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Abstract

We investigate a new model for the finite one-dimensional quantum oscillator based upon
the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momen-
tum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a
parameter p (0 < p < 1) and an integer representation label j. In the (2j+1)-dimensional repre-
sentations Wj of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of

the position operator is discrete and turns out to be of the form ±
√
k, where k = 0, 1, . . . , j. We

construct the discrete position wave functions, which are given in terms of certain Krawtchouk
polynomials. These wave functions have appealing properties, as can already be seen from their
plots. The model is sufficiently simple, in the sense that the corresponding discrete Fourier
transform (relating position wave functions to momentum wave functions) can be constructed
explicitly.

1 Introduction

Finite quantum harmonic oscillator models (simply referred to as finite oscillator models) are of
importance in optical image processing [6], or in models where only a finite number of eigenmodes
can exist such as in signal processing [7–9]. Quantum kinematics of finite oscillators has also been
used to remove infinities or divergences in quantum theory or quantum field theory [24]. The main
idea underlying these finite oscillator models is to replace the oscillator Lie algebra of the standard
quantum oscillator, which allows only infinite-dimensional representations, by a “closely related”
algebra with the same dynamics but which allows finite-dimensional representations.

More concretely, for a one-dimensional finite oscillator one considers three (essentially self-
adjoint) operators: a position operator q̂, its corresponding momentum operator p̂ and a Hamilto-
nian Ĥ which is the generator of time evolution. These operators should satisfy the Hamilton-Lie
equations (or the compatibility of Hamilton’s equations with the Heisenberg equations):

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, (1)

in units with mass and frequency both equal to 1, and ~ = 1. The third relation of the canonical
oscillator, [q̂, p̂] = i, is dropped since otherwise the corresponding algebra (the oscillator Lie algebra)
has infinite-dimensional representations only. Instead, one requires [4]:

• all operators q̂, p̂, Ĥ belong to some (Lie) algebra (or superalgebra) A;

• the spectrum of Ĥ in (unitary) representations of A is equidistant.
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The most popular model is with A = su(2) (or its enveloping algebra), see [4–6]. This model is also
underlying the theory in [24]. The relevant finite-dimensional representations are the common su(2)
representations labelled by an integer or half-integer j. In such a representation, the Hamiltonian is
taken as Ĥ = J0+j+

1
2 , where J0 = Jz is the diagonal su(2) operator, and thus the spectrum of Ĥ is

n+ 1
2 (n = 0, 1, . . . , 2j). The operators q̂ and p̂ are linear combinations of the other su(2) operators

J+ and J−, such that the relations (1) are satisfied. They turn out to have a finite spectrum given by
{−j,−j+1, . . . ,+j} [4], see Figure 1(a). In this context, one can also construct the discrete position
and momentum wave functions. For the su(2) case, these are given by Krawtchouk functions
(normalized symmetric Krawtchouk polynomials), i.e. Krawtchouk polynomials with parameter
p = 1/2. These discrete wave functions have many interesting properties, and their shape is
reminiscent of those of the canonical oscillator [4].

In this context, q-deformations of su(2) were investigated in [2,3]. More recently, in [15,16] other
deformations of su(2) were considered by introducing a deformation parameter α > −1. For the
even-dimensional representations [15] (j half-integer), this led to an alternative model of the finite
oscillator with the spectrum of Ĥ again given by n + 1

2 (n = 0, 1, . . . , 2j), and with the spectrum
of the position operator q̂ given by

±(α+ k) (k = 1, 2, . . . , j +
1

2
),

i.e. a finite and mostly equidistant spectrum apart from a gap of size 2α + 2 in the middle, see
Figure 1(b). For the odd-dimensional representations [16] (j integer), this led to a similar model
with the same spectrum of Ĥ but with the spectrum of q̂ given by (Figure 1(c))

0, ±
√

k(2α+ k + 1), (k = 1, . . . , j).

In both deformations, the position wave functions could be constructed explicitly and turned out
to be related to normalized Hahn (or dual Hahn) polynomials [15,16]. It was also shown how these
wave functions could be interpreted as the finite version of a paraboson oscillator.

Recall however that Wigner [27] was among the first to drop the canonical commutation relation
[q̂, p̂] = i, proposing a model with relations (1) with the extra condition

Ĥ =
1

2
(p̂2 + q̂2). (2)

This is known as the Wigner quantum oscillator (or paraboson oscillator) [21,22]. This paraboson
oscillator still has an infinite energy spectrum of the form n + a (with a positive representation
parameter a), and the spectrum of the position operator is the real axis. The canonical oscillator
is recovered from the paraboson oscillator in the representation with a = 1/2, i.e. one of the
representations of the paraboson oscillator coincides with the canonical oscillator [14, 19, 20]. The
algebraic structure equivalent with (1) and (2) is the Lie superalgebra osp(1|2) [14, 20]. In this
context, the position and momentum operators q̂ and p̂ are odd elements of the Lie superalgebra,
whereas Ĥ is an even element. This observation, and the fact that the canonical oscillator fits in
one of the osp(1|2) representations, leads to the idea that it is perhaps more natural to consider
the position and momentum operators of alternative oscillator models as odd elements of a Lie
superalgebra rather than just (even) elements of a Lie algebra.

Following this last idea, we propose and investigate in this paper a finite oscillator model based
on the Lie superalgebra sl(2|1). Indeed, apart from osp(1|2), sl(2|1) is the simplest Lie superalgebra
that can be considered as a superversion of the Lie algebra su(2) [23]. The Lie superalgebra sl(2|1)
has moreover a class of representations Wj of dimension 2j +1 (j integer) which are similar to the
common su(2) representations, see Section 2.
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In the finite oscillator model studied here in Section 3, the Hamiltonian Ĥ is a diagonal operator
with spectrum n+ 1

2 (n = 0, 1, . . . , 2j) in Wj . The position operator q̂ is an arbitrary (self-adjoint)
odd element from sl(2|1), and the form of the momentum operator p̂ follows from (1); the model
introduces in a natural way a real parameter p with 0 < p < 1. Our investigation shows that the
spectrum of q̂ in the representation Wj is still very simple, given by

±
√
k (k = 0, 1, . . . , j),

see Figure 1(d). In order to prove this statement, we construct the eigenvectors of q̂ inWj explicitly.
For this construction, we need some properties of Krawtchouk polynomials (but now with general
parameter p), a well known set of discrete orthogonal polynomials.

The properties of the position and momentum wave functions for the new sl(2|1) oscillator
model are investigated in Section 4. In particular, we study first some plots of the wave functions
for different values of the parameter p. These discrete wave function plots are rather different from
the su(2) plots in [4]; only for small p-values these plots show some similarity with the plots of the
continuous canonical oscillator wave functions. We explore also the behaviour of the discrete wave
functions when the representation parameter j tends to infinity, and discover a relation with the
paraboson oscillator.

When both position wave functions and momentum wave functions are known explicitly, one
can examine the transformation that relates the two. In the canonical case this is just the Fourier
transform. In a finite oscillator model, this gives a discrete version of the Fourier transform,
determined by a Fourier matrix F . For the sl(2|1) model, we manage to give an explicit expression
for an arbitrary matrix element Fkl of F , see Section 5. The properties of the matrix F are studied
and prove to be similar to those of the standard Discrete Fourier Transform used in spectral analysis.
Our paper closes with some concluding remarks in Section 6.

2 The Lie superalgebra sl(2|1) and a class of representations

The Lie superalgebra gl(2|1) is well known: it can be defined as the set of all 3×3 matrices x = (xij)
with rows and columns labelled by indices i, j = 1, 2, 3. As a basis in gl(2|1) we choose the Weyl
matrices eij , i, j = 1, 2, 3, where the odd elements are {e3i, ei3|i = 1, 2}, and the remaining elements
are even. The Lie superalgebra bracket is determined by

[[eij , ekl]] ≡ eijekl − (−1)deg(eij) deg(ekl)ekleij = δjkeil − (−1)deg(eij) deg(ekl)δilekj , (3)

where deg(eij) = 0 if eij is even and deg(eij) = 1 if eij is odd.
Note that the even part gl(2|1)0 = gl(2)⊕ gl(1), where gl(2) = span{eij |i, j = 1, 2} and gl(1) =

span{e33}. For elements x of gl(2|1), one defines the supertrace as str(x) = x11 + x22 − x33. The
Lie superalgebra gl(2|1) is not simple, and one can define the simple superalgebra sl(2|1) as the
subalgebra consisting of elements with supertrace 0. As a basis for sl(2|1), it is convenient to follow
the choice of [12], where one can find the actual matrices of the basis [12, p. 261]:

F+ = e32, G
+ = e13, F

− = e31, G
− = e23, (4)

H =
1

2
(e11 − e22), E

+ = e12, E
− = e21, Z =

1

2
(e11 + e22) + e33. (5)

So sl(2|1) has four odd (or ‘fermionic’) basis elements F+, F−, G+, G− and four even (or ‘bosonic’)
basis elements H,E+, E−, Z. The basis for the gl(2) subalgebra is {H,E+, E−} and the gl(1) ∼=
U(1) subalgebra is spanned by Z. The basic Lie superalgebra brackets can be found in [12, p. 261]
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or, in a different notation, in [23]. For the odd elements, the anti-commutators are given by

{F±, G±} = E±, {F±, G∓} = Z ∓H;

{F±, F±} = {G±, G±} = {F±, F∓} = {G±, G∓} = 0. (6)

For the even elements, the commutators are given by

[H,E±] = ±E±, [E+, E−] = 2H, [Z,H] = [Z,E±] = 0. (7)

The mixed commutation relations read:

[H,F±] = ±1

2
F±, [Z,F±] =

1

2
F±, [E±, F±] = 0, [E∓, F±] = −F∓;

[H,G±] = ±1

2
G±, [Z,G±] = −1

2
G±, [E±, G±] = 0, [E∓, G±] = G∓. (8)

The irreducible representations of sl(2|1) have been studied by Scheunert et al [23] and Marcu [18];
for a summary, see [12, §2.53]. The superalgebra sl(2|1) has typical and atypical irreducible rep-
resentations. Here, we shall consider a class of atypical irreducible representations, labelled by a
non-negative integer j (these are denoted by π−(j/2) in [12]). In order to describe these represen-
tations explicitly, let us choose a basis for the representation space Wj of the form

|j,m〉, m = −j,−j + 1, . . . ,+j. (9)

So dim(Wj) = 2j + 1. For the actions of the sl(2|1) basis elements on these vectors, it is handy to
use the following “even” and “odd” functions, defined on integers n:

E(n) = 1 if n is even and 0 otherwise,

O(n) = 1 if n is odd and 0 otherwise. (10)

Note that O(n) = 1 − E(n), but it is convenient to use both notations. The actions of the odd
generators are now given by:

F±|j,m〉 = ±O(j −m)

√

j ±m+ 1

2
|j,m± 1〉,

G±|j,m〉 = ±E(j −m)

√

j ∓m

2
|j,m± 1〉. (11)

The actions of the even generators can in principle be computed from (6), and are

Z|j,m〉 = −E(j −m)
j

2
|j,m〉 − O(j −m)(

j + 1

2
) |j,m〉,

H|j,m〉 = m

2
|j,m〉,

E±|j,m〉 = 1

2
E(j −m)

√

(j ∓m)(j ±m+ 2) |j,m± 2〉

+
1

2
O(j −m)

√

(j ∓m− 1)(j ±m+ 1) |j,m± 2〉. (12)

It is easy to verify that the relations (6)-(8) are satisfied for these actions. One can also see that with
respect to the even subalgebra gl(2)⊕gl(1) ∼= su(2)⊕U(1),Wj decomposes as ( j2 ;−

j
2)⊕( j−1

2 ;− j+1
2 ),

where (l; b) denotes the su(2)⊕ U(1) representation “with isospin l and hypercharge b” [12].
The above representation is a star representation (or unitary representation) for the adjoint

operation
Z† = Z, H† = H, (E±)† = E∓, (F±)† = −G∓, (G±)† = −F∓, (13)

compatible with the positive definite inner product on the representation space Wj :

〈j,m|j,m′〉 = δm,m′ . (14)
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3 The sl(2|1) model for a finite one-dimensional oscillator

We wish to investigate how sl(2|1) can be used for a finite oscillator model. Inspired by the seminal
paper [6] on the su(2) model for a finite oscillator, and by the requirements for the spectrum of the
Hamiltonian Ĥ, one should take

Ĥ = 2H + j +
1

2
(15)

as operator for Ĥ in the representation space Wj . This operator is diagonal, self-adjoint, and has
indeed the equidistant spectrum: n+ 1

2 (n = 0, 1, 2, . . . , 2j). Next comes the choice for the position
operator q̂, which should be a self-adjoint element of sl(2|1). There are two reasons to choose an
odd element of sl(2|1). First, choosing an even element would yield a model that is essentially the
same as the su(2) model of [6]. Second, as explained in the introduction, in Wigner’s paraboson
oscillator the position and momentum operator are elements of the odd part of the Lie superalgebra
osp(1|2) [14, 20, 27]. And since the canonical oscillator is a special case of the paraboson oscillator
(corresponding to one particular osp(1|2) representation [14, 20]), the position and momentum
operator can also be considered as odd elements of a superalgebra in a particular representation.
The most general real self-adjoint odd element of sl(2|1) is given by

AF+ +BG+ −BF− −AG−, (16)

with A and B real constants. An overall constant does not play a crucial role, so let us assume
that there is some normalization like A2 +B2 = 1. Consider now first the case that A and B have
the same sign, say both positive (the case A positive and B negative will be very similar, and is
described at the end of this section). In that case, one can write

q̂ =
√
p F+ +

√

1− p G+ −
√

1− p F− −√
p G−, (0 ≤ p ≤ 1). (17)

We shall in fact consider 0 < p < 1 and later view the values p = 0 and p = 1 as a limit.
Once q̂ is fixed, the form of p̂ follows from the first equation of (1), and thus

p̂ = i(
√
p F+ +

√

1− p G+ +
√

1− p F− +
√
p G−), (0 ≤ p ≤ 1). (18)

With these operators, (1) and the conditions described in Section 1 are satisfied, and we can truly
speak of an sl(2|1) model for the oscillator.

Now it remains to study the operators q̂ and p̂, in particular their spectrum and eigenvectors
in the representation Wj . Note that, due to the actions (11), in the (ordered) basis {|j, j〉, |j, j −
1〉, . . . , |j,−j + 1〉, |j,−j〉} of Wj , the operators q̂ and p̂ are tridiagonal matrices. In particular, for
q̂, one has:

q̂ =

































0 R1 0 · · · 0
R1 0 S1 · · · 0

0 S1 0 R2
...

... R2 0 S2

S2 0
. . .

...
. . .

. . . Rj 0
Rj 0 Sj

0 · · · · · · 0 Sj 0

































≡Mq, (19)

where
Rk =

√
p
√

j + 1− k, Sk =
√

1− p
√
k (k = 1, 2, . . . , j). (20)
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The matrix form Mp of p̂ is similar. For these matrices, we need to study the spectrum and the
eigenvectors. It is at this point that Krawtchouk polynomials play a role. Krawtchouk polynomials
Kn(x; p,N) of degree n in the variable x, with parameter p are defined by [1, 13, 17]:

Kn(x; p,N) = 2F1

(−n,−x
−N ;

1

p

)

, (n = 0, 1, . . . , N) (21)

in terms of the hypergeometric series 2F1 [1, 10, 25] (which is terminating here because of the
appearance of −n as numerator parameter). Their (discrete) orthogonality relation reads [1,13,17]:

N
∑

x=0

w(x; p,N)Kl(x; p,N)Kn(x; p,N) = h(n; p,N) δln, (0 < p < 1) (22)

where

w(x; p,N) =

(

N

x

)

px(1− p)N−x (x = 0, 1, . . . , N); h(n; p,N) =
n!(N − n)!

N !

(

1− p

p

)n

. (23)

For the orthonormal Krawtchouk functions we use the notation:

K̃n(x; p,N) ≡
√

w(x; p,N)
√

h(n; p,N)
Kn(x; p,N). (24)

Now we are able to describe the eigenvalues and (orthonormal) eigenvectors of Mq. In this context,
two sets of Krawtchouk polynomials play a role: Kn(x; p, j) (with N = j) and Kn(x; p, j− 1) (with
N = j − 1).

Proposition 1 Let Mq (i.e. the matrix representation of q̂) be the tridiagonal (2j + 1)× (2j + 1)-
matrix (19) and let U = (Ukl)0≤k,l≤2j be the (2j + 1)× (2j + 1)-matrix with matrix elements:

U2n,j = (−1)nK̃0(n; p, j), n ∈ {0, 1, . . . , j}; U2n+1,j = 0, n ∈ {0, . . . , j − 1}; (25)

U2n,j−k = U2n,j+k =
(−1)n√

2
K̃k(n; p, j), n ∈ {0, 1, . . . , j}, k ∈ {1, . . . , j}; (26)

U2n+1,j−k = −U2n+1,j+k = −(−1)n√
2
K̃k−1(n; p, j − 1), n ∈ {0, 1, . . . , j − 1}, k ∈ {1, . . . , j}. (27)

Then U is an orthogonal matrix:
UUT = UTU = I. (28)

The columns of U are the eigenvectors of Mq, i.e.

MqU = UD, (29)

where D is a diagonal matrix containing the eigenvalues of Mq:

D = diag(−
√

j,−
√

j − 1, . . . ,−
√
2,−1, 0, 1,

√
2, . . . ,

√

j − 1,
√

j). (30)

Proof. Using the orthogonality of the Krawtchouk polynomials, and the explicit expressions (25)-
(27), a simple computation shows that (UTU)kl = δkl. Thus UTU = I, the identity matrix, and
hence UUT = I holds as well.
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It remains to verify (29) and that the eigenvalues are indeed (30). Due to the tridiagonal
form (19) of Mq, one has:

(

MqU
)

2n,k
= SnU2n−1,k +Rn+1U2n+1,k, (31)

(

MqU
)

2n+1,k
= Rn+1U2n,k + Sn+1U2n+2,k. (32)

For the first case (31), we need to consider three distinct subcases, according to k belonging to
{0, 1, . . . , j − 1}, to {j + 1, j + 2, . . . , 2j} or k = j. For k ∈ {0, 1, . . . , j − 1}, this gives:

(MqU)2n,j−k = SnU2n−1,j−k +Rn+1U2n+1,j−k

=
(−1)n√

2

√

1− p
√
nK̃k−1(n− 1; p, j − 1) +

(−1)n+1

√
2

√
p
√

j − nK̃k−1(n; p, j − 1)

=
(−1)n+1

√
2

(
√
p)n+1(

√
1− p)j−n−1

√

(j − 1)!
√

n!(j − n)!h(k − 1; p, j − 1)

× [(j − n)Kk−1(n; p, j − 1)− n(
1− p

p
)Kk−1(n− 1; p, j − 1)].

For the last linear combination between squared brackets, the backward shift operator formula for
Krawtchouk polynomials [17, (9.11.8)] can be applied, and yields

(MqU)2n,j−k =
(−1)n+1

√
2

(
√
p)n+1(

√
1− p)j−n−1

√

(j − 1)!
√

n!(j − n)!h(k − 1; p, j − 1)
jKk(n; p, j)

= −
√
k U2n,j−k =

(

UD
)

2n,j−k
.

For the other two subcases with first index 2n, the computations are similar. For the case (32), we
need again to consider three subcases. Now one finds for k ∈ {0, 1, . . . , j − 1}:

(MqU)2n+1,j−k = Rn+1U2n,j−k + Sn+1U2n+2,j−k

=
(−1)n√

2

√
p
√

j − nK̃k(n; p, j) +
(−1)n+1

√
2

√

1− p
√
n+ 1K̃k(n+ 1; p, j)

=
(−1)n+1

√
2

(
√
p)n+1(

√
1− p)j−n

√
j!

√

n!(j − n− 1)!h(k; p, j)
[Kk(n+ 1; p, j)−Kk(n; p, j)].

For the last linear combination, the forward shift operator formula for Krawtchouk polynomials [17,
(9.11.6)] can be applied, and yields

(MqU)2n+1,j−k = −(−1)n+1

√
2

(
√
p)n+1(

√
1− p)j−n

√
j!

√

n!(j − n− 1)!h(k; p, j)

k

pj
Kk−1(n; p, j − 1)

= −
√
k U2n+1,j−k =

(

UD
)

2n+1,j−k
.

The other two subcases are similar. This completes the proof. 2

The above proposition gives, besides the eigenvectors, also the spectrum of the position operator
q̂ in the representation Wj . It will be appropriate to denote these q̂-eigenvalues by qk, where
k = −j,−j + 1, . . . ,+j, so

q±k = ±
√
k, k = 0, 1, . . . , j. (33)

To our knowledge, this is the first time we come across a tridiagonal operator with such a spectrum.
Note also that the spectrum of q̂ is independent of the parameter p in (17), but the eigenvectors
themselves do depend on p.
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As far as the eigenvectors of q̂ are concerned, these are the columns of the matrix U . It will be
useful to introduce a notation for these eigenvectors: the orthonormal eigenvector of the position
operator q̂ in Wj for the eigenvalue qk, denoted by |j, qk), is given in terms of the standard basis by

|j, qk) =
j

∑

m=−j

Uj+m,j+k|j,−m〉. (34)

For the matrix representation Mp of p̂, the analysis is essentially the same. Without going into
the details, we give the final result:

Proposition 2 Let Mp be the tridiagonal (2j + 1)× (2j + 1)-matrix representing p̂ in Wj, and let
V = (Vkl)0≤k,l≤2j be the (2j + 1)× (2j + 1)-matrix with matrix elements

V2k,l = −i(−1)kU2k,l, V2k+1,l = (−1)kU2k+1,l, (35)

where U is the matrix determined by (25)-(27). Then V is a unitary matrix, V V † = V †V = I.
The columns of V are the eigenvectors of Mp, i.e.

MpV = V D, (36)

where D is the same diagonal matrix as in Proposition 1. In other words, the eigenvalues of p̂ are
also given by:

−
√

j,−
√

j − 1, . . . ,−
√
2,−1, 0, 1,

√
2, . . . ,

√

j − 1,
√

j. (37)

The matrix V of eigenvectors satisfies:

V TV =











0 · · · 0 −1
0 · · · −1 0
... . .

. ...
...

−1 · · · 0 0











, (38)

and
V = JU where J = −i diag(i0, i1, i2, i3, . . . , i2j) = diag(−i, 1, i,−1, . . .). (39)

The last assertions follow from the explicit expressions (35), (25)-(27) and the orthogonality prop-
erties of Krawtchouk polynomials.

Also here, it will be useful to denote the p̂-eigenvalues by pk, where k = −j,−j + 1, . . . ,+j (so
p±k = ±

√
k, k = 0, 1, . . . , j), and to write the normalized eigenvectors as:

|j, pk) =
j

∑

m=−j

Vj+m,j+k|j,−m〉. (40)

We end this section with two remarks. First, let us briefly return to the remaining case (16)
with A positive and B negative; or, without losing generality, A =

√
p and B = −√

1− p. The

corresponding matrix M ′
q is then the same as in (19)-(20), but with Sk replaced by −√

1− p
√
k.

In other words, one can write M ′
q = D1MqD1 where D1 = diag(1, 1,−1,−1, 1, 1,−1,−1, 1, 1, . . .).

This implies that M ′
qU

′ = U ′D, where D is the same matrix as in Proposition 1 and U ′ = D1U . To
conclude for this second case: the eigenvalues remain the same, and the matrix U ′ of eigenvectors
is the same as that of the first case, up to sign changes in rows. For this reason, we shall not return
to this second case, and just continue with the first case (17) for our analysis.

Secondly, we have so far considered (17) with 0 < p < 1, but what about the cases p = 0 and
p = 1? In these limiting cases, the form of Mq in (19) remains valid, and since the eigenvalues
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of Mq in (30) are independent of p, the eigenvalues are again given by (30). For the matrix of
eigenvectors U , one can simply take the right limit p → 0 or the left limit p → 1 in the matrix U
given in Proposition 1. For example, it is easy to compute:

U0 = lim
p→0
p>0

U, U0 =
1√
2



















· · · 0 0
√
2 0 0 · · ·

0 −1 0 1 0
0 1 0 1 0
−1 0 0 0 1

· · · 1 0 0 0 1 · · ·
...

...



















, (41)

where the general form of the orthogonal matrix U0 (with only two nonzero elements per row,
starting from the second row onwards) is clear from the above. The left limit p→ 1 yields a similar
matrix form for U .

4 Position and momentum wave functions and their properties

The position (resp. momentum) wave functions of the sl(2|1) finite oscillator are the overlaps
between the q̂-eigenvectors (resp. p̂-eigenvectors) and the Ĥ-eigenvectors (or equivalently, the J0-

eigenvectors |j,m〉). Let us denote them by φ
(p)
j+m(q) (resp. ψ

(p)
j+m(p̄) ), where m = j, j − 1, . . . ,−j,

and where q (resp. p̄) assumes one of the discrete values qk (resp. pk) (k = −j,−j + 1, . . . ,+j).
Observe that we have denoted the momentum variable of the wave function by p̄ in order not to
confuse with the parameter p (0 < p < 1) which appears in expression (17) and which is also the
parameter of the Krawtchouk polynomials occurring here. In the notation of the previous section
(and where we want to emphasize the dependence on the parameter p), we have

φ
(p)
j+m(qk) = 〈j,−m|j, qk) = Uj+m,j+k, (42)

ψ
(p)
j+m(pk) = 〈j,−m|j, pk) = Vj+m,j+k. (43)

Let us consider the explicit form of these wave functions, first for the position variable. For j +m
even, j +m = 2n, and for positive q-values one has

φ
(p)
2n (qk) =

(−1)n√
2
K̃k(n; p, j), n = 0, 1, . . . , j, k = 1, . . . , j, (44)

or equivalently, with qk =
√
k (k = 1, 2, . . . , j):

φ
(p)
2n (qk) =

(−1)n√
2
j!

√

pn+k(1− p)j−n−k

n!(j − n)!k!(j − k)!
2F1

(−k,−n
−j ;

1

p

)

. (45)

The expression for φ
(p)
2n (q−k), with q−k = −

√
k (k = 1, 2, . . . , j) is also given by the right hand side

of (45). So φ
(p)
2n is an even function. For the argument 0, one simply has

φ
(p)
2n (0) = (−1)n

√

(

j

n

)

pn(1− p)j−n. (46)

When j +m is odd, j +m = 2n+ 1, one finds for positive q-values

φ
(p)
2n+1(qk) =

(−1)n√
2
K̃k−1(n; p, j − 1), n = 0, 1, . . . , j − 1, k = 1, . . . , j, (47)
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or, with qk =
√
k (k = 1, 2, . . . , j):

φ
(p)
2n+1(qk) =

(−1)n√
2

(j − 1)!

√

pn+k−1(1− p)j−n−k

n!(j − 1− n)!(k − 1)!(j − k)!
2F1

(−k + 1,−n
−j + 1

;
1

p

)

. (48)

The expression for φ
(p)
2n+1(q−k), with q−k = −

√
k (k = 1, 2, . . . , j) is given by minus the right hand

side of (48), and φ
(p)
2n+1(0) = 0. So φ

(p)
2n+1 is an odd function.

Let us now consider some plots of these discrete wave functions. In Figure 2 we have plotted
these functions for the representation j = 10 (so discrete plots with 2j + 1 = 21 points). We have
considered three values for the parameter p: p = 0.1, p = 1/2 and p = 0.9. The spectrum of q̂ is
independent of p, so for each of these three cases we plot points corresponding to the values ±

√
k

(k = 0, 1, . . . , 10) on the horizontal axis. For each of the considered p-values, we have plotted φ
(p)
0

(the ground state), φ
(p)
1 (the first excited state), φ

(p)
2 and φ

(p)
3 .

The behaviour of these discrete wave functions is reminiscent of that of the corresponding
continuous wave functions of the canonical oscillator, especially when p is small. As p increases,
the wave function values for positions near the origin tend to decrease. In fact, for increasing
p-values, the behaviour of the discrete wave functions rather tends to the corresponding wave
functions of the paraboson oscillator (see e.g. Figure 3 of [15]).

Secondly, it is interesting to investigate what happens when the representation parameter j
increases, i.e. when the dimension of the representation Wj increases. For this purpose, we have
plotted the ground state and the first excited state, for a fixed p-value, and for the values j = 10,
j = 30 and j = 60 in Figure 3. These plots remind of the shape of (continuous) paraboson wave

functions Ψ
(a)
n (q) for increasing values of a. In Figure 4 we have illustrated some of these functions,

and the similarity is indeed striking. This can also be confirmed by a limit calculation. The limit
is not simply

lim
j→∞

φ(p)n (qk);

that would just yield zero, as the non-zero contributions are shifted further away from the origin
(see Figure 3). Instead, we need to involve another set of orthogonal polynomials, the dual Hahn
polynomials Rn(λ(x); γ, δ,N) defined by [17, (9.6.1)]

Rn(λ(x); γ, δ,N) = 3F2

(−n,−x, x+ γ + δ + 1

−N, γ + 1
; 1

)

, (n = 0, 1, . . . , N), (49)

where λ(x) = x(x+γ+δ+1). These polynomials satisfy a discrete orthogonality relation (γ > −1,
δ > −1):

N
∑

x=0

w̄(x; γ, δ,N)Rm(λ(x); γ, δ,N)Rn(λ(x); γ, δ,N) = h̄(n; γ, δ,N)δmn, (50)

with w̄(x; γ, δ,N) and h̄(n; γ, δ,N) given by [17, (9.6.2)]. Let us also fix a notation for the orthonor-
mal functions:

R̃n(λ(x); γ, δ,N) =

√

w̄(x; γ, δ,N)

h̄(n; γ, δ,N)
Rn(λ(x); γ, δ,N). (51)

Consider now some positive parameter α > 0. Let j be the representation parameter, n = 0, 1, . . . , j,
and 0 < p < 1. The following limit is obvious:

lim
α→∞

3F2

(−n,−k, k + 2α+ 1

−j, 2pα+ 1
; 1

)

= 2F1

(−n,−k
−j ;

1

p

)

. (52)
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In other words,
lim
α→∞

Rn(λ(k); 2pα, 2(1− p)α, j) = Kn(k; p, j). (53)

Using some elementary limits for the expressions in (51), one can in fact show:

lim
α→∞

R̃n(λ(k); 2pα, 2(1− p)α, j) = K̃n(k; p, j). (54)

For the wave functions (45) under consideration, this means

φ
(p)
2n (qk) =

(−1)n√
2
K̃k(n; p, j) =

(−1)n√
2
K̃n(k; p, j) =

(−1)n√
2

lim
α→∞

R̃n(λ(k); 2pα, 2(1− p)α, j), (55)

for values qk =
√
k, k = 1, 2, . . . , j. On the other hand, one finds with [15, Eq. (30)] that for

jx2 = λ(k) = k(k + 2α+ 1),

lim
j→∞

3F2

(−n,−k, k + 2α+ 1

−j, 2pα+ 1
; 1

)

= 1F1

( −n
2pα+ 1

;x2
)

=
n!

(2pα+ 1)n
L(2pα)
n (x2), (56)

where L
(a)
n is a (generalized) Laguerre polynomial. Following the limit computations in [15, §4],

one obtains

lim
j→∞

(−1)n√
2
j1/4R̃n(jx

2; 2pα, 2(1− p)α, j)

= (−1)n

√

n!

Γ(n+ 2pα+ 1)
|x|2pα+1/2e−x2/2L(2pα)

n (x2) = Ψ
(2pα−1)
2n (x), (57)

where Ψ
(a)
n (x) is the paraboson wave function with parameter a (see [15, (A.11)]). Combining (55)

and (57), it follows indeed that for large j-values the behaviour of the wave functions φ
(p)
2n (qk) is

the same as the behaviour of the paraboson wave functions Ψ
(2pα−1)
2n (x) for large values of α.

For the explanation above, we have used even wave functions; clearly for wave functions of
degree 2n+ 1 the computation is similar and the conclusion is the same.

5 The corresponding discrete Fourier transform

In canonical quantum mechanics, the momentum wave function (in L2(R)) is given by the Fourier
transform of the position wave function (and vice versa):

ψ(p̄) =
1√
2π

∫

e−ip̄qφ(q)dq.

In the present situation we are dealing with discrete wave functions, and an analogue of this should
be viewed as follows. Let

φ(p)(qk) =













φ
(p)
0 (qk)

φ
(p)
1 (qk)
...

φ
(p)
2j (qk)













, ψ(p)(pk) =













ψ
(p)
0 (pk)

ψ
(p)
1 (pk)
...

ψ
(p)
2j (pk)













(k = −j, . . . ,+j). (58)

In this case, the corresponding sl(2|1) discrete Fourier transform is defined as the matrix F =
(Fkl)−j≤k,l≤+j relating these two wave functions:

ψ(p)(pl) =

j
∑

k=−j

Fkl φ
(p)(qk). (59)
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By (42)-(43), the columns of U consist of the column vectors φ(p)(pk) (k = −j..,+j) and similarly
for the matrix V . So (59) means that V = U · F , or:

F = UT · V = UTJU, (60)

with J given by (39). Using the explicit matrix elements for U and J , this leads to the following
form of the matrix elements of F :

Fj−k,j∓l = Fj+k,j±l = − i

2
S(k, l; p, j)± 1

2
S(k − 1, l − 1; p, j − 1), (k, l = 1, . . . , j); (61)

Fj∓k,j = Fj,j∓k = − i√
2
S(k, 0; p, j), (k = 1, . . . , j); (62)

Fjj = −iS(0, 0; p, j), (63)

where

S(k, l; p, j) =

j
∑

n=0

(−1)nK̃k(n; p, j)K̃l(n; p, j). (64)

This last expression is easy to simplify, using [26, Proposition 3] or [11, Eq. (12), p. 85]. One finds:

S(k, l; p, j) =

√

(

j

k

)(

j

l

)

2k+l(p(1− p))(k+l)/2(1− 2p)j−k−l
2F1

(−k,−l
−j ;

1

4p(1− p)

)

. (65)

So from (65) and (61)-(63) we have an explicit form for the elements Fkl of the matrix F . Just as
in [16], one can state the following properties of the sl(2|1) discrete Fourier transform matrix F :

Proposition 3 The (2j+1)×(2j+1)-matrix F is symmetric, F T = F , and unitary, F †F = FF † =
I. Furthermore, it satisfies F 4 = I, so its eigenvalues are ±1,±i. A set of orthonormal eigenvectors
of F is given by the rows of U , determined in Proposition 1. The multiplicity of the eigenvalues
depends on the parity of j. When j = 2n is even, then the multiplicity of −i, 1, i,−1 is n+1, n, n, n
respectively. When j = 2n + 1 is odd, then the multiplicity of −i, 1, i,−1 is n + 1, n + 1, n + 1, n
respectively.

Proof. The symmetry of F is easily seen from the expressions (61)-(63). The unitarity of F
follows from (60), the orthogonality of the real matrix U and J †J = I. Again using (60) and the
orthogonality of U , one finds F 2 = FF T = V TUUTV = V TV . But the explicit form of V TV is
known, see (38). Since (V TV )2 = I, the result F 4 = I follows. So the eigenvalues can only be
±1,±i. From the last part of (60), one has FUT = UTJ . So the columns of UT (or the rows of
U) form a set of orthonormal eigenvectors of F , and the eigenvalues of F are found in the diagonal
matrix J , see (39). 2

We are dealing here with a simple sl(2|1) discrete Fourier transform matrix F , with parameter
0 < p < 1: the matrix elements of F are given by 2F1 expressions (65), the eigenvectors of F are
given by the rows of U in Proposition 1, and the eigenvalues of F (with their multiplicities) are
given above. F still has the property that it transforms position wave functions into momentum
wave functions.

Note that due to expression (65), the matrix F is particularly simple when p = 1/2, as most of
its matrix elements are zero. For j = 3, the form of F for p = 1/2 reads

2F =





















0 0 1 −i
√
2 −1 0 0

0 1 −i 0 −i −1 0
1 −i 0 0 0 −i −1

−i
√
2 0 0 0 0 0 −i

√
2

−1 −i 0 0 0 −i 1
0 −1 −i 0 −i 1 0

0 0 −1 −i
√
2 1 0 0





















, (66)
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and it is clear how this generalizes for arbitrary j.

6 Conclusions

We have, for the first time, explored the possibility of using a Lie superalgebra as the basic structure
underlying a finite oscillator model. This was inspired by the idea that the position and momentum
operators of an oscillator model could most naturally be represented by odd (rather than even)
elements of a superalgebra. In the case presented here, we have taken the Lie superalgebra sl(2|1)
for this purpose, being a simple generalization of the Lie algebra su(2).

The sl(2|1) representations most suitable to use in the model are the (2j + 1)-dimensional
representations Wj . Indeed, in the standard basis for these representations the Hamiltonian is
diagonal and the position and momentum operators are self-adjoint tridiagonal matrices. The
most general form for the position operator q̂ involves a parameter p (0 < p < 1), see (17). The
first main result of the paper is the determination of the eigenvalues and eigenvectors of q̂ in
explicit form (Proposition 1). The spectrum is very simple, see (33); the eigenvectors are in terms
of Krawtchouk polynomials Kn(x; p, j) or Kn(x; p, j − 1). The eigenvalues and eigenvectors of the
momentum operator p̂ are similar, see Proposition 2.

The matrix U of eigenvectors of q̂ is interesting from a second point of view. Indeed, its rows
correspond to the discrete position wave functions of the finite oscillator. These wave functions
have been examined in Section 4, by means of plots and by investigating a limit. Although the
discrete wave functions are also given in terms of Krawtchouk polynomials, as in the su(2) case,
the behaviour is quite different. This is because in the su(2) case [4] the Krawtchouk polynomials
appearing in the wave functions are Kn(x;

1
2 , 2j + 1), whereas here we have a combination of

Kn(x; p, j) and Kn(x; p, j − 1). For large values of j, the discrete wave functions tend to certain
paraboson wave functions.

Since the position and momentum wave functions have fairly simple forms, we are able to
construct the matrix F that transforms them into each other. This matrix is a discrete analogue
of the Fourier transform. The matrix elements of F are terminating 2F1 series. The sl(2|1) version
of the Fourier transform F has many properties in common with the standard Discrete Fourier
Transform, see Proposition 3.

Apart from the finite-dimensional representations Wj considered here, the Lie superalgebra
sl(2|1) also has an interesting class of infinite-dimensional representations in ℓ2(Z+). It would be
tempting to study sl(2|1) oscillator models in these representations, and we hope to tackle this
problem in a future paper.
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[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions,
Volume 1 (McGraw-Hill, New York, 1953).

[12] L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie Algebras and Superalgebras (Academic
Press, London, 2000).

[13] M.E.H. Ismail, Classical and quantum orthogonal polynomials in one variable (Cambridge
University Press, Cambridge, 2005).

[14] E. Jafarov, S. Lievens and J. Van der Jeugt, J. Phys. A 41, 235301 (2008).

[15] E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt, J. Phys. A 44, 265203 (2011).

[16] E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt, J. Phys. A 44, 355205 (2011).

[17] R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their
q-analogues (Springer-Verlag, Berlin, 2010).

[18] M. Marcu, J. Math. Phys. 21, 1277-1283 (1980).

[19] N. Mukunda, E.C.G. Sudarshan, J.K. Sharma and C.L. Mehta, J. Math. Phys. 21, 2386-2394
(1980).

[20] Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics (Springer-Verlag,
New-York, 1982).

[21] T.D. Palev, Czech J. Phys., Sect. B29, 91-98 (1979).

[22] T.D. Palev, J. Math. Phys. 23, 1778-1784 (1982).

[23] M. Scheunert, W. Nahm and V. Rittenberg, J. Math. Phys. 18, 155-162 (1977).

[24] M. Shiri-Garakani and D. Finkelstein, J. Math. Phys. 47, 032105 (2006).

[25] L.J. Slater, Generalized hypergeometric functions (Cambridge University Press, Cambridge,
1966).

[26] J. Van der Jeugt and R. Jagannathan, J. Math. Phys. 39, 5062-5078 (1998).

[27] E. P. Wigner, Phys. Rev. 77, 711-712 (1950).

14



(a)
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(d)

Figure 1: Plots of a typical spectrum of the position operator: (a) for the su(2) model [4]; (b) for
the u(2)α model [15]; (c) for the su(2)α model [16]; (d) for the sl(2|1) model.
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Figure 2: Plots of the discrete wave functions φ
(p)
n (q) in the representation with j = 10, for

n = 0, 1, 2, 3 and for p = 0.1 (left column), p = 0.5 (middle column) and p = 0.9 (right column).
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Figure 3: Plots of the discrete wave functions φ
(p)
n (q) for fixed p = 0.5, for n = 0 (left column) and

n = 1 (right column), but with j varying: j = 10, 30, 60.
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Figure 4: Plots of the continuous paraboson wave functions Ψ
(a)
n (x) for n = 0 (left column) and

n = 1 (right column), and with a varying: a = 5, 10, 30.
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