

∣

∣

,

with P = (n+k−1)(n+k)
2 + r1 + · · · + rp.

In the right hand side of this expression we can rewrite the first determinant, using [38, Theorem
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3.4]:

E(x′, y)

D(x′)D(y)

∣

∣

∣

∣

∣

∣

∣

0
(

y
µ′

i+n−m−i
j

)

i=1,...,n−a
j=1,...,n

(

x
µj+m−n−j
ri

)

i=1,...,p
j=1,...,k−1

(

yr
j

xr
ri

(xri
−yj)

)

i=1,...,p
j=1,...,n

∣

∣

∣

∣

∣

∣

∣

=
E(x′, y)

D(x′)D(y)

(

∏p
i=1 xri

∏n
j=1 yj

)q
∣

∣

∣

∣

∣

∣

∣

0
(

y
µ′

i+n−p−i
j

)

i=1,...,n−a
j=1,...,n

(

x
µj+p−n−j
ri

)

i=1,...,p
j=1,...,k−1

(

1
xri

−yj

)

i=1,...,p
j=1,...,n

∣

∣

∣

∣

∣

∣

∣

= ±

(

∏p
i=1 xri

∏n
j=1 yj

)q

sµ(x′/ − y),

where, the minus sign depends on the partition µ only. So, the Laplace expansion equals

±
∑

x′+x′′

(−1)P E(x, y)

D(x)D(y)

D(x′)D(y)

E(x′, y)

(

∏p
i=1 xri

∏n
j=1 yj

)q

sµ(x′/ − y)D(x′′)sν(x
′′)

= ±
∑

x′+x′′

E(x′′, y)

E(x′, x′′)

(

∏p
i=1 xri

∏n
j=1 yj

)q

sµ(x′/ − y)sν(x
′′) (Formula (A.20))

= ±
∑

x′+x′′

(−1)qn(
∏q

i=1 xn
si

)(
∏n

j=1 yq
j )E(x′′, y)

E(x′, x′′)

(
∏p

i=1 xq
ri)

(
∏n

j=1 yq
j )

sµ(x′/ − y)sν(x
′′). (Formula (A.16))

Applying a special case of the Sergeev-Pragacz formula [38, eq. (1.12)] and Lemma A.5, the sum

equals

±
∑

x′+x′′

(
∏p

i=1 xri
)
q
(
∏q

i=1 xsi
)
n

E(x′, x′′)
sµ(x′/ − y)sν+(nq)(x

′′/ − y) = ±sν;µ(x/ − y).

Substituting every yj by −yj , yields the theorem. 2

The next corollary follows immediately from this theorem and the fact that

sν;µ(x/y) = sν′;µ′(y/x). (A.22)

Corollary A.7 Suppose ν; µ is a standard and critical composite partition with no overlap in

gl(m|n) with m = k + a − 1. Then

ch(Vν;µ) = ±sν;µ(x/y).

Now we can prove the final theorem.
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Theorem A.8 Let ν; µ be a standard and critical composite partition with no overlap in gl(m|n).

Then

ch(Vν:µ) = ±sν;µ(x/y).

Proof. Let p = l +a− 1 and q = n− l−a+1. First substitute yj by −yj in the determinantal

formula of ch(Vν:µ). Next, take the Laplace expansion of the determinant with respect to rows

1, 2, . . . , m + l − 1. So, with the elements of y′ denoted by yr1 , . . . , yrp and those of y′′ by

ys1 , . . . , ysq , we have the following expression

E(x,−y)

D(x)D(y)
det

















0
(

y
µ′

i+n−m−i
j

)

i=1,...,l−1
j=1,...,n

0

(

x
µj+m−n−j
i

)

i=1,...,m
j=1,...,k−1

(

yr
j

xr
i (xi−yj)

)

i=1,...,m
j=1,...,n

(

x
−ν′

m−j+1+m−j

i

)

i=1,...,m
j=k+a,...,m

0
(

y
−ν′

n−i+1+n−i

j

)

i=l+a,...,n
j=1,...,n

0

















=
E(x,−y)

D(x)D(y)

∑

x′+x′′

(−1)P C1

∣

∣

∣

∣

∣

(

y
−ν′

q−i+1+q−i
sj

)

i=1,...,q
j=1,...,q

∣

∣

∣

∣

∣

,

with P = (m+l−1)(m+l)
2 + r1 + · · · + rp. The determinant C1 equals

C1 =

∣

∣

∣

∣

∣

∣

∣

∣

0
(

y
µ′

i+n−m−i
rj

)

i=1,...,l−1
j=1,...,p

0

(

x
µj+m−n−j
i

)

i=1,...,m
j=1,...,k−1

(

yr
rj

xr
i (xi−yrj

)

)

i=1,...,m
j=1,...,p

(

x
−νm−j+1+m−j
i

)

i=1,...,m
j=k+a,...,m

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∏p
j=1 yrj

∏m
i=1 xi

)q

∣

∣

∣

∣

∣

∣

∣

∣

0
(

y
µ′

i+p−m−i
rj

)

i,j
0

(

x
µj+m−p−j
i

)

i,j

(

yr′

rj

xr′

i (xi−yrj
)

)

i,j

(

x
−νm−j+1+q+m−j
i

)

i,j

∣

∣

∣

∣

∣

∣

∣

∣

,

where r′ = r − q = p − m + k − l. Thus, this determinantal expression coincides with the

determinantal formula (4.7) of ch(Vη:µ) in gl(m|p) with η = (ν1, . . . , νm−k−a+1) − (qm−k−a+1).

According to Theorem A.6, the determinant C1 equals

±
D(x)D(y′)

E(x, y′)

(

∏p
j=1 yrj

∏m
i=1 xi

)q

sη;µ(x/ − y′).

So, η′ = (ν ′
q+1, ν

′
q+2, . . .) and let β′ = (ν ′

1, . . . , ν
′
q). As the minus sign depends on the composite
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partition η; µ only, the Laplace expansion equals

±
∑

y′+y′′

(−1)P E(x, y)

D(x)D(y)

D(x)D(y′)

E(x, y′)

(

∏p
j=1 yrj

∏m
i=1 xi

)q

sη;µ(x/ − y′)D(y′′)sβ′(y′′)

= ±
∑

y′+y′′

E(x, y′′)

E(y′, y′′)

(

∏p
j=1 yrj

∏m
i=1 xi

)q

sη;µ(x/ − y′)sβ′(y′′)

= ±
∑

y′+y′′

(
∏m

i=1 xi)
q
(

∏q
j=1 ysj

)m

E(y′, y′′)

(

∏p
j=1 yrj

∏m
i=1 xi

)q

sη;µ(x/ − y′)sβ′(y′′)E(y′′, x),

where we have used (A.16). Simplifying and applying again the special case of the Sergeev-

Pragacz formula and (A.22), this becomes

±
∑

y′+y′′

(

∏p
j=1 yrj

)q (

∏q
j=1 ysj

)m

E(y′, y′′)
sη′;µ′(−y′/x)sβ′+(mq)(−y′′/x) = ±sν′;µ′(−y/x).

Applying (A.22) and substituting every yj by −yj , leads to the final result. 2
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