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Abstract

The n-dimensional (isotropic and non-isotropic) harmonic oscillator is studied as a Wigner
quantum system. In particular, we focus on the energy spectrum of such systems. After briefly
recalling the notion of a Wigner quantum system, we show how to solve the compatibility
conditions in terms of o0sp(1|2n) generators, and also recall the solution in terms of gl(1|n)
generators. We then go on to describe a general method for determining a spectrum generating
function for an element of the Cartan subalgebra when working with a representation of any
Lie (super)algebra. Herein, the character of the representation at hand plays a crucial role.
This method is then applied to the n-dimensional isotropic harmonic oscillator, yielding explicit
formulas for the energy eigenvalues and their multiplicities. This is done using various interesting
computational results from the field of symmetric and supersymmetric Schur functions.



1 Introduction

Harmonic oscillator models are among the most studied both in classical physics and quantum
mechanics, due to the fact that they are analytically solvable and because of their numerous appli-
cations [1]. In the quantum approach the position and momentum operators (¢ and p respectively)
satisfy the canonical commutation relations [p, §] = —ih, and the model is described by its Hamil-
tonian and the Heisenberg equations (in the Heisenberg picture). The spectrum of the Hamiltonian
is of paramount importance as it yields the values that might come up when measuring the total
energy of the system.

Already in 1950 Wigner asked himself the question whether the canonical commutation relations
(CCRs) determine the equations of motion [2]. In that same paper he answered this question by
showing that requiring the compatibility between the Heisenberg and Hamilton equations does
not imply the CCRs between position and momentum operators. He showed that there are (self-
adjoint) operators p and ¢ for which the Hamilton and Heisenberg equations are equivalent (as
operator equations) but for which it no longer holds that [p,§] = —ih. This very fundamental
generalization of the quantum harmonic oscillator is nowadays known as the “Wigner quantum
oscillator”. The deformation is characterized by a positive parameter a and the CCRs are satisfied
only when a = 1/2. Tt is now known that this parameter a can in fact by viewed as the parameter
characterizing a unitary irreducible representation of the Lie superalgebra osp(1|2) [3]. This Wigner
quantum oscillator is an example of a “Wigner quantum system” (WQS). Such systems, introduced
much later by Palev [4, 3, 5], refer to a quantum mechanical system described by a Hamiltonian
H (as a function of position and momentum operators), for which the CCRs are not imposed,
but instead for which the equivalence of the Heisenberg equations and Hamilton’s equations is
postulated (referred to as the compatibility conditions).

WQSs belong to the field of non-standard quantization, or more precisely to the class of models
of non-commutative quantum systems. Nowadays there is quite some interest in such models, or
more generally in theories with an underlying non-commutative geometry [6, 7, 8, 9, 10]. The
interest is not only purely theoretical, but also inspired e.g. by the prediction of string theory that
the geometry of space becomes non-commutative at very small distances [11]. In this context, a
WQS has the advantage that deformations of commutation relations are not put in “by hand”, by
inserting some extra deformation parameter. On the contrary, in a WQS the non-commutativity
(or deformation of the CCRs) simply follows from some other first principles, namely the earlier
mentioned compatibility conditions.

Among the quantum systems that have been studied as a WQS, we mention [12, 13, 14, 15]. Most
attention went to multi-dimensional (isotropic) oscillators as WQS [16, 5, 17, 18, 19], and to linear
chains of one-dimensional harmonic oscillators coupled by a nearest neighbour interaction [20, 21].
In the last example, a solution to the so-called compatibility conditions, expressing the equivalence
of the Hamilton and the Heisenberg equations, was given in terms of the Lie superalgebra gl(1|n),
for which unitary irreducible representations are known.

Quite recently, the paraboson Fock space for the Lie superalgebra osp(1|2n) was constructed [22].
This is a lowest weight representation characterized by a positive parameter p (subject to some
conditions) and we will denote these representations as V(p). In [22], an explicit basis for the
representation space is given, along with the matrix elements of the representation. The characters
and some character formulae are also given. The construction of this representation made it worth-
while to go and look for solutions of the compatibility conditions of quantum systems in terms of
generators of the Lie superalgebra osp(1|2n), which is the main topic of this paper.

In this paper, we reconsider the isotropic and non-isotropic n-dimensional quantum harmonic
oscillator as a WQS. In Section 2, we briefly review the fundamentals of WQSs and explain how
the compatibility conditions for the current system are derived. We then give a new solution for



the non-isotropic oscillator in terms of the odd generators of the Lie superalgebra osp(1]|2n) (or
equivalently in terms on n pairs of paraboson operators). Apart from this, there is a second solution
of these compatibility conditions in terms of the Lie superalgebra gl(1|n). This result is in fact an
easy consequence of the results in [20].

Since Lie superalgebras on themselves do not give a suitable framework for studying the be-
haviour of the operators in a WQS, one has to work with (unitary irreducible) representations of
these algebras. In Section 3, we present the representations that are going to be used in this article.
In fact, we will only describe their characters (and some character formulae) as this is all that is
needed in order to derive the spectrum generating function. The characters of the representations
are expressed in terms of (supersymmetric) Schur functions.

In Section 4, we consider the quite general problem of determining the spectrum of any element
of the Cartan subalgebra in a representation of a Lie (super)algebra. A spectrum generating
function, i.e. a formal power series in some variable, where the exponents give the eigenvalues and
the coefficients the multiplicity of the corresponding eigenvalue, is easily obtained by performing a
simple substitution in the character of the representation.

In the next section, we apply this technique to the osp(1|2n) solution of the compatibility
conditions of the n-dimensional isotropic harmonic oscillator (with frequency w). We immediately
obtain that for any admissable value of p > 0 the representation V(p) yields a countable infinite
and equidistant spectrum with spacing fuw and ground level fiwnp/2. Also, the degeneracies of the
energy levels are seen to be polynomials in n. We then study the spectrum more thoroughly for
some specific values of p, and we see for instance that we recover the known results for the canonical
case, i.e. when p = 1. Furthermore, it is shown that the multiplicities of the eigenvalues in the
case when p € {1,2,...,n—1} (non-generic cases) may be determined in terms of the multiplicities
for the case p > n — 1 (generic case). Finally, the three-dimensional oscillator is considered as an
example.

In Section 6 the spectrum generating function technique is applied to the irreducible covariant
tensor representations of gl(1|n). These representations are less like the canonical solution since
they are finite dimensional. Nevertheless, also in this case the spectrum is equidistant with spacing
hw, and the multiplicities of the different energy levels can again be seen as polynomials in n.

2 The quantization procedure and some of its solutions

In this section, we briefly describe how to derive the compatibility conditions for the n-dimensional
harmonic oscillator and also give some solutions of them in terms of Lie superalgebra generators.
To be more specific, consider the Hamiltonian for an n-dimensional harmonic oscillator with mass
m and frequencies w; (j =1,...,n):

2 1 2 M 2 :2
H=50 > 0it5 > @i 1)

Here, the position and momentum operators are given by ¢; and p; respectively. We shall treat
both the non-isotropic case (w;’s different) as the isotropic case (all w;’s equal). When treating this
system as a WQS, one no longer requires the CCRs between position and momentum operators,
but instead one requires the compatibility of the Hamilton and Heisenberg equations. Expressing
this compatibility yields the so-called compatibility conditions (CCs).

In this case, the Hamilton equations are:

X 8f{ 1A X 819’ 2A .
qj:%:%pj, pj:—a—dj:—mquj, ji=1,...,n, (2.2)



while the Heisenberg equations are
: (AT : i . .
The compatibility conditions are thus:
. h . : 94 .
(H,§;] = —i—Dj, [H,p;] = ihmw3g;, j=1,...,n. (2.4)

One then typically introduces the following linear combinations of the unknown operators ¢; and
pj

F = ”JA i=1,...,n. (2.5)

a; = \/7]?]3 J

The Hamiltonian has the following easy expression in terms of the operators aj-[:

ij aja]_ +a; a ij{a], a; } (2.6)

] 1

It is now easy to verify that the compatibility conditions (2.4) are equivalent with
Zw]{a] .a; b, ak] :|:2wkaf, E=1,...,n. (2.7)

Finally, due to the fact that the position and momentum operators are self-adjoint, one has that
(@) =aF, j=1,...,n. (2.8)

So in conclusion, solving the compatibility conditions amounts to finding operators a;t (j =
1,...,n), acting in some Hilbert space, that satisfy the equations (2.7), subject to (2.8). Note
that the a;E do in general not satisfy the usual boson commutation relations, since the CCR’s are
not required.

In a sense, (2.7) can be considered as a generalization of the boson commutation relations.
These are now “triple commutation relations”, which are automatically satisfied for ordinary boson
operators. More general solutions of (2.7) can be found by means of Lie superalgebra generators.

The o0sp(1|2n) solution.  One class of solutions follows by identifying the operators a;: with

generators of the Lie superalgebra osp(1|2n), or equivalently, with paraboson operators. Indeed,
consider a system consisting of n pairs of paraboson operators whose defining relations are given
by:

({65, 573 b5] = (€ = )8b, + (€ — m)yabS, (2.9)

where j,k,l € {1,2,...,n} and n,¢,€ € {+,—} (to be interpreted as +1 and —1 in the algebraic
expressions € — & and € — 7). It is known that the Lie superalgebra generated by the odd elements
b;-t (j = 1,...,n) subject to the relations (2.9) is in fact the orthosymplectic Lie superalgebra
osp(1]2n) [23].

Using the triple relations (2.9), it is an easy verification that

af =ofbt, with |oj=1 j=1,...,n (2.10)

a; =05b;,  aj =ojby,

j
indeed satisfies (2.7). Furthermore, the conditions (aj[)T = a] lead to the relations (bji)T = b} for
the paraboson operators. So in the following, we shall work with osp(1|2n) representations in which
these conditions are automatically satisfied, namely the so-called paraboson Fock spaces V (p).



Note that the algebraic form of the Hamiltonian is as follows:
H:§ZWj{aj,aj}:§ij{bj,bj}:h2wjhj, (2.11)
j=1 j=1 j=1

where the operators h; = {b;, b;r}/Q ( =1,...,n) span the Cartan subalgebra of osp(1|2n) (see [22]

for a definition of osp(1]|2n) in terms of the paraboson operators bj[)

The gl(1|n) solution. A second class of solutions for (2.7) can be given in terms of the Lie
superalgebra gl(1|n). In fact, equations which are equivalent to (2.7) have been encountered before
when treating a linear chain of coupled harmonic oscillators as a WQS [20]. After introducing
“normal coordinates”, the form of the Hamiltonian of such a chain is essentially given by (2.1).
This means that the solution of the CCs found in [20] carries over to this case. We thus have the
following solution in terms of odd gl(1|n) generators:

_ 2 ﬂ’ + . 2 5’ .
a; = wj] €jo, a; = sign(G;) w—jjegj, ji=1,...,n, (2.12)
with
1 n
ﬂj:*“ﬁn_lZwk, j=1,...,n. (2.13)
k=1
The frequencies are supposed to be such that the constants 3; (j = 1,...,n) are non-zero. Also,

the eg; and ejo are the odd generators of the Lie superalgebra gl(1|n). The fact that (2.12) is indeed
a solution of the CCs is easily checked using the commutation and anti-commutation relations in
gl(1fn):

[eij en] = djpen — (—1)%B) sl gyey . (2.14)

The elements ep; and ejo (j = 1,...,n) are the odd elements and hence have degree 1. All other
basis elements are even elements and have degree 0.

We are going to use the following “star-condition” for gl(1|n) (corresponding to the real form
u(1n)):

()" = ejo-

This is equivalent to the conditions (2.8) for the operators aj-[ provided all constants 3; are positive.
Thus in the rest of this paper, we shall assume that the frequencies w; are such that all 3; > 0
(j = 1,...,n), at least when we are working with the gl(1|n) solution. The unitary irreducible
representations of gl(1|n) then yield the appropriate spaces for our operators to act in. On an
algebraic level, it is easily verified that the Hamiltonian (2.6) is given by:

H = h(Beoo + Y _ Bjesj),
j=1

with 8 = >7"_, 3; and 3; given by (2.13). Note that the Hamiltonian is again an element of the
Cartan subalgebra of gl(1|n).

3 Some representations of osp(12n) and gl(1|n), and their charac-
ters

Since our goal is to study the spectrum of the Hamiltonian when acting in some Hilbert space, we
now introduce the representations we are going to use and in which the Hamiltonian acts. This



amounts to collecting some material on a class of representations of the Lie superalgebra osp(1|2n),
and of the Lie superalgebra gl(1|n).

A class of 0sp(1]|2n) representations.  For the osp(1|2n) solution, we are going to work with
the paraboson Fock space V(p), which is the unitary irreducible representation of osp(1|2n), with
lowest weight (p/2,p/2,...,p/2). The parameter p, which is sometimes called the order of the
paraboson system and which characterizes the representation, is subject to certain constraints.
In [22], an explicit basis and the matrix elements of this representation were constructed and also
the weight structure (characters and character formulae) was given. Recall also that for p = 1
the paraboson Fock space V(1) coincides with the ordinary boson Fock space (so in that case the
CCRs are satisfied). When p # 1, we are dealing with “deformations” of the CCRs. The main
result concerning the unitarity and weight structure of the representations V' (p) is the following [22,
Theorem 7]:

Theorem 1 The osp(1]2n) representation V(p) with lowest weight (§,...,%5) is a unirrep if and
only ifpe{1,2,....,n—1} orp>n—1.
For p>n—1, one has
(z1--- 2y )P/
[T.(1— i) Hj<k(1 — x;Ty)
= (xl---xn)p/QZsA(m). (3.2)
A

char V(p) =

Forpe {1,2,...,n— 1}, the character of V(p) is given by

char V (p) = (z1 - - 2P/ Z sx(z) (3.3)
A (M)<p

where ((A) is the length of the partition .

In this theorem, s)(x) stands for the Schur symmetric function [24], and although in (3.2) no
restriction on the length of the partitions is given, the sum is in effect over all partitions of length

at most n since sy(z1,...,z,) vanishes if £(\) > n. The length of a partition is its number of parts.
This and all other notions involving partitions may for instance be found in [24].
For our purposes, it is interesting to note that in the case when p € {1,2,...,n — 1}, the

character of the representation V(p) can also be written as follows [22]:

E
(0p) (3.4)

char Zl""xnp/Q ’
har V(p) = (=1 ) [1:(1 = i) T[] (1 — aj)

with
Ep) = > _(=Dsy(z1,..., 20), (3.5)
n

where the sum is over all partitions 1 of the form
al a/z e a'f’
= = (a1,a0,...,a,|a ,a ey @ 3.6
n <a1+p atp - ar+p> (a1,a2 rlar +p,a2+p r+ D) (3.6)

in Frobenius notation, and
cp=a1+ar+---+a +r. (3.7)

The Frobenius notation is a special way of denoting partitions [24] related to the lengths of the
rows and columns in the Young diagram of the partition, counted from the diagonal. In the current



Figure 1: Typical shape of the Young diagram for the partition 7, given by the Frobenius nota-
tion (3.6) (illustrated here for r = 3).

ay ‘

az ‘

ap|az|as

case, the partitions 7 are all those with a Young diagram of shape given in Figure 1. The number of
terms in the numerator of (3.4) is 2"~P. This follows immediately from the fact that sy(z1,...,zy)
vanishes identically if £(A) > n. The length of a partition n given by (3.6) is given by 1+ aj + p,
hence a; < n —p— 1. It is easily checked by induction that the number of partitions of the form
n with a; < k is given by 28!, since it is immediately clear that the a; are a strictly decreasing
sequence of non-negative integers.

Some interesting special cases of (3.5) are:

Eon= [[ (1-zm) (3.8)
1<j<k<n
and
Eqgn-1)=1—2122--- 2. (3.9)
These lead to:
char V(1) = (a1 - a2t (3.10)

[T, — ;)

and

N o N(=1)/2 (I—z1my---xp)
charV(n—1) = (x1---zp) L0 — o) [ on( - 2ye) (3.11)
A class of gl(1|n) representations. = We now turn to the characters of the gl(1|n) representa-
tions we are going to use. It is well known that the symmetric Schur functions are the characters
of the irreducible covariant tensor representations of gl(m). Berele and Regev showed that the
characters of irreducible covariant tensor representations of gl(m|n) are supersymmetric Schur
functions [25].
Let z = (x1,...,2m) and y = (y1,...,Yn) be two sets of independent variables. The complete
supersymmetric functions h,(x|y), with r a non-negative integer, are defined as:

he(aly) = he_g(@)en(y), (3.12)
k=0

where h and e on the right hand side denote the ordinary complete and elementary symmetric
polynomials respectively. One then has the following determinantal formula for supersymmetric
Schur polynomials indexed by a partition A:

sx(zly) = det(h/\i—ﬁj(95|y))1§i,jge(,\)~ (3.13)

7



Formula (3.13) is the analogue of the Jacobi-Trudi formula for symmetric Schur functions. However,
there do exist a number of other formulas for the supersymmetric Schur polynomials. One is a
combinatorial formula in terms of supertableaux (just as there is a formula for Schur polynomials
in terms of tableaux), and from this combinatorial formula, one deduces the following expansion of
supersymmetric Schur polynomials in terms of ordinary Schur polynomials [24, §1.5, Ex. 23]:

‘T‘y ZC;WSM ) (314)

where the coefficients cﬁy are the Littlewood-Richardson coefficients [24, 26] (the coefficients in the
expansion of a product of two Schur functions as a linear combination of Schur functions). They
are non-negative integers and may be determined by a combinatorial rule, the so-called Littlewood-
Richardson rule. In (3.14), v/ denotes the conjugate partition of v, i.e. the partition whose Young
diagram is the transpose of that of v.

The polynomials sy (z|y) are identically zero when A,,+1 > n, so we are considering only those
partitions for which A,,+1 < n. Supersymmetric Schur polynomials s)(z|y) indexed by such a
partition are the characters of the irreducible covariant tensor representations of gl(m|n) [25].

In the case when \,, > n, there exists a particular convenient formula that expresses a super-
symmetric Schur polynomial as a product of two ordinary Schur symmetric polynomials multiplied
by the variables associated with the (m,n) rectangle in the upper left corner of the Young dia-
gram [27, 28]. Indeed, let A = ((n™) 4+ 7) Un, then:

m n
SA@1, Ty ) =50 (X1, T) Sy (Y1 - Un HH xi + ;). (3.15)
1=1j5=1

In Figure 2, this is illustrated for m =4, n = 5.

Figure 2: Example of partition for which the supersymmetric Schur polynomial will factorize. In
this case, we assume that m = 4 and n = 5. Notice that \,, =5>n=52> \,4+1 = 3.

|
A= ((n")+71)Un
= with T=(2,1,1)
n=(3,1,1)

4 Spectrum generating functions for Cartan subalgebra elements

Suppose we work with a Lie (super)algebra g with Cartan subalgebra b, and let the Cartan subal-
gebra be spanned by the elements h; (j =1,...,n). For some given constants «;, we consider the
element

C = Zajhj, (4.1)
7=1

and our aim is to determine the spectrum (including degeneracies) of such elements C' when working
in a particular representation R of g. The representation is supposed to be a unitary and irreducible.



We also assume that the character of the representation is known:

. r __ T1 T
char R = E dprxt = g [0 AR A
r

T15--sTn

The character is a formal power series consisting of terms d,, 7" - 2} with (r1,...,7m,) a
weight of the representation and with d,, . ,, the dimension of the corresponding weight space. A
method to turn the character of such a representation into a spectrum generating function for C'
is common knowledge, but is not so easy to trace in the literature. So we briefly outline it in this
section.

Let r = (r1,...,r,) be a multi-index (weight) such that dr # 0, then there exist d, linearly
independent basis vectors |m) of the representation for which hj|m) = r;/m) (j = 1,...,n) and
hence

Clm) = () azhy)lm) = (O ayrj)m) = Ce|m).
pust j=1

The eigenvalues of C' (not necessarily all different) are thus given by

n
Cr: E ;T
J=1

for each weight r = (r1,...,7,). Let t be a new variable. If one performs the substitution
r;y—tY, (j=1,...,n) (4.2)

in the character, then one gets

spec C' = Z dpy, ot O = Z dptCr. (4.3)
r

T1yeeesTn

Clearly, the different eigenvalues of C' in this particular representation are read of as the exponents
of t. If all eigenvalues C} are different, their multiplicities are given by the coeflicients d, in the
character. It might happen, however, that not all eigenvalues C; are different. In that case, one
should collect equal powers of ¢ in spec C, and the coefficient of t“* then gives the multiplicity of
this particular eigenvalue.

To summarize, in order to find the spectrum of an element C' of the form (4.1) in the repre-
sentation R, one has to perform the substitutions (4.2) in the character of R. The eigenvalues
are then read of as the exponents (of t), while their degeneracies are given by the corresponding
coefficients. So spec C, given by (4.3), is a spectrum generating function for the operator C' in the
representation R.

5 Spectrum of the Hamiltonian in the osp(1|2n) solution

The purpose of this section is to study the spectrum of H in the unitary representations V(p)
of 0sp(1]2n), and more particularly to determine the spectrum generating function for H. In
particular, for p = 1, we should find back the spectrum of the canonical quantum oscillator.

Following the technique of the previous section, constructing the spectrum generating function
is almost straightforward. The most interesting case is the isotropic oscillator, which will get further
attention.



Algebraic form of the Hamiltonian. As mentioned in section 2, the Hamiltonian of the system
is given by:

I _ hi _ .
H:§ij{aj,a;r}:Eij{bj,bj}Zthjhj- (5.1)
j=1 j=1 Jj=1

where the operators h; = {b;,b;r}/Q (j = 1,...,n) span the Cartan subalgebra of osp(1|2n). In
this section, we shall pay particular attention to the isotropic case, with w; =ws =+ = w, = w.

In that case, the expression for the spectrum generating function simplifies a lot.

Energy levels in terms of Schur polynomials. In general, since all constants o in (4.1) are
identical for the isotropic oscillator, one has to perform the following substitutions in the character
of V(p)

zj =t =2 (j=1,...,n) (5.2)

in order to obtain the spectrum generating function for H. This spectrum generating function will
be denoted by spec H. Whether p€{1,2,...,n—1} or p > n — 1, the character can always be
written as
char V (p) = (z1 -+ - 2P/ Z Sx(T1, ..y Tn). (5.3)
A LM<l

(Note: the ceiling function is only necessary to take care of the cases n — 1 < p < n.) After
performing the substitutions (5.2), we will have specialized the Schur polynomials to

sx(z,...,2) = z"\‘s,\(l, R
Here, we have used the fact that the Schur polynomial sy (z1,...,x,) is homogeneous of degree |A|.
There is a known expression for such specializations s)(1,...,1) of Schur polynomials in terms of

the contents and the hook lengths of the defining partition A [24, 1.3, example 4]:

n+c(i,j)
(1= ] metid) (5.4)
g (Zg[@ h(i, j)

where c(i,j) = j — i and h(i,j) = A\; + A} —i — j + 1 is the content and the hook length of
(i,7) respectively. Alternatively, (5.4) is also the dimension of the gl(n) irreducible representation
labelled by the partition A. Following Macdonald [24], we introduce the following generalization of
the binomial coefficients for any partition A:

X\ X —c(i,7)
(3)- AL =65 >

On the left of Figure 3 the numerator of each factor in (5.5) is shown for a certain partition, while
on the right of that same figure the denominators (hook lengths) associated with each block are
shown.

For the specializations of the Schur functions one thus has

TL—FC(Z’]) n—c(y,z) n
(i.d)€A (i, 5) (i-) €A 3. 1) A
It is easily checked that for A\ = (k)

((f)) :%)/j__f”'X_fH B (X_:!H)k - ()/D

10



Figure 3: Illustration of the various factors of a generalized binomial coefficient.

X X-1X-2X-3 7 6 4 1
X+1 X |X-1 5 4 2
X+2X+1 X 4 3 1
X+3X+2 2 1

so that for each partition of length 1, the generalized binomial coefficient becomes an ordinary
binomial coefficient. The notation (a); stands for the rising factorial or Pochhammer symbol:
(a)gp=ala+1)---(a+k—1)if k>0 and (a)y = 1.

Putting all of this together, we get for the spectrum generating function for the isotropic oscil-
lator:

spec H = z""/? Z sx(z,...,2) :Z Z sx(1,...,1)¢wmp/2Hk) (5.7)

A LM< Tp] k>0 X, [Al=k, £((A)<p]

From this, it is clear that we will have equidistant energy levels
EP = hw(np/2+k), k=0,1,2,3,- (5.8)

with spacing fiw and with multiplicities (degeneracies)

W(EP) = Y sl = 3 <’;) (5.9)

A ‘)":kv‘g()‘)g[p—l A |)\‘:k’,€()\)§"p—|

From definition (5.5) it is clear that the generalized binomial coefficient (if ) is a polynomial of

degree |\| in the variable X. This means that in general, the degeneracy (or multiplicity) ,u(E,(f ))

of the k-th energy level E,(Cp ) is a polynomial of degree k in n. (Clearly the degree is going to be
at most k, and since the coefficient of nl* in (5.6) is positive, the degree is exactly k.) Since the
degeneracy M(E,(Cp )) is in fact independent of p in the generic case, i.e. when p > n — 1, we will drop

the superscript (p) in this case.

The canonical solution (p = 1). The representation V(1) of osp(1]2n) is nothing but the canon-
ical solution of the harmonic oscillator model, i.e. the CCRs are satisfied in this case. Application
of the described technique should thus give the known result for the spectrum of the Hamilto-
nian. In this case, there is a very simple expression for char V' (1), namely (3.10). Performing the
substitutions (5.2) immediately yields

Zn/2

_ n/2 n+k—1 k?: n+k—1 m(n/2+k)
7(1_2)71 z Z( 1 z Z 1 t .

k>0 k>0

spec H =

We thus see that we indeed have equidistant energy levels, with spacing Aw, and that the ground
energy level is given by Aiwn/2. The multiplicity of the k-th energy level is given by the binomial
coefficient ("+Z_1), which is, as it should be, a polynomial of degree k in the variable n. These

results are of course not new, but they do coincide with known results [29, 30, 31].

11



The same result is also easily obtained from (5.9):

()=o) ()0 e

where the following property of generalized binomial coefficients was used

R)-cn ()

together with the fact that for a partition of length one, the generalized binomial coefficient coincides
with the classical binomial coefficient.

The case p = 2. Also when p = 2, i.e. for the representation V(2), the multiplicities of each
energy level can be determined explicitly even though there is no “closed form” character formula
for this representation. Consider a partition (A1, A2) of length (at most) two. We are now going
to use formula (5.6) to find a formula for s(y, ,)(1,...,1). This is easy, we just have to consider
three parts in the Young diagram of the partition: the first Ao blocks on the first row, the last
A1 — A9 blocks on the first row, and the blocks on the second row. For each of these three sets of
blocks, it is easy to write down the contents on the hook lengths of the blocks in it. Doing this and
multiplying the result yields the following:

A2 A1—A2 A2
n+l—1 n+A —1 n+l—2
ol <H /\+2—l) ( L1 z) <H Hl_z)
=1 1=1 =1
_ (a1 =Da (M — A+ 1)
NolOu + 1) ‘

It is interesting to note that this result is also valid when Ay = 0 or even when A is the empty
partition. It thus follows from (5.9) that

M(El(f)) = Z S)\(lw"?l) = Z 5()\17)\2)(1,...,1)

A, M=k, £(0)<2 At rg=k
A1>X22>0

)k -1(n— 1)\ 112\ —k+1)
k A (A + 1)!

M»

>
,_.
—
IMES
.

I
M= 1

f(A).

A

,_.
Il
—
IMES
.

Now, f(A1) is a hypergeometric term that is Gosper-summable [32], and indeed it is easy to verify
that
f) =g(M +1) —g(M),
with
(M=, (n

()
9) === Al)uj! ‘

The summation over f thus telescopes, and the multiplicity ,u(E,(f)) is given by

() I ](”)(g]
(k= T5DUTEDY

|

w(EP) = gk +1) —g([5]) = (511)

—|N
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since g(k+1) = 0. If we consider the even and odd cases separately, the expression (5.11) simplifies

even further:

wEg) = Wk o u(ES (n)i(n + k)

E12 2k+1) = 2 EL1) i+ 1) (5.12)
This can also be written as in a form similar to the canonical case (5.10):
5 n+k—1\2 9 n+k—1\/n+k
,u(Eék)) = ( i ) , and ,u(Eék)H) = ( ) ) (k N 1). (5.13)

The generic case. We now turn our attention to the case where the representations V(p) are
generic, i.e. p > n — 1. In this case, a character formula is given by (3.1). After performing the
substitution (5.2), one gets as a spectrum generating function:

an/Q an/2

(1—2)n(1 - zzw) BTGB G
— /2 Z < + ki — > k1 Z <(Z) +]£2 - 1>(—z)k2

spec H=

k1>0 ko>0
_ZZ <n+1 +k;l1) <( ) ll)thw(np/QJrk)
k>0 1=0 k=1 !

So, this again confirms that we have equidistant energy levels, with the ground energy level given
by hwnp/2, and with spacing hw. The multiplicity of the k-th energy level is thus given by

=S (O (e )

1=0
(5.14)
where the summation was also written using a Gauss hypergeometric function. For n = 1, it
follows that u(E)) = 1, so one recovers the result of Wigner [2] who observed that the energy
levels for the one-dimensional oscillator only shift when using non-canonical solutions, but remain
non-degenerate [2]. Note that it is not immediately clear that (5.14) in fact defines a polynomial
of degree k in n.
Putting together (5.14) and (5.9), we can now express a sum of generalized binomial coefficients
as a sum of a product of two ordinary binomial coefficients:

> (f) = i(—l)l((“l) Zfl_ - 1) (()2() J;l_ 1>. (5.15)

A, [A=F 1=0

The case p =n — 1. Another case that can be done explicitly is the case p =n — 1. A character
formula is then given by (3.11) and the spectrum generating function for the isotropic oscillator
becomes:

1-2"
(1—2)7(1 —22)(3)
— zn(nfl)/Q(l _ Zn) ZM(Ek)Zk

k>0

— n(n=1)/2 ZN(Ek)Zk — ZM(Ek—n)Zk

k>0 k>n

spec H = z"(n=1)/2

13



Hence, it is clear that the following holds for the multiplicities ,u(E,in_l)):

(5.16)

n— e for k < n,
w(Ey) — w(Eg—yn) for k >n.

The case p € {1,2,...,n —1}. For p € {1,2,...,n — 1}, the character of V(p) can also be
written in the alternative form (3.4). The spectrum generating function is thus (we again use the
substitution (5.2)):

spec H = z”p/zz(—l)cn( ) 1S ()=

k>0

_an/2z ( > (Ej) 2R+
SELE DD DRCHET (A TN RS

>0 k,n

k+|n|=l

Here, the partitions 7 are those of the form (3.6) and ¢, is given by (3.7). On the other hand, we
clearly have from (3.3) that the spectrum generating function is also given by:

specﬁ — "p/2 Z u(El(p))zl,
>0

so that in fact

W(EP) = > (—1)6"(7;)#(&), 1=0,1,2,--- (5.17)

k,n
k+|n|=l

with the convention that u(Eyg) = 0 for & < 0. The partitions n are still of the form (3.6).
Formula (5.17) thus gives in fact a way of determining the multiplicities ,LL(El(p )) in terms of the
“generic” multiplicities p(Ey) with & <.

Example: the case p =n —2. We start by noting that (z) = 0 for any partition where A\; > n.
If we have a partition 1 of the form (3.6), then 7} = 1+a; + (n—2), meaning that ( )) has a chance
of being non-zero only when a; < 1. It is now easy to enumerate all possible partltlons n:

n=(1,0ln—1,n—2)|¢,=1+2=3||p|=2n |n=(2") () =1
—(1|n-1) ep=1+1=2[p|=n+1{n=2,1"")|(})=n
=(0|n—-2) cy=0+1=1|[n[=n—-1|n=01"") |())=n
n=1) ey =0 In| =0 n=_0 () =1
We thus have that
n—2
W(ED) = w(E) — n p(Erpr) + 1 u(Bimn1) — n(Bi_zn), (5.18)

again with the convention that p(Ex) =0 for k < 0.

The three-dimensional isotropic oscillator. In the case when n = 3, there are only three
cases to consider for the osp(1|6) solution: p > 2, p = 2 or p = 1. For the generic case p > 2, the
generating function for the multiplicities is simply:

(Ey)
(1—2)3( 1—22 ZM k)2

k>0
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and the online encyclopedia of integer sequences [33, A038163] then gives a closed form for the
multiplicities:

4k +5(k+4
M(E%): (

4k 4+ 15 [k + 4
5 4 ) and N(EQk—&—l): ( )

5 4

Note that these closed form expressions could also be obtained by putting n = 3 in the right hand
side of (5.14), and performing a generalization of Kummer’s identity for hypergeometric series [34].
When p = 2, we can use (5.12) or (5.13), yielding

W(ED) = (k+1)%(k + 2)2’ W(ED (k+1)(k+2)*(k+3)

2k 4 2k+1) = 4 )

or one can use (5.16), which after manipulation of the binomial coefficients yields the same explicit
result. Finally, for p = 1, one has:

W(ED) = <k7€—2> _ (k+2)2(k+1)

Numerically, this gives the following:

v B [ B | pE) | wE) | B | wEs) | aE) | wE?) | ) | wey)
1 1 3 6 10 15 21 28 36 45 55
2 1 3 9 18 36 60 100 150 225 315
p>2 1 3 9 19 39 69 119 189 294 434

Note how the multiplicity of the first two energy levels is unaffected by considering non-canonical
solutions. Also, from this table one can check (5.18) numerically for some values.
6 Spectrum of the Hamiltonian in the gl(1|n) solution
As already mentioned before, on an algebraic level, the Hamiltonian is given by
n
H = h(Beoo + Y Brexr),
k=1

with =31 | B and By = —wy + ﬁ > =y wi. When the oscillator is isotropic, however, all G;’s
are equal and given by

w
Pe=——7;
consequently
nw
f= n—1

The representations of relevance are the unitary irreducible gl(1|n) representations. We shall
consider here only one class of such representations, namely the covariant representations V) which
are labeled by a partition A satisfying Ao < n. The character of such a representation V) is given
by the supersymmetric Schur function sy(x1 |y1,...,yn). So the first set of variables consists of
one variable only, while the second set consists of n variables. Formula (3.14) reduces in this case
to:

sn(@ Y1 yn) = D nsu(@)su (- yn), (6.1)
v
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while the Berele-Regev formula for partitions satisfying A\; > n becomes:
n
SA(@1|Y1, -+ 5 Yn) = S0u—n) (T1)8 (Ao rs,y (YL -+ -5 Un H 1+ y;)

/\1n

n
=T S(Ag,)s,.. (Y15 Yn H 1+ yj)

The case \; > n (typical case). Formula (6.2) allows to draw conclusions about the spectrum
of the Hamiltonian very easily. So, we start by concentrating on the case when the partition A is
such that Ay > n. In order to determine the spectrum generating function, we have to perform the
substitutions:

hwn hw

1 — th =1 = 7 Yj — thBi — 1 =: 2 (j=1,...,n). (6.3)

With these substitutions and using (5.6), the spectrum generating function becomes

spec H = z"M=n) zA1=x ( " ) (2" 4+ 2)"

(A2, Az, . .)

_ D a—m) A (] 4 ol n( n )
i Tz 6.4
( ) ()\27 >\3a o ) ( )

(/=D AA=m) () | gho n< n )
( ) (A2, Az, . ..)
From this, it is immediately clear that the ground energy level is given by
) A

By =ho(—5 + A1 —n). (6.5)

Furthermore, we see that there are in fact n + 1 different energy levels, equidistant with spacing
fw, and hence the highest energy level is:

A

£ = no( AL

+ A1).

Also, from the binomial theorem, it is immediately clear that the multiplicity (£, EX )) of the k-th

energy level is given by
Ny _ (7 n
HE) (k (A2, As,..))

which is the product of an ordinary and a generalized binomial coefficient. In [21], it was already
shown that the multiplicity of the different energy levels in the representation V|, with p > n were
in fact given by the binomial coefficients (Z), a fact recovered here, since the generalized binomial
coefficient involves the empty partition. Note also that the multiplicity of the different energy levels
does not depend on A; (as long as A; > n), but that A\; does influence the (height of the) ground
level.

The general case. When A\ < n, no nice factorisation of the supersymmetric Schur function
sx(x1|y1,...,yn) exists (the representation is then atypical), and hence we resort to using the
expansion (6.1), which is valid in general. Since the set of variables x is simply z1, this means that
in (6.1) the Schur function s, (1) vanishes unless p = (r) for some non-negative integer . More
in particular, we then have

sy (71) = hp(21) = 27.
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Also the Littlewood-Richardson coefficients are particularly easy in this case, see [24, §5]:

Clryw =

1 if A — v is a horizontal r-stri
A\ { i v is a horizontal r-strip (6.6)

0 otherwise.
Let A and v be two partitions such that the Young diagram of v is embedded in the Young diagram
of A, or stated otherwise v; < \;, for all . The set theoretic difference 6 = A\ — v is called a skew
diagram. The skew diagram is called a horizontal strip if all §; < 1, or stated otherwise, if the

diagram of 6 contains at most one block per column. Naturally, a horizontal strip is a horizontal
r-strip if it consists of exactly r blocks. Figure 4 gives an example.

Figure 4: An example of a horizontal 4-strip. The partition A = (5,4,2,2,1) and v = (5,2,2,1).

The Littlewood-Richardson coefficients given in (6.6) are in fact equivalent with Pieri’s rule [24]:
5y (7)sy(x) = Z sx(x), (valid for general z)
A

where the sum is over all partitions A such that A — v is a horizontal r-strip. The expansion (6.1)

may hence be written as
sa(@ily) =D 21> su(y), (6.7)

r>0 v

where the sum is over all partitions v such that A — v is a horizontal r-strip. Performing the
substitutions (6.3) yields the following spectrum generating function:

~ wnr hw|v| Y
spec H = Zthn*l t -1 <n> = Ztm(ﬁﬂ) Z <n>’ (6.8)
14 14

r>0 v r>0 v

where the inner sum runs over all partitions v such that A — v is a horizontal r-strip (and hence
V] = [\l = 7).

This spectrum generating function allows us to determine the highest energy level. Indeed, if
6 = X\ — v is a horizontal strip, then clearly |#] < Aj, since 6 is contained in . For each partition
A, there exists exactly one partition v such that A — v is a horizontal A;-strip, namely the partition
v for which 1/;. = )\; —1(j=1,...,1). For this partition one will have that (Z) > 0, which is the
same as claiming that 1y < n. This follows from the fact that 11 = Ay < n. The highest energy
level is thus given by N
A

n—1

hu( + ).

From (6.8) one would be tempted to conclude that the ground level corresponds to the level
implied by » = 0. This is incorrect, however, since it may happen that the summation over v
vanishes. Remembering that the generalized binomial coefficient ()’:‘/) is in fact a specialization of
the symmetric Schur function sy, see (5.6), it is clear that (;L) is a non-negative integer whenever

n 1s. This means that
Z<n> =0 < Vu: <n> =0,
— \V v
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or stated otherwise, the summation vanishes if and only if each term vanishes. It is also clear that
the non-negative integer roots of a generalized binomial coefficient (f\) are exactly {0,1,..., A — 1}
(see figure 3). So, if for a particular r, all partitions v for which A — v is a horizontal r-strip are
such that 14 > n, then the inner summation in (6.8) will vanish. The ground energy level is thus
given by Aw(|\|/(n — 1) + r*), with

r* = min{r |v: X\ — v is a horizontal r-strip and v, < n}.

Note that we have:

/ —
A1 —n otherwise.

Indeed, if A1 < n, then taking v = X yields the horizontal 0-strip with ;1 < n. On the other hand,
if Ay > n, then taking v1 = n and v; = A; for j > 2 yields a horizontal (A; — n)-strip with 11 <n.
This is in agreement with what was found using the Berele-Regev formula, see (6.5).

It is also quite clear that all energy levels between the ground level and the most excited level
do in fact exist, and hence we are dealing with an equidistant spectrum with spacing fiw (just as
in the osp(1]2n) case). The number of different energy levels is now also easily determined since it
is given by

A1 — 7"+ 1=min{\;,n} + 1. (6.9)

Writing the spectrum generating function in the following way:

N min{A1,n}
spec H = ™Gt Z M(E,E:)‘))th“}k,
k=0

it is clear that

where the sum is over all partitions v such that A — v is a horizontal (r* + k)-strip. One striking

difference with the osp(1|2n) solutions is that now the multiplicity of the ground level, ,u(EéA)), is

not 1. A similarity is that ,u(E,(j‘)) is a polynomial in the variable n. The last statement is true for
n sufficiently large: in other words, one should think of A as being fixed, and n increasing. When
n > A, r* =0, and then u(E,(g’\)) is a polynomial of degree |v| = |\| — k in the variable n.

As an application, we consider the spectrum of the Hamiltonian in the representation Vi»).
According to (6.9), there will be only two different energy levels. For the multiplicities we have

=3 (3) = () = () = (27

v

ME") - ZV: <Z> N ((1?731)> = (=1 <p__n1> B (n;fi2>-

This is in agreement with what was found in [21], but there explicit knowledge of the representation
actions was used, whereas here we have only used the character of the representation.

and
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7 Conclusion

In this article we have given a general method for determining the spectrum generating functions
associated with an element of the Cartan subalgebra of a Lie superalgebra g. These spectrum
generating functions are closely related to the character of the studied representations.

This method was used to study the energy spectrum of the n-dimensional isotropic harmonic
oscillator when viewed as a WQS. Two different solutions of the compatibility conditions of this
system were considered, one being related to the osp(1]|2n) Lie superalgebra and the other to the
gl(1|n) Lie superalgebra. The spectrum generating functions involved interesting specializations
of Schur symmetric and supersymmetric functions. In both cases the energy spectrum is equally
spaced with spacing hw. In the osp(1|2n) case, we considered the representations V' (p) and the
energy spectrum is then countably infinite, and degeneracies when p € {1,2,...,n — 1} (non-
generic situation) may be determined in function of the degeneracies in the case p > n — 1 (generic
situation). In the gl(1|n) case, since we considered the finite dimensional representations Vy, the
spectrum is of course finite. Also here, one can speak of a generic case A\; > n and non-generic
cases A\1 < n. In the first case, one may use the Berelev-Regev formula to easily determine the
energy spectrum and associated multiplicities.

It is, however, also possible to apply the method to study the spectrum of a linear chain involving
quadratic nearest neighbour interactions. Although one probably will end up with more involved
specializations of the Schur functions, it should still be possible to deduce general findings about
the energy spectrum. In particular, when considering chains of harmonic oscillators as in [20], one
could try to find out for which values of the coupling constant ¢ the spurious degeneracies occur.
This could be part of future work.
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