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Abstract

The quantization of the simple one-dimensional Hamiltontan= xp

is of interest for its mathematical properties rather than for its physical
relevance. In fact, the Berry-Keating conjecture speculates thatpeipro
quantization ofH = xp could yield a relation with the Riemann hypoth-
esis. Motivated by this, we study the so-called Wigner quantization of
H = xp, which relates the problem to representations of the Lie superalge-
braosp(1]2). In order to know how the relevant operators act in representa-
tion spaces obsp(1|2), we study all unitary, irreducible-representations

of this Lie superalgebra. Such a classification has already been malde by
W. B. Hughes, but we reexamine this classification using elementary argu
ments.

1 Introduction

The suggestion that the zeros of the Riemann zeta functightrbee related to
the spectrum of a self-adjoint operatrgoes back to Hilbert andd®a in the
early20th century. It was not until the works of Selberg [1] and Mamttery [2]
that this conjecture gained much credibility. Due to papmwr€onnes [3] and
Berry and Keating [4, 5] in the late 1990s, it appears thattitigert-Polya con-
jecture might be related to the classical one-dimensioahifonianH = zp.
More precisely, Berry and Keating suggest that some soriafitization of this
Hamiltonian might result in a spectrum consisting of theueat,,, where the,,
are the heights of the non-trivial Riemann ze%oe} it,. A proper quantization
revealing such a correspondence is, however, not known.

These interesting observations stimulated us to perforiffexeht quantization
of the HamiltonianH = xp. In Wigner quantization one abandons the canonical
commutation relations and instead imposes compatibiktiyveen Hamilton's
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equations and the Heisenberg equations as operator emgiafitie result is a
set of compatibility conditions that are weaker than theocéral commutation
relations. This was applied for the first time in a famous pdyyeVigner [6].
Wigner's approach has been applied to many different Hanidins, leading to
various connections with Lie superalgebras [7-9]. In thesent text, Wigner
quantization will lead to the Lie superalgelesap(1]2). Since itis our interest to
determine the spectrum of the operatéfsandz, one needs the action of these
operators in representation spaces«f(1|2). We present a classification of all
irreducible x-representations of this Lie superalgebra, thus recoctstgiand
improving some results by Hughes [10].

2 Wigner quantization of H = ap

The simplest Hermitian operator that corresponds to our ili@aman is given
by

1,

H = 2 (2p + p2). @
Without the assumption of any commutation relations betwbe position and
momentum operators andp, one can still compute Hamilton’s equations

OH . 0H
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and the equations of Heisenberg

and impose that they are equivalent. The resulting comifigtibonditions (we
chooseh = 1)

[{ivﬁ}’i‘] = —2iz, [{£>ﬁ}>ﬁ] = 2ip 2

are weaker than the usual canonical commutation relafiong = i. We wish
to find self-adjoint operators andp such that the compatibility conditions (2)
are satisfied. For that purpose we define new operatormsnd b~ satisfying
(b¥)T =T, as
bt T Fip
7

One can rewrite the HamiltoniaH in terms of theb™ as follows:

A= L)~ 7)),

Evidently the operatorg andp can be expressed as linear combinations of the
bE. Even the compatibility conditions can be reformulatedeyrare equivalent
to [H,b*] = —ibT, which in turn can be written as

({67,067}, bF] = £2v*. ()
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These equations are recognized to be the defining relatfdhs ie superalge-
braosp(1]2), generated by the elemerits andb~. So we have found expres-
sions of all relevant operators in terms of Lie superalgeierzerators.

A question one might ask is to find the spectrumZbfand i in an osp(1]2)
representation space, which is only possible once theseseqmtation spaces
are known. The spectral problem will be tackled in a subsegpaper. Right
now, we wish to present a straightforward way of classifyihg irreducible
x-representations afsp(1/2).

3 Classification of irreducible  x-representations of osp(1]2)

Although we are aware of the classification by Hughes in [#8],think it is
possible to achieve his results in a more accessible wagdoas[11]. In addi-
tion we will be able to identify some equivalent represeatatlasses. Before
giving the details of our classification, we provide the radwith the neces-
sary definitions and a general outline of how we will constritirreducible
x-representations afsp(1|2).

3.1 Basic introduction and outline

We will be dealing with the Lie superalgebssp(1]2), generated by two opera-
torsb™ andb~ that are subject to the relations (3). The generating opexét
andb~ are the odd elements of the algebra, while the even elements a

1 1 1
— 2y bt — Zrpt ot -l
h—2{b ,07 ), e 4{b NS f 4{() b7}

Among others, the following commutation relations can n@cbmputed from
the defining relations (3):

[h, €] = 2e, [h, ] = —2f, le, f] = h.

One can define ax-structure onosp(1|2), which is an anti-linear anti-
multiplicative involutionX — X*. For X,Y € osp(1]2) anda,b € C we
have thatlaX + bY)* = aX* + bY* and(XY)* = Y*X*. Our *-structure

is provided by the dagger operation — X', so we have(b*)” = bT and
thereforeh* = h, e* = —f and f* = —e. Once we have constructed such a
x-algebra, we need to define representations.

Definition 1 Let .4 be ax-algebra, letH be a Hilbert space and IeD be a
dense subspace &f. A x-representation ofd on D is a mapr from A into the
linear operators orD such thatr is a representation ofl regarded as a normal
algebra, together with the condition

(m(X)v, w) = (v, 7(X")w) (4)

forall X € Aandv,w € D. The representation spad®, together with the
representationr, is called an4-module. A submodule @ is a subspace that
is closed under the action of. The representation is said to be irreducible if
the .A-moduleD has no non-trivial submodules.
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The even operators, e and f, together with the previously definedstructure,
form the Lie algebrasu(1,1). Bothsu(1l,1) andosp(1|2) possess a Casimir
operator, denoted b andC respectively:

Q:—i(4f€+h2+2h), C:—4Q+%(b*b+—b+b*).

The Casimir elements generate the center of the respeetivelpping) alge-
bras. Sd2 commutes with every element efi(1, 1) and similary forC. More-
over, we haveé)* = Q andC* = C.

We will construct all possible irreduciblerepresentations afsp(1/2) start-
ing from one assumptionk has at least one eigenvector in the representation
space with eigenvalugyu, or

m(h)veg = 2pvy. (5)

Starting from this one vector, we will build other basis \wstof the representa-
tion spacé/ by letting operators ofsp(1|2) act on it. After having determined
the actions of albsp(1|2) operators on all basis vectorsdf we will extend the
representationr to ax-representation. This is done by defining a sesquilinear
form (.,.) : V — C, which is to be an inner product that satisfies (4).

The stipulation that.,.) should be an inner product will be crucial in limiting
the possible representation spaces. However, we will postthe details of this
discussion to the point where we have enough argumentsifoeiad. So let us
start with the actual construction of the representatiatsp’.

3.2 Construction of the representation space

In this section, the:-structure is of no importance. We will construct an ordi-
nary osp(1/2) representation space that we will extend te-gepresentation in
the next section.

The embedding o$u(1, 1) in osp(1|2) implies that any irreducible representa-
tion of 0sp(1|2) is a representation afi(1, 1), the latter being not necessarily
irreducible.V can therefore be written as a direct sum of irreducible 1sprTta-

tion spaces ofu(1,1), or
V=W

Without loss of generality, we can regarglas an element dit’y. Sincell is a
representation space of(1, 1), we know that

vor = 7(e)f vy and  v_gp = 7(f)"vo

must be elements 6¥,. All these vectors span the spdég, which is generated
by a single vectory.

The action ofb™ on any vector ofi¥; must be a vector outsidé’,, provided
that this action differs from zero. Let us define

vy = m(b1 ).
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We can say that; is an element of//;. Similarly, we can look at the action of
b~ onuvy:
vog =7(b7 )vo.

Sinceb~b* is a diagonal operator (apparent from the definition of theil@a
operatorC), w(b™)v; is a certain multiple ofyy. At this point however, we can-
not be sure that (b~ )v, is different from zero. Likewise, it is impossible to
tell whetherr(b™)v_; # 0. Since we can neither say thatf)v, is a nonzero
multiple of v_1, nor thatr(e)v_; is a multiple ofv;, we must regard_, as
an element of a different subspadé ;. Note thatl¥’; andW_, are the same
spaces when either(b=)v; or w(b*)v_; differs from zero. These actions are
zero simultaneously only when= 0.

We denote the generating vectorsif ; asv_o;, 1 = 7(f)*v_; and the gen-
erating vectors ofV; asva, 1 = m(e)Fv;.

Lemma 2 The vectors of¥y, W_; and W, are connected by the actionsiof
andb~ in the following manner

Va1 = T(bT )vak and  voop 1 =7(b )v_og, (6)
for every positive integer value &f

Proof: Applying 7(b%) to the vectorv; results in a vector oV, because
m(bT)v1 = 27m(e)vg. Thus we findr (b*)vy = w(e)vy = vs. Itis clear that this
can be generalized to the stated formuladgr,.;. The result forv_s;_1 can
be found analogously. |

Figure 1 helps to visualize how the representation spacenistaicted. We
emphasize that the relationship betwegrmndv_; is not yet determined.

Wo

Figure 1. The representation=W_; @ Wy @& W1

The action ofh on the entire representation spacecan already be deter-
mined.

Lemma 3 The action ofi on V' is given by
m(h)vr = (20 + k)vg, @)
forall k € Z.
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Proof: For even values dt, this follows just from the relations
[h,e¥] = 2kek, [h, f¥] = =2k f*.

Fork = 1, these are the commutation relatidhse] = 2e and[h, f] = —2f,
and the required identities follow by induction. We thenaibt

m(h) v = w(h)m(e)* vy = (2u + 2k) vor.

For the odd values df, we needh, b*] = +b*, which is an instant consequence
of equation (3). From this, we obtain

7(h)vory1 = 7(R)T(bT)vop = (21 + 2k + 1) vop1,
and similarly forv_ox_1. O
We would like to determine the actionsiof andb~ on every vector ofl/,

W_1 andW;. Our method involves defining the action of the Casimir ofmesa
on the representation space. We write the respective digotions as

m(C)v = lv Vv eV),
m(Q) va = —6(0 + 1) vay, VkeZ).

We will argue that the choice of is not independent of. It is a nice exercice
to show with the help of equation (3) that

(b~bt —bTb7)2 = 4(b~bT — bTbT) — 160

This can be used to show that = (1 — 4Q)(2C + 49). If we let both sides
of this equation act on a vectog, we get a quadratic equation \1 The two
possible solutions are

A1 =20(20+1) and X =2(6+1)(26+1).

We choose\ = \; and remark that the results for the choike= )\, can be
reproduced with the transformation— —é — 1.

In order to be able to determine the action$6fandb~ on every vector of/,
we still need the action of theu(1, 1) Casimir operatof2 on W_; andW;.

Lemma 4 The Casimir operatof? acts onlW_; andW; as given by

R Qaiis = (6= 50+ Dvaer, (R D). (®)

As desired, theu(1, 1)-Casimir operator is constant on the subspatés,; and
W, as well. Moreover, the actions on both subspaces are the.same

Proof: To prove equation (8), we will calculateQ)var 1 asm(Qb")vay. From
(3) we can immediately derive that

b=, bt ot =26t — bbbt
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Using this and twice the definition of the Casimir eleménhtve obtain
400" = b (1 — 20 — 49).

The same formula holds if we changé into 5~ in both sides of the equa-
tion. All of the operators on the right hand side can be appigevectors of
Wo. So nowr (Qb™)vgy, can be easily calculated, with equation (8) as a reBLilt.

It has now become straightforward to find the actiong'oindb~ on all the
vectors ofV/.

Proposition 5 The actions of the operatofs™ and b~ on the vectors of are
given by
T(b_)’l}zk = (/L + k4 5)’[}2]@,1,

(b7 Jvart1 = 2(u + k — 0)vag,
T ook = —(p—k — 6)v_op41,
7T(b+)v,2k,1 = 2(/1 —k+ (5)'0,2]@.

After the choice\ = A5 one would find these actions by means of the transfor-
mationd — —4§ — 1.

©)

Since the actions df, e and f follow directly from these relations, we have
now constructed all representationssf(1|2) generated by a weight vectoys.
It remains to investigate irreducibility and thecondition.

3.3 Extension to x-representations

Recall thatV is the space spanned by all the vectarsk € Z. We introduce a
sesquilinear form.,.) : V' — C such that

(m(X)v, w) = (v, 7(X")w)

for all X € osp(1]2) and for allv,w € V. We see that* = h implies that
(vg,v) = 0 for k # 1. This means that the s8t= {vy|k € Z, v, # 0} forms
an orthogonal basis fdr. We denote by the index set such thaf, € S for all
kel

The form(., .) is defined by putting

(vk, v1) = agdpi, klel,

with a5 to be determined and, = 1. The definition of ax-representation
requires that the representation space is a Hilbert spaceyrsesquilinear form
needs to be an inner product. Hence, we want- 0 for £ € Z. From the action
of h and fromh* = h we obtain

2u = (m(h)vo, vo) = (vo, m(h)vo) = 2,

so . must be a real number. Similar calculations for the actidn® @nd C'
reveal that botld (5 + 1) andd (26 + 1) are real. These two conditions together
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imply thatd must be real.
From the actions of* andb~ and from(b*)* = bT, we derive

a1 = (Vo1 m(b ) var ) = (m(b7 Yvapy1, var) = 2(p + k — &)ask.

In the same way we find

1
Az = 5(/14 +k+9d)agk_1.

Some readers might care for a closed expression fagth&his is given by

1

ax =5 (3= (=1)") (1 = O prjzy (46 + 1) k2,

where(z), = z(z + 1) --- (z + k — 1) is the classical Pochhammer symbol.
We wish to determine under which conditiofs.) is an inner product. Alter-
natively put, for which parameter valuesdg > 0 for all £ € Z? Starting from
ap = 1 this can be derived inductively using the two previous eiguat We
find that alla;, can be positive only ift —§ > 0andp + 5 + 1 > 0.
A similar reasoning should yield a positivity condition fttre a;, for negative
k. However, the resulting conditions+ 6 + k& > 0 can never be satisfied for
all negative values of. Hence, the representatianrmust have a lowest weight
vector, because otherwise it would not be possible to defiriereer product on
the entire representation space. In this case, the réstriof 7 to ansu(1,1)
subspace is known as a positive discrete series reprasentat

There are two choices farto obtain a lowest weight representation. One
choice is to have, as a lowest weight vector, which will arise whér= — . as
one sees from the actions (9). Foe 1 — 1 we obtaint (b™)v_5 = 0, in which
casev_; is the lowest weight vector. After one of these choices Psitjpm 5
must obviously be rewritten. Before we do this, let us make afsthe inner
product(., .) to construct an orthonormal badis; }:

eor = 2 (k20),  em=(—)F 2 (k<0),
[|vak || vz ||
and
Vok . VoK
Coht1 = —L (k> 0), eari1 = (—1)F 1 ZEEL (k< 0),
|v2r+1l [v2r+1l

for k € Z. We can now investigate all irreduciblerepresentations afsp(1|2).

Proposition 6 The only class of irreducible-representations obsp(1|2) is

a direct sum of two positive discrete series representatiofisu(1, 1), deter-
mined by a parameter. For 0 < u < 1, there is only one irreducible-
representation obsp(1|2). The actions of the generators on the basis vectors
{ex| kK =0,1,2,...} of the representation space are determined by

7(beawr = +/2(2u+k)eany,

m(b7)ear = V2kegr_1,

70 )ear1 = 2(k+1)eanqo, (10)
(b7 )eakt1 = /2(2u+ k) ez
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For ;1 > 1, this representation can occur alongside another one, foicivthe
actions of the generators on the basis vecfesg k = —1,0,1,2, ...} are given

by
7T(b+)62k- = \/2(/€+ 1) €2k+1,
W(b_)egk = \/2(2/1,4-]6— 1) €2k—1, (11)
7T(b+)€2k+1 V202u + k‘) €2k+2,
W(b7)62k+1 = w/2(k‘—|— 1) €2k
The actions of the other generators follow immediately ftbese relations and
are left for the reader to calculate.

Proof: Foré = —pu, we get the first representation, which is a lowest weight
representation since(b~)ey = 0. It is clear thatu must be strictly positive so
that all the given actions are well defined. The case 0 is excluded to be sure
thatw (b )eqy, differs from zero.

In the case of the second representation, ffoe= . — 1, we must add the
conditiony: > 1 to guarantee that(b™)e_; is well defined and different from
zero. We end up with the desired classification. a

Note that if we were to choosk = As in the discussion preceding Lemma
4, we would find exactly the same class of irreduciblepresentations. Indeed,
these two representations would pop up for the choiees1 = —por—d—1 =
1 — 1. Iltimmediately follows that the other actions remain theean this case.
Finally, we notice an equivalence between both representatasses in
Proposition 6. Thus, we end up with only one class of irreloleciepresen-
tations ofosp(1/2).

Theorem 7 The only class of irreducible-representations ofsp(1|2) is a di-

rect sum of two positive discrete series representationsi@df, 1), determined

by a parameter, > 0. The actions of the generators on the basis vectors
{ex| k =0,1,2,...} of the representation space are determined1s).

Proof: Forp > 1, definee;, = €, for k = 0,1,2,.... Then the actions (11)
prove to be equivalent to (10) far = pu — % Hence, both representations are
equivalent. a

4 Conclusions and further results

In this text we have obtained a classification of all irretilesik-representations
of 0sp(1|2). The latter Lie superalgebra showed up naturally in the \afign
guantization of the considered Hamiltoniéh = zp. Our main concern how-
ever, was to investigate the spectrum of the operafbrand . Since these
operators are written in terms of generatorsgf(1]2) we felt the need to ex-
plore representations of this Lie superalgebra. They geouis with a suitable
framework in which we know how the crucial operators act.
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Results about the spectrum & and # have already been found and the
details will be published in a subsequent paper, but it eredting to summarize
the results here.

In order to find all eigenvalues of one of the operators, orfsnee a formal
eigenvector for a specific eigenvaltie

o(t) = Z an(t)en,
n=0

where thee,, are the eigenvectors of thep(1|2) representation spadéand the
an (t) are unknown coefficients depending on the eigenvaliEmanding that
v(t) is an eigenvector of the operator in question will gives Ugad term recur-
rence relation for the coefficients, (¢). These coefficients are then identified
with the orthogonal polynomials that comply with the sammureence relation.
The spectrum of the operator is then equal to the supporeofight function
of this type of orthogonal polynomials.

Concretely we have that the spectrunibfs related to Meixner-Pollaczek poly-
nomials and is equal t& with multiplicity two. Generalized Hermite polyno-
mials are connected with the spectrumipfvhich is simplyR.

Recall that Wigner quantization is a somewhat more gengpicach than
canonical quantization. This means that one should be abéebver the canon-
ical case from the results after Wigner quantization. ladeer results prove to
be compatible with the well-known canonical case for theesentation param-
eterp = 1.
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