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Abstract. In this paper we elaborate upon the investigation initiated in [3] of typical and
distinctive properties of the Fourier transform (FT), in particular the crucial role played by the
Howe dual pair (O(m), sl2). We prove in detail a result on the unique characterization of the FT
making extensive use of a representation of the Lie algebra sl2. As an example, we consider the
case m = 1. We refer to [3] for a detailed study involving the derivation of a class of operators
portraying FT symmetry properties.

1. Introduction
Due to its useful properties the classical Fourier transform (FT) has many applications in a
whole range of areas such as harmonic analysis and signal processing. Over Rm, the FT is given
by the integral transform

F [f ](y) =
1

(2π)m/2

∫
Rm

ei〈x,y〉f(x) dx,

where 〈x, y〉 =
∑m

j=1 xjyj denotes the standard inner product of two m-dimensional vectors

x = (x1, . . . , xm) and y = (y1, . . . , ym).
In [3], we initiated the investigation of typical and distinctive properties of the FT. This led

to the question as to what suffices to uniquely characterize the Fourier transform. Hereto, we
consider in particular invariance and symmetry properties governed by the dual pair O(m) and
sl2. This is motivated by the fact that the FT can be expressed as an operator exponential
containing orthogonally invariant operators that generate a realization of sl2. Other means
of characterizing the FT include for instance the interaction of the FT with the convolution
product, which is used in [1] to obtain a uniqueness result. Our approach allows us to make
explicit use of the representation theory of the Lie algebra sl2.

Now, a natural course of actions is the following: We start from a select set of FT properties
determined by the underlying symmetry and we set out to determine the class of all operators
also satisfying these. This problem necessarily has at least one solution, namely the FT. Two
possible scenarios then arise depending on the imposed properties. If the FT turns out to be the
sole solution, this gives us a unique characterization the FT. To obtain other transforms we can
then relax the prescribed properties to less strict ones. At the other end of the spectrum is the
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case where we find an overabundance of solutions. We can then investigate how we can reduce
this class of solutions by imposing additional properties. In this way we arrive at a (preferably
finite) set of interesting transforms. On top of that, by continuing this process it ultimately
gives us a list of properties, the combination of which is exclusively satisfied by the FT.

The explicit derivation of operators having Fourier-like symmetry properties is the subject
of [3]. Now we focus on a specific result which uniquely characterizes the FT. Moreover, we
elaborate upon the case m = 1 where the approach of [3] does not yield any new operators.

The paper is organized as follows. In Section 2, we discuss the properties and symmetries of
the FT relevant to our cause. In Section 3, we prove a uniqueness result for the FT. In Section 4,
we consider in detail the one-dimensional case.

2. Properties
We will start by elaborating upon what makes the FT so useful. Our goal is then to determine
a class of operators T having these specific properties.

A major property of the Fourier transform consists of its interaction with differential
operators. In particular, we have for j = 1, . . . ,m :

F ◦ ∂xj = −i yj ◦ F
F ◦ xj = −i ∂yj ◦ F

(1)

We want to relax these interactions as prescribing them uniquely characterizes the FT up to a
multiplicative factor. They give rise to the following symmetries for j = 1, . . . ,m :

F ◦
(
x2
j − ∂2

xj

)
=
(
y2
j − ∂2

yj

)
◦ F (2)

where one recognises the Hamiltonian of the quantum harmonic oscillator.
Now, the FT also exhibits a symmetry with respect to the orthogonal group O(m). The

relations (2) combined with the invariance under O(m) yield

F ◦ (−∆x + |x|2) = (−∆y + |y|2) ◦ F (3)

which is compatible with O(m). Here the Laplace operator ∆x and the norm squared |x|2 are
defined as

∆x :=
m∑
j=1

∂2
xj , |x|2 :=

m∑
j=1

x2
j .

Also
F ◦ (∆x + |x|2) = −(∆y + |y|2) ◦ F . (4)

This is related to an alternative formulation of the FT as an operator exponential:

F = ei
π
4

(−∆x+|x|2−m). (5)

The operators that occur here highlight a connection with the Lie algebra sl2 as they satisfy[
∆x/2, |x|2/2

]
= Ex + m

2

[
Ex + m

2 , |x|
2/2
]

= |x|2
[
Ex + m

2 ,∆x/2
]

= −∆x. (6)

Here we denoted by Ex the Euler operator, defined as

Ex :=

m∑
j=1

xj∂xi .
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An operator T will have the same symmetries (3) and (4) if it satisfies

T ◦∆x = −|y|2 ◦ T
T ◦ |x|2 = −∆y ◦ T,

(7)

which are reminiscent of (1). These are called the Helmholtz relations because if (7) holds for
an integral transform

Tf(y) =
1

(2π)m/2

∫
Rm

K(x, y)f(x) dx,

then its kernel will satisfy

1

(2π)m/2

∫
Rm

(
∆yK(x, y) + |x|2K(x, y)

)
f(x) dx = 0

(
∀f ∈ S(Rm)

)
. (8)

Here S(Rm) denotes the space of smooth and rapidly decreasing functions on Rm, also called
the Schwartz space, which is dense in L2(Rm). Note that T satisfying the Helmholtz relations,
together with the commutation relations (6), implies that one also has

T ◦ (Ex + m
2 ) = −(Ex + m

2 ) ◦ T.

Another property of the FT is that it is an automorphism on S(Rm). A decomposition of
S(Rm) with respect to both the orthogonal O(m) symmetry and the algebraic sl2 symmetry is
given by the generalized Hermite functions [2]

φj,k,` := 2jj!L
m
2

+k−1

j (|x|2)H
(`)
k e−|x|

2/2. (9)

Here j, k ∈ Z≥0, L
m
2

+k−1

j is the Laguerre polynomial and {H(`)
k | ` = 1, ...,dim(Hk) } is a basis

for the space of spherical harmonics of degree k, denoted by Hk := ker ∆x ∩ Pk, with Pk the
space of homogeneous polynomials of degree k. The basis (9) forms eigenfunctions of the FT
with action given by

F(φj,k,`) = ei
π
2

(2j+k)φj,k,`.

Note that this action is independent of the index ` of the Hermite functions, which is precisely
due to the orthogonal symmetry of the FT.

Another way to write the Hermite functions (see [2]) is

φj,k,` =

(
−∆x

2
− |x|

2

2
+ Ex +

m

2

)j
H

(`)
k e−|x|

2/2. (10)

The operator that acts on the Hermite functions gives rise to another realization of the Lie
algebra sl2 by means of

h = −∆x

2
+
|x|2

2
, e = −∆x

4
− |x|

2

4
+

1

2

(
Ex + m

2

)
, f =

∆x

4
+
|x|2

4
+

1

2

(
Ex + m

2

)
, (11)

which satisfy
[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

For every k ∈ Z≥0 and ` ∈ {1, . . . ,dim(Hk)}, the set of Hermite functions {φj,k,` | j ∈ Z≥0 } then
forms a basis for the positive discrete series representation of sl2 with lowest weight k + m/2.
This can be seen from their action on the basis (9) which is given by

hφj,k,` =
(
2j + k + m

2

)
φj,k,`, (12)
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and

e φj,k,` =
1

2
φj+1,k,`, f φj,k,` = −j (2j − 2 +m+ 2k)φj−1,k,`.

Returning to the operator formulation (5) of the Fourier transform, this can now be rewritten
in terms of h as

F = ei
π
4

(−∆x+|x|2−m) = ei
π
2

(h−m
2

).

We see that, up to a complex phase factor, the FT is an element of exp
(
sl2
)
. Now, we want to

find out if any other elements of exp
(
sl2
)

give rise to an operator that satisfies the properties
we considered. The operators (11) allow us to prove a unique characterization of the Fourier
transform. This is the subject of the following section.

3. Uniqueness result
Theorem 1. Let T be an operator that satisfies the properties:

(i) the Helmholtz relations

T ◦∆x = −|y|2 ◦ T
T ◦ |x|2 = −∆y ◦ T

(ii) T φj,k,` = µj,k φj,k,` with µj,k ∈ C
(iii) T 4 = id

(iv) T = A exp(z) with A ∈ C and z ∈ sl2 = span
{

∆x, |x|2,
[
∆x, |x|2

]}
.

Then T equals, up to multiplication by an integer power of i, the classical Fourier transform or
its inverse.

Proof. To prove this result we will use the realization of sl2 by means of the operators (11) and
their relation with the basis (9) to our advantage. A general element of sl2 can then be written
as

z = B h+ C e+Df

with complex numbers B,C,D ∈ C.
In terms of the operators h, e, f , the Helmholtz property translates to the (anti-)commutation

relations
T ◦ h = h ◦ T, T ◦ e = −e ◦ T, T ◦ f = −f ◦ T.

Hence, in order for T = A exp(z) to satisfy the Helmholtz relations, we must have z ∈ sl2 such
that

exp(z)h exp(−z) = h, exp(z) e exp(−z) = −e, exp(z) f exp(−z) = −f .

Using exp(X)Y exp(−X) = exp(adX)Y with adXY = [X,Y ] (Lemma 5.3 of [8]) and

[z, h] = −C h+ 2De, [z, e] = B h− 2Df, [z, f ] = −2B e+ 2C f

to work out the left-hand sides, these conditions give rise to

(1 + 4CDX)h+ (−4BCX − 2CY ) e+ (−4BDX + 2DY ) f = h (13)

(−2BDX −DY )h+
(
1 + (4B2 + 2CD)X + 2BY

)
e+ (−2D2X) f = −e (14)

(−2BCX + CY )h+ (−2C2X) e+
(
1 + (4B2 + 2CD)X − 2BY

)
f = −f (15)
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with

X =

∞∑
n=1

(4B2 + 4CD)n−1

(2n)!
, Y =

∞∑
n=0

(4B2 + 4CD)n

(2n+ 1)!
.

We find requirements for B,C,D by equating the coefficients of the operators h, e, f in the
left-hand sides with those in the right-hand sides.

From the coefficients of f in (14) and e in (15) we conclude that when X 6= 0, we must have
C = 0 and D = 0. Similarly, if X = 0, we deduce from the coefficient of e in (14) that Y 6= 0.
This in turn implies again that C = 0 and D = 0 (from the coefficients of e and f in (13)).
Hence, we necessarily have C = 0 and D = 0. Note that this immediately covers T = exp(z)
upholding property (ii), as for z = B h we have using (12)

T φj,k,` = A exp
(
B(2j + k + m

2 )
)
φj,k,`. (16)

Plugging C = 0 and D = 0 into (13)–(15), the only non-trivial coefficient equations yield

−1 = 1 + 4B2
∞∑
n=1

(4B2)n−1

(2n)!
+ 2B

∞∑
n=0

(4B2)n

(2n+ 1)!
= exp(2B),

and
−1 = exp(−2B).

Both of which lead to the condition

2B = i(π + 2πn) ⇐⇒ B = i
π

2
(2n+ 1),

for some integer n. This completely fixes all viable elements z ∈ exp(sl2).
Now, in order for property (iii) to hold, the eigenvalues of T 4 must all equal 1. Together with

the expression (16) for the eigenvalues of T = A exp(z) this leads to A4 exp(iπm) = 1, which
gives A = exp

(
iπ2 (−m

2 +N)
)

for some integer N .
In this way we arrive at the form

T = exp

(
i
π

2

(
(2n+ 1)

(
h− m

2

)
+ nm+N

))
(n,N ∈ Z)

Now, the operator h−m/2 has integer eigenvalues and for integer k we have ik = ik mod 4. Hence,
for n an even integer, T is precisely the operator exponential form of the Fourier transform, up
to multiplication by an integer power of i, namely inm+N . Likewise, for n odd T equals the
inverse Fourier transform

exp

(
−iπ

2

(
h− m

2

))
,

up to an integer power of i.

Property (iv) in the previous theorem is rather restrictive. In order to see whether the other
properties suffice to uniquely characterize the FT, we investigate what happens if we omit it.
The objective is thus to determine all operators

T : S(Rm)→ S(Rm)

that satisfy
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(i) the Helmholtz relations

T ◦∆x = −|y|2 ◦ T
T ◦ |x|2 = −∆y ◦ T

(ii) Tφj,k,` = µj,k φj,k,` with µj,k ∈ C
(iii) T 4 = id

As opposed to the previous result, the solution to this problem will in general not be limited
to the FT and its inverse. To determine these other solutions, we make explicit use of the
fact that we already know of one specific solution, namely the FT, and use this to rewrite the
requirements. As the FT is an automorphism on the space S(Rm), we propose to look for T̃

such that T̃
[
F [f ]

]
has the desired properties and then define the operator T by T [f ] = T̃

[
F [f ]

]
,

or thus
T = T̃ ◦ F . (17)

This leads to the following result:

Proposition 2. Any operator T̃ of the form

T̃ = exp
(
iπ2F

)
, (18)

with F an operator that

• commutes with (the generators of) sl2 = span
{

∆x, |x|2,
[
∆x, |x|2

]}
• has integer eigenvalues on the functions {φj,k,`} (independent of `)

will yield an operator T by (17) that satisfies the properties (i)–(iii).

The problem is thus reduced to finding suitable operators F , the requirements for which
are more clear-cut than those for T̃ . Natural candidates for F are operators in the center of
U
(
sl2
)
, where U

(
sl2
)

denotes the universal enveloping algebra of sl2. The center is the subspace

consisting of those elements that commute with all of U
(
sl2
)
, or adequately with the elements

of sl2. This subspace is finitely generated by the Casimir element [4, 5, 6]. For a realization of
sl2 by means of a triplet h, e, f satisfying

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

the Casimir element has as explicit expression:

Ω = h2 + 2ef + 2fe = h2 + 2h+ 4fe. (19)

Moreover, as the Casimir is a diagonal operator on the representation space, the condition of
{φj,k,`} being eigenfunctions is immediately fulfilled for F an operator in the center of U

(
sl2
)
.

Hence, the only remaining requirement on F is that its eigenvalues must be integers. To resolve
this we resort to the notion of integer-valued polynomials, see [3].

Except for one particular case, this is a fruitful approach yielding a complete class of operator
solutions. We elaborate on this special case in the next section. For the general study hereof we
again refer to [3].
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4. The one-dimensional case
We now consider the specific case where m = 1. Instead of dealing with vectors x = (x1, . . . , xm)
and y = (y1, . . . , ym), we now denote by x and y the single coordinate x ≡ x1 and y ≡ y1. In this
case, the orthogonal group O(1) becomes a finite group of order 2. The orthogonal symmetry
of the FT then comes down to commuting with the sign inversion operator

F
[
f(−x)

]
(y) = F

[
f(x)

]
(−y).

Moreover for m = 1, the operators in our realization of sl2 reduce to

∆x :=
d2

dx2
, |x|2 := x2, Ex := x

d

dx
.

As the Laplace operator only has one term, the space of polynomials contained in its kernel is
built up out of only two parts, namely the space H0 which is generated by 1, and H1 generated
by x. The basis (9) then consists of

φj,0 = 2jj!L
−1/2
j (x2) e−x

2/2, φj,1 = 2jj!L
1/2
j (x2)x e−x

2/2, (20)

for j ∈ Z≥0. Note that there is no index ` as the spaces H0 and H1 are one-dimensional. These
are in fact the Hermite functions (up to a scalar factor), as the generalized Laguerre polynomials
are related to the Hermite polynomials as follows

H2j(x) = (−1)j22jj!L
−1/2
j (x2), H2j+1(x) = (−1)j22j+1j!xL

−1/2
j (x2).

Indeed, the basis (20) can be unified as

ψk(x) =

(
i

√
2

2

)k
Hk(x) e−x

2/2, (21)

where we have slightly adjusted the factor in front. The action of the FT on (20) is given by

F(φj,0) = (−1)jφj,0, F(φj,1) = (−1)ji φj,1.

On (21) this becomes
F(ψk) = ikψk.

This in fact corresponds to unifying two representations of sl2 as one representation of the
Lie superalgebra osp(1|2). Indeed, introducing the operators

b+ = i

√
2

2

(
x− d

dx

)
and b− = −i

√
2

2

(
x+

d

dx

)
, (22)

they satisfy the relations [
{b−, b+}, b±

]
= ±2b±,

where {a, b} = ab+ ba denotes the anti-commutator. Hence b+ and b− generate a realization of
the Lie superalgebra osp(1|2), [7]. The even (or “bosonic”) elements of this algebra

h =
1

2
{b−, b+}, e =

1

4
{b+, b+}, f = −1

4
{b−, b−}.
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generate an even subalgebra isomorphic with sl2. Working out the anti-commutators, these are
precisely the operators (11) we considered earlier. For instance, using (22),

2h = {b−, b+} =
1

2

(
x+

d

dx

)(
x− d

dx

)
+

1

2

(
x− d

dx

)(
x+

d

dx

)
= − d2

dx2
+ x2

The action on the eigenfunctions is as follows

b+ ψk = ψk+1, b− ψk = k ψk−1,

while

hψk = (k + 1
2)ψk, e ψk =

1

2
ψk+2, f ψk = −1

2
k (k − 1)ψk−2.

In line with (10), we can write
ψk = (b+)kψ0

Now, for the basis functions (20) we have

hφj,0 =
(
2j + 1

2

)
φj,0, h φj,1 =

(
2j + 3

2

)
φj,1.

The sets {φj,0 | j ∈ Z≥0 } and {φj,1 | j ∈ Z≥0 } thus form a basis for the positive discrete series
representation of sl2 with lowest weights 1/2 and 3/2 respectively. Together they span the same
space as {ψk | k ∈ Z≥0 }. This last set forms a basis for the irreducible representation of the
Lie superalgebra osp(1|2) with lowest weight 1/2.

Returning to the objective we had in mind we look at the Casimir element of sl2 for m = 1.
However, this element turns out to be a scalar constant as it is given by

Ω1 = h2 + 2h+ 4fe = −3

4
.

Hence, looking back at Proposition 2, an operator F in the center of U
(
sl2
)

will, by relation
(18), yield the classical FT up to a multiplicative scalar factor.

In this case there is another set we can consider, as besides sl2 we also have a realization of
osp(1|2). The center of U

(
osp(1|2)

)
is finitely generated by another Casimir element:

C =
1

4
+

1

2

[
b−, b+

]
+ h2 + 2h+ 4fe.

We see that C differs from the Casimir element of sl2, given by (19), by an additional term.
This extra term is related to the Scasimir element (see [4])

S =
1

2
(b−b+ − b+b− − 1),

which is a square root of the Casimir operator. Using (22), for our realization of osp(1|2) this
element becomes

S =
1

4

(
x+

d

dx

)(
x− d

dx

)
− 1

4

(
x− d

dx

)(
x+

d

dx

)
− 1

2
=

1

4
+

1

4
− 1

2
= 0,

and hence C = S2 = 0. In this way we again find no solutions other than the classical FT.
These results can also be explained in another fashion. In the one-dimensional case, the

requirement for the kernel of an integral transform in order to satisfy the Helmholtz relations,
(8), reduces to

d2

dy2
K + x2K = 0.
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This differential equation has as general solution

K = C1eixy + C2e−ixy, C1, C2 ∈ C

where we recognize the kernel of the Fourier transform and that of its inverse. For m = 1, the
Helmholtz relations thus suffice to uniquely characterize the FT or its inverse.

In dimension m ≥ 2, the Casimir element Ωm becomes

Ωm = h2 + 2h+ 4fe =
(
Ex + m−2

2

)2 − |x|2∆x − 1.

As in this case Ωm does not reduce to a trivial operator, by Proposition 2 we do find solutions
that differ from the FT or its inverse. We again refer to [3] for a detailed study.
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