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Abstract

The goal of this paper is to give an explicit construction of the Fock spaces of the parafermion
and the paraboson algebra, for an infinite set of generators. This is equivalent to constructing
certain unitary irreducible lowest weight representations of the (infinite rank) Lie algebra so(∞)
and of the Lie superalgebra osp(1|∞). A complete solution to the problem is presented, in
which the Fock spaces have basis vectors labelled by certain infinite but stable Gelfand-Zetlin
patterns, and the transformation of the basis is given explicitly. We also present expressions for
the character of the Fock space representations.

Running title: Representations of so(∞) and osp(1|∞)
PACS numbers: 03.65.-w, 03.65.Fd, 02.20.-a, 11.10.-z

1 Introduction

Parafermions and parabosons [5] arose in an attempt to generalize the second quantization method
in the case of the free field, by permitting more general kind of statistics than the common Fermi-
Dirac and Bose-Einstein statistics. These generalizations have an algebraic formulation in terms
of generators and relations [5, 6, 16, 23]. The parafermion operators f±

j , j = 1, 2, . . . (generalizing
the statistics of spinor fields), satisfy certain triple commutation relations, see (2.2), and it has
been known for a long time [9,20] that the Lie algebra generated by these operators subject to the
defining triple relations is an orthogonal Lie algebra. More precisely, for a finite set of parafermions
(j = 1, 2, . . . , n) it is the Lie algebra so(2n + 1). In the context of quantum field theory, however,
one is mainly interested in the case of an infinite set of parafermions, j ∈ Z+ = {1, 2, . . .}. The
corresponding parafermion algebra is an infinite rank Lie algebra, often referred to as so(∞).

The paraboson operators b±j , j = 1, 2, . . . (generalizing the statistics of tensor fields), also satisfy
certain triple relations, see (2.11), this time however involving anticommutators and commutators.
It was therefore logical to look for a connection with Lie superalgebras instead of with Lie algebras.
This connection was established in [3], and the Lie superalgebra generated by a finite set (j =
1, 2, . . . , n) of paraboson operators subject to the defining triple relations is the orthosymplectic
Lie superalgebra osp(1|2n). For an infinite set of parabosons, j ∈ Z+ = {1, 2, . . .}, the paraboson
algebra is an infinite rank Lie superalgebra denoted as osp(1|∞).

The main objects of interest are the unitary lowest weight representations of the relevant alge-
bras with a nondegenerate lowest weight space (i.e. with a unique vacuum). These representations
are precisely the so-called Fock spaces of the parafermion or paraboson algebras. These Fock spaces
are characterized by a positive integer p, often referred to as the order of statistics. The Fock spaces
W (p) (for parafermions) and V (p) (for parabosons) can be defined in many ways, and one of the
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standard methods is due to Green and known as Green’s ansatz [5,6]. The computational difficul-
ties of Green’s ansatz are related to finding a proper basis of an irreducible constituent of a p-fold
tensor product [6], and this has actually not lead to an explicit construction of the Fock spaces. In
fact, despite their importance, an explicit construction of the parafermion or paraboson Fock spaces
was not known until recently (by an explicit construction is meant: giving an complete orthogonal
basis of the Fock space and the explicit action of the parafermion or paraboson operators on these
basis vectors). For the case of a finite set of parafermions, this explicit construction was given
in [21], and for a finite set of parabosons in [12].

In the present paper, we extend the results of [12,21] to the case of an infinite set of generators.
This is not trivial, as the transition from finite rank algebras to infinite rank algebras gives rise to
some complications. In section 2 of this paper, we define the parafermion and paraboson algebras for
an infinite set of generators, and specify the relation to so(∞) and osp(1|∞). The main difficulty
is however the construction of the Fock spaces W (p) and V (p). In the case of a finite set of
generators, a basis for the corresponding Fock spaces was labelled by certain Gelfand-Zetlin (GZ)
patterns. Analysing the transformation of the basis under the action of generators, we noticed that
a certain stability takes place. It is this observation that allows us to extend our previously obtained
results to the infinite rank case. For this purpose, it is convenient to define so-called stable infinite
GZ-patterns, introduced in section 3. These are infinite triangular arrays of nonnegative integers,
satisfying a “betweenness condition” and containing only a finite number of distinct integers. In
section 4 we show that the parafermion algebra so(∞) has an irreducible action on the stable
GZ-patterns with entries at most p: these patterns label the orthonormal basis vectors of the
parafermion Fock space W (p). The proof that we are actually dealing with a representation relies
on the identities obtained in the finite rank case [21], and stability properties. It is also interesting
that the (formal) characters of these Fock spaces W (p) can be given, as a rather simple formula in
terms of Schur functions (4.34). Alternatively, the character can also be written as an expression
including the usual so(∞) denominator.

In section 5 it is shown that the paraboson algebra osp(1|∞) has an irreducible action on the
stable GZ-patterns with at most p nonzero entries per row. These patterns label the orthonormal
basis of V (p), the paraboson Fock space. The result follows from the finite rank case [12] and
certain stability properties of reduced matrix elements. Once again, the characters of V (p) have a
simple expansion in terms of Schur functions (5.20), or can be written as an expression displaying
the osp(1|∞) denominator.

To conclude, the computational techniques developed for the finite rank case in [12, 21], the
(combinatorial) extension of certain finite GZ-patterns to stable infinite GZ-patterns, and the sta-
bility properties of some reduced matrix elements obtained in [12, 21] allow us to offer a complete
solution to the problem of the explicit construction of parafermion and paraboson Fock represen-
tations.

2 The parafermion and paraboson algebras

In this section we shall define a Lie algebra and a Lie superalgebra by means of a set of generators
and a set of relations. In both cases, the set of generators is an infinite set.

Definition 1 Let g = so(∞) be the (complex) Lie algebra with generators

{f−
j , f+

j |j ∈ Z+ = {1, 2, . . .} } (2.1)

and relations

[[f ξ
j , fη

k ], f ǫ
l ] =

1

2
(ǫ − η)2δklf

ξ
j − 1

2
(ǫ − ξ)2δjlf

η
k , (2.2)
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where j, k, l ∈ Z+ and η, ǫ, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the algebraic expressions
ǫ − ξ and ǫ − η).

The relations (2.2) are also known as the defining triple relations for a system of parafermions [5],
which is why g is often called the parafermion algebra. The reason for the notation so(∞) will be
clear soon.

If one takes a finite set of such generators (j ∈ {1, 2, . . . , n}) and the corresponding relations,
the Lie algebra thus defined is the orthogonal Lie algebra so(2n + 1), see [9, 20,21].

Because of the defining relations (2.2), it is easy to see that the following set is a basis of g:

f±
j (j ∈ Z+), [f±

j , f±
k ] (j < k; j, k ∈ Z+), [f+

j , f−
k ] (j, k ∈ Z+). (2.3)

So, as a vector space, g consist of all finite linear combinations of the elements (2.3) with complex
coefficients.

Consider now the elements

hj =
1

2
[f+

j , f−
j ] (j ∈ Z+) (2.4)

and the subspace h of g spanned by these elements. Using (2.2) it is easy to verify that all these
elements commute, so h is an abelian subalgebra of g. Furthermore, h is self-normalising. Hence h

is a Cartan subalgebra of g.
Let h∗ be the vector space dual to h, with dual basis {ǫj |j ∈ Z+} defined by

ǫj(hk) = δjk. (2.5)

All the elements from (2.3) are root vectors xα of g, in the sense that

[hj , xα] = α(hj)xα, ∀j ∈ Z+, (2.6)

for some α ∈ h∗. The roots α corresponding to the elements (2.3) are given by, respectively,

±ǫj (j ∈ Z+), ±(ǫj + ǫk) (j < k; j, k ∈ Z+), ǫj − ǫk (j, k ∈ Z+). (2.7)

The set of nonzero roots is thus

∆ = {±ǫj , ±(ǫj + ǫk) (j < k), ǫj − ǫk (j 6= k)}. (2.8)

So g has a root space decomposition, and one can verify (e.g. from the commutation relation
between root vectors) that g coincides with the Lie algebra g′(B∞) as defined by Kac [8, §7.11],
sometimes also referred to as “the Lie algebra B∞”.

For our purpose, it will be convenient to define the set of positive roots as

∆+ = {ǫj , (ǫj + ǫk) (j < k), ǫj − ǫk (j < k)} (2.9)

and ∆−, the opposite set, as the set of negative roots. With n+ (resp. n−) defined as the subalgebra
spanned by the positive (resp. negative) root vectors, g has the usual triangular decomposition

g = n− ⊕ h ⊕ n+.

Note, however, that with the choice (2.9) it is not possible to give a set of simple roots.

Now we shall define a closely related algebra g, which is however a Lie superalgebra [7] rather
than a Lie algebra. So this second algebra has a Z2-grading, g = g0̄⊕g1̄, g0̄ being the even elements
and g1̄ being the odd elements, with the usual “supercommutation relation” (which is, in particular,
an anticommutator {·, ·} when both elements are odd).
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Definition 2 Let g = osp(1|∞) be the (complex) Lie superalgebra with odd generators

{b−j , b+
j |j ∈ Z+ } (2.10)

and relations
[{bξ

j , b
η
k}, bǫ

l ] = (ǫ − ξ)δjlb
η
k + (ǫ − η)δklb

ξ
j , (2.11)

where j, k, l ∈ Z+ and η, ǫ, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the algebraic expressions
ǫ − ξ and ǫ − η).

The relations (2.11) are the defining triple relations for a system of parabosons [5], and g is often
called the paraboson algebra. For a finite set of such generators (j ∈ {1, 2, . . . , n}) and the corre-
sponding relations, the resulting Lie superalgebra is the orthosymplectic Lie superalgebra osp(1|2n),
see [3, 12].

Note that this algebra could also be defined in an alternative way [10]: one could also start
from the free algebra generated by the elements (2.10), and consider the quotient with the ideal
generated by the elements corresponding to (2.11). This construction gives the enveloping algebra
U(g).

Once again, using the defining relations (2.11), one finds a basis of g:

b±j (j ∈ Z+), {b±j , b±k } (j < k; j, k ∈ Z+), {b+
j , b−k } (j, k ∈ Z+). (2.12)

In fact, g1̄ is spanned by the elements b±j (j ∈ Z+), and g0̄ by the remaining elements of (2.12).
Let us define the (even) elements

hj =
1

2
{b+

j , b−j } (j ∈ Z+) (2.13)

and the (even) subspace h of g spanned by these elements. One can again verify that h is a Cartan
subalgebra of g. The dual vector space h∗ is defined as before, with dual basis {ǫj |j ∈ Z+}. All
elements from (2.12) are root vectors xα of g, for some α ∈ h∗. The roots α corresponding to the
elements (2.12) are given by the same set (2.7). This time, the set of nonzero roots is Z2-graded,
and one speaks of the even roots ∆0 and the odd roots ∆1:

∆1 = {±ǫj}; ∆0 = {±(ǫj + ǫk) (j < k), ǫj − ǫk (j 6= k)}; ∆ = ∆0 ∪ ∆1. (2.14)

The set of positive roots is defined as before, and the odd and even positive roots are, resp.

∆1,+ = {ǫj}, ∆0,+ = {(ǫj + ǫk) (j < k), ǫj − ǫk (j < k)}; ∆+ = ∆1,+ ∪ ∆0,+. (2.15)

As before, ∆−, the opposite set, is the set of negative roots, and g has a triangular decomposi-
tion. This Lie superalgebra, which we have denoted by osp(1|∞) [2], is sometimes also denoted
by B(0|∞) [19].

In this section, we have given and specified the parafermion and paraboson algebras. The main
goal of the paper is the construction of their Fock representations. For this purpose, it is convenient
to introduce in the following section a number of (combinatorial) quantities.

3 GZ-patterns, partitions and Schur functions

Let us define infinite GZ-patterns, inspired by Gelfand-Zetlin patterns for u(n) [1, 4], as follows.
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Definition 3 A GZ-pattern |m) is an infinite table or triangular array of nonnegative integers mij

(i, j ∈ Z+, i ≤ j), arranged as follows:

|m) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

...
... · · · ... . .

.

m1n m2n · · · mnn
...

... . .
.

m12 m22

m11

















=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

...
[m]n

...
[m]2

[m]1

















, (3.1)

such that the integer entries satisfy the following betweenness conditions

mi,j+1 ≥ mij ≥ mi+1,j+1 (for all i ≤ j). (3.2)

As already indicated in (3.1), we will denote the rows of |m) as [m]1 = [m11], [m]2 = [m12, m22],
[m]3 = [m13, m23, m33], etc., and refer to this as the first row, second row, third row etc. (we always
count the rows from bottom to top). So the nth row [m]n consists of a sequence of nonincreasing
nonnegative integers of length n. Sometimes, it will be convenient to view [m]n as an infinite
sequence by adding zeros to the finite sequence:

[m]n = [m1n, m2n, . . . , mnn] = [m1n, m2n, . . . , mnn, 0, 0, . . .]. (3.3)

The infinite GZ-patterns that are relevant for us are those that stabilize after a number of rows,
counting from the bottom.

Definition 4 A GZ-pattern |m) is stable if there exists a row index N ∈ Z+ such that

[m]n = [m]N , for all n > N. (3.4)

In such a case, one also says that |m) is stable with respect to row N .

Note that, in order to speak of equal rows as in (3.4), one uses the extension by zeros as in (3.3)
(otherwise such rows would have unequal lengths). For a stable GZ-pattern, it is not necessary to
give an infinite table: giving just the first N rows is sufficient. To indicate that one is still dealing
with infinite GZ-patterns, we put an arrow above the entries of row N . For example, the following
GZ-pattern, which is stable with respect to row 3, is denoted by:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

...
...
...
...
...
...

53000
5300
530
31
2















=

∣

∣

∣

∣

∣

∣

∣

↑↑↑
530
31
2






(3.5)

Sometimes it will be useful to consider just the pattern consisting of the first n rows of |m) only.
We denote this by

|m)n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1n m2n · · · mnn
...

... . .
.

m12 m22

m11











(3.6)

and shall refer to it as a u(n) GZ-pattern, as it coincides with the patterns in the common GZ-basis
of u(n) [1, 4].
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Let us also collect some notation on partitions and Schur functions, following Macdonald [15].
A partition λ is a (finite or infinite) sequence λ = (λ1, λ2, . . .) of non-negative integers in decreasing
order, λ1 ≥ λ2 ≥ · · · , containing only finitely many non-zero terms. The non-zero λi are the
parts of λ, and the number of parts is the length ℓ(λ). The sum of the parts of λ is denoted by
|λ| = λ1 + λ2 + · · · . The Young diagram of a partition λ is the set of left-adjusted rows of squares
with λi squares (or boxes) in the ith row, reading now from top to bottom. For example, the Young
diagram F λ of λ = (5, 4, 4, 1) is given by

F λ = . (3.7)

The conjugate of λ is the partition λ′ whose diagram is the transpose of the diagram of λ (i.e. by
reflection in the main diagonal). For the above example, λ′ = (4, 3, 3, 3, 1). Another notation that
will be useful is due to Frobenius. Let the main diagonal of F λ consist of r boxes (i, i) (1 ≤ i ≤ r);
let αi = λi − i be the number of boxes in the ith row to the right of (i, i) and βi = λ′

i − i be the
number of boxes in the ith column below (i, i). The Frobenius notation of λ is

λ =

(

α1 α2 · · ·αr

β1 β2 · · ·βr

)

. (3.8)

For example, the Frobenius notation of (3.7) is
(

4 2 1

3 1 0

)

.

Partitions are used to label symmetric functions. One may consider symmetric polynomials in
a finite number of variables (x1, x2, . . . , xn), or the ring of symmetric functions [15] in countably
many variables x = (x1, x2, . . .). One particularly important set of symmetric functions are the
Schur functions sλ, labelled by a partition λ. For a finite number of variables (and ℓ(λ) ≤ n),
the Schur function (which is then a symmetric polynomial) is defined as a quotient of two (n × n)
determinants:

sλ(x1, . . . , xn) =

det
1≤i,j≤n

(x
λj+n−j
i )

det
1≤i,j≤n

(xn−j
i )

. (3.9)

The number of variables can also be increased, and the Schur function sλ(x) for an infinite number
of variables is well defined in the ring of symmetric functions [15].

In the following section, we shall meet certain infinite series in the variables x = (x1, x2, . . .).
One such series, symmetric in all variables, is

E(x) =
∞
∏

i=1

(1 − xi)
∏

1≤i<j<∞

(1 − xixj). (3.10)

This series has a nice expansion in terms of Schur functions [13, eq. (11.9;5)], namely

E(x) =
∑

η∈E

(−1)(|η|+r)/2sη(x), (3.11)

where the sum is over the set E of self-conjugate partitions η, which in the Frobenius notation take
the form

η =

(

α1 α2 · · ·αr

α1 α2 · · ·αr

)

, (3.12)
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and |η| = 2(α1 + α2 + · · · + αr) + r. For example, the first terms of E(x) read (with the ordinary
sλ notation)

E(x) = 1 − s1(x) + s21(x) − s22(x) − s311(x) + s321(x) + s4111(x) − · · · (3.13)

Two series of Schur functions that will play a role later are generalizations of (3.11), involving an
extra positive integer p. The first is

E(p,0)(x) =
∑

η∈E

(−1)(|η|+r)/2sη(p,0)
(x), (3.14)

where for each η ∈ E , the corresponding partition ηp,0 is defined by the Frobenius form

η(p,0) =

(

α1 + p α2 + p · · · αr + p
α1 α2 · · · αr

)

. (3.15)

The second one is
E(0,p)(x) =

∑

η∈E

(−1)(|η|+r)/2sη(0,p)
(x), (3.16)

where for each η ∈ E the corresponding partition η0,p is defined by

η(0,p) =

(

α1 α2 · · · αr

α1 + p α2 + p · · · αr + p

)

. (3.17)

4 The parafermion Fock spaces and so(∞) representations

In [6], the parafermion Fock space W (p) of order p is defined, for any positive integer p. It is the
Hilbert space with unique vacuum vector |0〉, defined by means of (j, k = 1, 2, . . .)

〈0|0〉 = 1, f−
j |0〉 = 0, [f−

j , f+
k ]|0〉 = p δjk |0〉, (4.1)

(f±
j )† = f∓

j , (4.2)

and by irreducibility under the action of the Lie algebra generated by the elements f+
j , f−

j (j =

1, 2, . . .), subject to (2.2), i.e. the Lie algebra so(∞). In (4.2), A† is the Hermitian adjoint of the
operator A with respect to the inner product in the representation space W (p). Following the
common terminology, such representations W (p) are called unitary.

Note that for a finite number of parafermion generators f+
j , f−

j (j = 1, 2, . . . , n), the cor-
responding Fock space W (p) is a finite-dimensional irreducible unitary representation of the Lie
algebra so(2n + 1). The structure of W (p), and in particular the parafermion operator actions in
an appropriate orthogonal basis of W (p), has been determined in [21] for the case of finite n.

For the infinite rank case, W (p) can also be defined as an induced module of the algebra
g = so(∞), introduced in Section 2. First, note that the subalgebra of g, spanned by the elements
[f+

j , f−
k ] (j, k ∈ Z+), is the infinite Lie algebra u(∞) (g′(A+∞) in the notation of Kac [8], or gl(∞)

in the notation of [18]). Following [19,21], let us extend u(∞) to a parabolic subalgebra p of g:

p = span{[f+
j , f−

k ]; f−
j ; [f−

j , f−
k ] (j < k)} = u(∞) + n−. (4.3)

Since [f−
j , f+

k ]|0〉 = p δjk |0〉 and hj = 1
2 [f+

j , f−
j ], one can consider the (one-dimensional) space

spanned by |0〉 as the trivial one-dimensional u(n) module C|0〉, and refer to the weight of |0〉 as

wt(|0〉) = (−p

2
,−p

2
, . . .). (4.4)
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Since f−
j |0〉 = 0, the module C|0〉 can be extended to a one-dimensional p module. Then the Verma

module or the induced g = so(∞) module W (p) is defined as:

W (p) = Indg
p C|0〉. (4.5)

This is an so(∞) module with lowest weight (−p
2 ,−p

2 , . . .). In general, W (p) is not an irreducible
representation of so(∞). Let M(p) be the maximal nontrivial submodule of W (p). Then the simple
module (irreducible representation), corresponding to the parafermion Fock space, is

W (p) = W (p)/M(p). (4.6)

The main result of [21] was, for the case of a finite number of parafermion operators, the
construction of an orthogonal basis for W (p) and the action of these operators on the basis elements.
Here, we shall extend this to the infinite rank case.

We shall first describe the result, then state it in the form of a theorem, and end with the proof.
A basis of W (p) consists of all stable GZ-patterns |m) with mij ≤ p for all i and j. This basis is
orthogonal:

(m′|m) = δm,m′ (4.7)

where the right hand side is 1 if mij = m′
ij for all (i, j) and 0 otherwise. The action of the so(∞)

generators f±
j on the basis vectors |m) is given by

f+
j |m) =

∑

m′

(m′|f+
j |m) |m′), (4.8)

f−
j |m) =

∑

m′

(m′|f−
j |m) |m′), (4.9)

where these matrix elements are related by

(m|f−
j |m′) = (m′|f+

j |m). (4.10)

For a given |m), there are only a finite number of non-zero matrix elements, so the sums in (4.8)
and (4.9) are finite. Let us describe the action of f+

j in (4.8). The only vectors appearing in the
right hand side of (4.8) are (stable) GZ-patterns |m′) such that:

• For n < j, the rows of |m) and |m′) are the same: [m′]n = [m]n;

• For n ≥ j, the rows of |m) and |m′) differ by 1 for one entry only. More precisely, [m′]n

is the same sequence as [m]n, apart from the fact that one entry (say, at position 〈n〉) has
been increased by 1. So for each n ≥ j, there is a unique index denoted by 〈n〉, with
〈n〉 ∈ {1, 2, . . . , n}, such that

m′
〈n〉,n = m〈n〉,n + 1 and m′

i,n = mi,n for all i 6= 〈n〉. (4.11)

Since all GZ-patterns are stable, it follows from this rule that only a finite number of patterns |m′)
appear in (4.8).

The explicit expression of the matrix element (m′|f+
j |m) is deduced from that of the finite rank

case. Let us assume that |m) is stable with respect to row N . First of all, for j ≤ N , one has















↑
[m′]N

...
[m′]2

[m′]1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f+
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

↑
[m]N

...
[m]2

[m]1















=

















[m]N

· · ·
[m]j

[m]j−1

· · ·
m11

;

100 · · · 0
· · ·
10 · · · 0
0 · · · 0
· · ·
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[m′]N

· · ·
[m′]j

[m]j−1

· · ·
m11

















G〈N〉(m1N , m2N , . . . , mNN ). (4.12)
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In the right hand side of (4.12), the first factor is a u(N) Clebsch-Gordan coefficient (CGC) [22],
of which the expression will be given soon, and Gk is the following function (see [21, Prop. 4]):

Gk(m1N , m2N , . . . , mNN )

=



−
(EN (mkN + N − k) + 1)

∏N
j 6=k=1(mkN − mjN − k + j)

∏⌊N/2⌋

j 6= k
2
=1

(mkN − m2j,N − k + 2j)(mkN − m2j,N − k + 2j + 1)





1/2

(k even); (4.13)

=







(p − mkN + k − 1)(ON (mkN + N − k) + 1)
∏N

j 6=k=1(mkN − mjN − k + j)
∏⌈N/2⌉

j 6= k+1
2

=1
(mkN − m2j−1,N − k + 2j − 1)(mkN − m2j−1,N − k + 2j)







1/2

(k odd);

(4.14)

where 1 ≤ k ≤ N . Herein E and O are the even and odd functions defined by

Ej = 1 if j is even and 0 otherwise,

Oj = 1 if j is odd and 0 otherwise; (4.15)

where obviously Oj = 1−Ej , but it is convenient to use both notations. Also, note that a product

such as
∏N

j 6=k=1 means “the product over all j-values running from 1 to N , but excluding j = k”.
The notation ⌊a⌋ (resp. ⌈a⌉) refers to the floor (resp. ceiling) of a, i.e. the largest integer not
exceeding a (resp. the smallest integer greater than or equal to a).

The u(N) CGC in (4.12) is given by (see [22] or [12, Appendix A])

















[m]N

· · ·
[m]j

[m]j−1

· · ·
m11

;

100 · · · 0
· · ·
10 · · · 0
0 · · · 0
· · ·
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[m′]N

· · ·
[m′]j

[m]j−1

· · ·
m11

















=

S(〈N〉, 〈N − 1〉)S(〈N − 1〉, 〈N − 2〉) . . . S(〈j + 1〉, 〈j〉)
(

∏j−1
k=1(lk,j−1 − l〈j〉,j − 1)
∏j

k 6=〈j〉=1(lkj − l〈j〉,j)

)1/2

×
N
∏

r=j+1





r−1
∏

k 6=〈r−1〉=1

(lk,r−1 − l〈r〉,r − 1)

(lk,r−1 − l〈r−1〉,r−1 − 1)

r
∏

k 6=〈r〉=1

(lkr − l〈r−1〉,r−1)

(lkr − l〈r〉,r)





1/2

, (4.16)

where, as usual,
lij = mij − i (4.17)

and

S(k, r) =

{

1 for k ≤ r
−1 for k > r.

(4.18)
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Secondly, for j > N , only the rows with index j or larger can change; one has




























↑
[m′]j

[m]j−1

...
[m]N

...
[m]2

[m]1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f+
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

↑
[m]N

...
[m]2

[m]1



























=

(

∏j−1
k=1(lk,j−1 − l〈j〉,j − 1)
∏j

k 6=〈j〉=1(lkj − l〈j〉,j)

)1/2

G〈j〉(m1N , m2N , . . . , mNN , 0), (4.19)

where 〈j〉 ∈ {1, 2, . . . , N + 1}. Observe that, in fact, (4.19) is a special case of (4.12). This can be
seen by taking j as the stable index for |m) in (4.19): clearly, if |m) is stable with respect to N ,
then it is also stable with respect to j.

After this rather technical summary, let us state the main result.

Theorem 5 The so(∞) representation W (p), i.e. the parafermion Fock representation of order p,
has an orthonormal basis consisting of all stable GZ-patterns with entries at most p. The action of
the so(∞) generators f±

j on the basis vectors |m) is given by (4.8)-(4.9), where the actual matrix
elements are presented in (4.12) and (4.19). Under this action, W (p) is a unitary irreducible so(∞)
representation, generated by the vacuum vector |0〉 = |0) consisting of the GZ-pattern with all zero
entries.

Proof. The proof goes in a number of steps, the main part relying heavily on the corresponding
result for a finite number of parafermion operators. First of all, orthonormality is imposed by (4.7).
The hardest part is to prove that under the given action W (p) is actually a representation of so(∞).
For this, it is sufficient to prove that

(m′|Aξηǫ
jkl |m) = 0, (4.20)

for all couples of basis vectors of W (p) and for all

Aξηǫ
jkl = [[f ξ

j , fη
k ], f ǫ

l ] −
1

2
(ǫ − η)2δklf

ξ
j +

1

2
(ǫ − ξ)2δjlf

η
k , (4.21)

since these expressions correspond to the defining relations (2.2) of so(∞). Let |m) be stable with

respect to some value n, let |m′) be stable with respect to some value n′, and for a given Aξηǫ
jkl ,

define
N = max(n, n′, j, k, l).

Using [21, Theorem 6], it follows that










[m′]N

...
[m′]2

[m′]1

∣

∣

∣

∣

∣

∣

∣

∣

∣

Aξηǫ
jkl

∣

∣

∣

∣

∣

∣

∣

∣

∣

[m]N

...
[m]2

[m]1











= 0 (4.22)

as an identity in so(2N + 1). Hence, by stability,














↑
[m′]N

...
[m′]2

[m′]1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Aξηǫ
jkl

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

↑
[m]N

...
[m]2

[m]1















= (m′|Aξηǫ
jkl |m) = 0. (4.23)
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So we are dealing with a representation. The representation is unitary, since the matrix elements
of f−

j are defined by means of those of f+
j and (4.10). The basis vector |0) (zero GZ-pattern) of

W (p) satisfies

(0|0) = 1, f−
j |0) = 0, [f−

j , f+
k ]|0) = f−

j f+
k |0) = p δjk |0)

so it is the vacuum vector |0〉. W (p) is generated by |0): indeed, let |m) be any basis vector
of W (p). Suppose |m) is stable with respect to row N . Consider the corresponding u(N) GZ-
pattern consisting of the first N rows of |m). This is a vector of the unitary irreducible so(2N + 1)
representation described in [21, Theorem 6]. Hence there exists an element A from so(2N + 1), i.e.
A can be expressed as a linear combination of products of the generators f±

j with j ∈ {1, 2, . . . , N},
such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

[m]N

...
[m]2

[m]1











= A

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0]N

...
[0]2

[0]1











.

Hence, for this same expression A,
|m) = A |0).

This also yields irreducibility, since (m|A|0) = 1 implies (0|A†|m) = 1. Due to the fact that all
entries in such a u(N) GZ-pattern are at most p, this property holds also for the basis vectors of
W (p). 2

The matrix elements in (4.12) look complicated at first sight, but in fact they are not so difficult
to use explictly. Let us give an example, and compute the action of f+

1 , f+
2 , . . . on the vector (3.5)

of W (p) (where, obviously, p ≥ 5). One finds:

f+
1

∣

∣

∣

∣

∣

∣

∣

↑↑↑
530
31
2






=

√

5(p − 5)

7

∣

∣

∣

∣

∣

∣

∣

↑↑↑
630
41
3






−
√

5

∣

∣

∣

∣

∣

∣

∣

↑↑↑
540
41
3






− 1

3

√

p + 2

14

∣

∣

∣

∣

∣

∣

∣

↑↑↑
531
41
3







−
√

2(p − 5)

7

∣

∣

∣

∣

∣

∣

∣

↑↑↑
630
32
3






+

1

3

√

10(p + 2)

7

∣

∣

∣

∣

∣

∣

∣

↑↑↑
531
32
3







f+
2

∣

∣

∣

∣

∣

∣

∣

↑↑↑
530
31
2






=

√

5(p − 5)

7

∣

∣

∣

∣

∣

∣

∣

↑↑↑
630
41
2






−
√

5

∣

∣

∣

∣

∣

∣

∣

↑↑↑
540
41
2






− 1

3

√

p + 2

14

∣

∣

∣

∣

∣

∣

∣

↑↑↑
531
41
2







+

√

2(p − 5)

7

∣

∣

∣

∣

∣

∣

∣

↑↑↑
630
32
2






− 1

3

√

10(p + 2)

7

∣

∣

∣

∣

∣

∣

∣

↑↑↑
531
32
2







f+
3

∣

∣

∣

∣

∣

∣

∣

↑↑↑
530
31
2






=

√

18(p − 5)

7

∣

∣

∣

∣

∣

∣

∣

↑↑↑
630
31
2






+

√

2(p + 2)

21

∣

∣

∣

∣

∣

∣

∣

↑↑↑
531
31
2







f+
4

∣

∣

∣

∣

∣

∣

∣

↑↑↑
530
31
2






=

√

4(p − 5)

7

∣

∣

∣

∣

∣

∣

∣

∣

↑↑↑↑
6300
530
31
2









+
√

2

∣

∣

∣

∣

∣

∣

∣

∣

↑↑↑↑
5400
530
31
2









+

√

3(p + 2)

7

∣

∣

∣

∣

∣

∣

∣

∣

↑↑↑↑
5310
530
31
2
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Note that for p = 5 some matrix elements become automatically zero, corresponding to the coeffi-
cients in front of vectors that do not belong to W (5).

As a second example, consider the case p = 1, which should reproduce the known fermion Fock
space. For p = 1, the entries in the GZ-patterns of W (1) are 0 or 1. It is easy to compute that

f+
j |0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

↑
[1]j

[0]j−1

...
[0]1















(4.24)

and therefore
f+

j f+
j |0) = 0.

Furthermore,

f+
j f+

k |0) = f+
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

↑
[1]k

[0]k−1

...
[0]1















= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

↑
[11]k

[1]k−1

...
[1]j

[0]j−1

...
[0]1





























for j < k, (4.25)

and f+
k f+

j |0) = −f+
j f+

k |0). These configurations generalize, and since the entries in the GZ-patterns
consist of zeros and ones only, one can write them in a more appropriate form:

|m) = v(θ1, θ2, θ3, . . .), θn =
∑

i

min −
∑

i

mi,n−1, (4.26)

where mi0 = 0. So each θn ∈ {0, 1}, and (θ1, θ2, θ3, . . .) is an infinite string of zeros and ones with
only a finite number of ones, because of the stability of |m). It is not difficult to see that

f+
i1

f+
i2
· · · f+

in
|0) = (−1)n−1v(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . .), (i1 < i2 < · · · < in), (4.27)

where the string has ones at positions i1, i2, . . . , in. Hence the v-basis, or equivalently the |m)-basis,
coincides (up to a sign) with the usual fermion Fock basis when p = 1.

Let us now return to the general case, with p arbitrary. Recall that the weight of |0) is given
by (4.4). In other words, |0) is h-diagonal, and

hj |0) = −p

2
|0). (4.28)

Using hj = 1
2 [f+

j , f−
j ] and the triple relations (2.2), one finds [hj , f

±
k ] = ±δjkf

±
k . Since all vectors

of W (p) are generated from |0) by acting with f±
k (k = 1, 2, . . .), it follows that each basis vector

|m) is h-diagonal, and that

hj |m) = (−p

2
+
∑

i

mi,j −
∑

i

mi,j−1)|m). (4.29)
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The sequence of eigenvalues of (h1, h2, h3, . . .) is the weight of |m):

wt(|m)) = (k1, k2, k3, . . .), kj = −p

2
+
∑

i

mi,j −
∑

i

mi,j−1. (4.30)

The character of W (p) is the expression

char W (p) =
∑

|m)∈W (p)

ewt(|m)), (4.31)

where e is the formal exponential. It is common to write, in this context,

ewt(|m)) = xk1
1 xk2

2 xk3
3 · · · , (4.32)

so
char W (p) =

∑

|m)∈W (p)

xk1
1 xk2

2 xk3
3 · · · (4.33)

and it becomes a (symmetric) function in the variables x1, x2, . . .. Then we have

Theorem 6 The character of W (p) is given by

char W (p) = (x1x2 · · · )−p/2
∑

λ, ℓ(λ′)≤p

sλ(x), (4.34)

where the sum is over all partitions λ with largest part not exceeding p.

For example,

char W (1) = (x1x2 · · · )−1/2(1 + s1(x) + s11(x) + s111(x) + · · · ),
char W (2) = (x1x2 · · · )−1(1 + s1(x) + s2(x) + s11(x) + s21(x) + s111(x) + · · · ).

The proof of (4.34) follows from the finite rank case [21]. Let N be a fixed positive number, and
consider all basis vectors |m) in W (p) that are stable with respect to row N . By [21, Corollary 5],
one has

∑

|m)∈W (p)

|m) stable w.r.t. row N

ewt(|m)) = (x1x2 · · ·xN )−p/2
∑

λ, ℓ(λ′)≤p

sλ(x1, x2, . . . , xN ). (4.35)

The assertion then follows from a limit process.
The character can be written in an alternative form. This is based on an identity for Schur

functions with a finite number of variables. From [15, p. 84, eq. (2′)], one finds

∑

ℓ(λ′)≤p

sλ(x1, . . . , xn) =
det(xp+2n−j

i − xj−1
i )

det(x2n−j
i − xj−1

i )
,

and using this last expression, King [11] has shown:

∑

ℓ(λ′)≤p

sλ(x1, . . . , xn) =
E(p,0)(x1, . . . , xn)

E(x1, . . . , xn)
=

E(p,0)(x1, . . . , xn)
∏

i(1 − xi)
∏

i<j(1 − xixj)
,
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where E and E(p,0) are the expressions given in (3.10) and (3.14), but restricted to a finite number
of variables. Hence we can write

char W (p) = (x1x2 · · · )−p/2 E(p,0)(x)
∏

i(1 − xi)
∏

i<j(1 − xixj)

= (x1x2 · · · )−p/2

∑

η∈E(−1)(|η|+r)/2sη(p,0)
(x)

∏

i(1 − xi)
∏

i<j(1 − xixj)
, (4.36)

where the notation follows that of Section 3. Note that (4.34) gives the character of W (p) as an
expansion in Schur functions, whereas (4.36) is of a different type. In (4.36), the denominator
factors correspond to the positive roots ǫi and ǫi + ǫj (i < j) of so(∞) (the factors corresponding
to the positive roots ǫi + ǫj (i < j) could be considered as part of the Schur functions sη(p,0)

(x) in
the numerator). So (4.36) can be regarded as a character formula written by means of the common
so(∞) denominator

∏

α∈∆+
(eα/2 − e−α/2).

5 The paraboson Fock spaces and osp(1|∞) representations

The paraboson Fock space V (p) of order p, with p any positive integer p, is the Hilbert space with
unique vacuum vector |0〉, defined by means of (j, k = 1, 2, . . .) [6]

〈0|0〉 = 1, b−j |0〉 = 0, {b−j , b+
k }|0〉 = p δjk |0〉, (5.1)

(b±j )† = b∓j , (5.2)

and by irreducibility under the action of the Lie superalgebra generated by the elements b+
j , b−j

(j = 1, 2, . . .), subject to (2.11), i.e. the Lie superalgebra osp(1|∞). For a finite number of paraboson
operators b+

j , b−j (j = 1, 2, . . . , n), the corresponding Fock space V (p) is an infinite dimensional
irreducible unitary representation of the Lie superalgebra osp(1|2n), which has been studied in
detail in [12].

For the infinite rank case, one can define V (p) as an induced module of g = osp(1|∞), just like
in the previous section. The subalgebra of g spanned by the elements {b+

j , b−k } (j, k ∈ Z+) is again
the infinite Lie algebra u(∞). One extends u(∞) to a parabolic subalgebra p of g:

p = span{{b+
j , b−k }; b−j ; {b−j , b−k } (j < k)} = u(∞) + n−. (5.3)

Using {b−j , b+
k }|0〉 = p δjk |0〉 and hj = 1

2{b
+
j , b−j }, the (one-dimensional) space spanned by |0〉 is a

trivial one-dimensional u(n) module C|0〉, with weight

wt(|0〉) = (
p

2
,
p

2
, . . .). (5.4)

As |0〉 is annihilated by all b−j , C|0〉 can be extended to a one-dimensional p module. Then the

induced g = osp(1|∞) module V (p) is defined as:

V (p) = Indg
p C|0〉. (5.5)

This is an osp(1|∞) module with lowest weight (p
2 , p

2 , . . .); the corresponding simple module (irre-
ducible representation) is obtained by taking the quotient with the maximal nontrivial submodule
M(p):

V (p) = V (p)/M(p). (5.6)

In [12] we obtained, for the case of a finite number of paraboson operators, an orthonormal
basis for V (p) and the action of these operators on the basis elements. Now this will be extended
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to the infinite case. As the outcome and methods are similar to those of the previous section, we
shall only describe the main results. A basis of V (p) consists of all stable GZ-patterns |m) with

mij = 0 whenever i > p. (5.7)

In other words, the GZ-patterns have only p columns, the rest of the columns consisting of zeroes
only. This basis is orthogonal. The action of the osp(1|∞) generators b±j on the basis vectors |m)
is given by

b+
j |m) =

∑

m′

(m′|b+
j |m) |m′), (5.8)

b−j |m) =
∑

m′

(m′|b−j |m) |m′), (5.9)

where these matrix elements are related by

(m|b−j |m′) = (m′|b+
j |m). (5.10)

The sums in (5.8) and (5.9) are again finite. The action of b+
j in (5.8) is easy to describe: the only

vectors appearing in the right hand side of (5.8) are (stable) GZ-patterns |m′) such that:

• For n < j, the rows of |m) and |m′) are the same: [m′]n = [m]n;

• For n ≥ j, the rows of |m) and |m′) differ by 1 for only one entry. More precisely, [m′]n

is the same sequence as [m]n, apart from the fact that one entry (say, at position 〈n〉) has
been increased by 1. So for each n ≥ j, there is a unique index denoted by 〈n〉, with
〈n〉 ∈ {1, 2, . . . , p}, such that

m′
〈n〉,n = m〈n〉,n + 1 and m′

i,n = mi,n for all i 6= 〈n〉. (5.11)

As in the previous section, the main ingredient is the explicit expression of the matrix element
(m′|b+

j |m), deduced from that of the finite rank case. Assume that |m) is stable with respect to
row N . It is again appropriate to make a distinction between j ≤ N and j > N . For j ≤ N , one
has















↑
[m′]N

...
[m′]2

[m′]1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b+
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

↑
[m]N

...
[m]2

[m]1















=

















[m]N

· · ·
[m]j

[m]j−1

· · ·
m11

;

100 · · · 0
· · ·
10 · · · 0
0 · · · 0
· · ·
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[m′]N

· · ·
[m′]j

[m]j−1

· · ·
m11

















F̃〈N〉(m1N , m2N , . . . , mpN ). (5.12)

Herein, the first factor of the right hand side is the same u(N) Clebsch-Gordan coefficient [22] as
before, see (4.16). The second function, with 〈N〉 ∈ {1, 2, . . . , p} because of (5.7), can be deduced
from [12, Prop. 6]:

F̃k(m1N , m2N , . . . , mpN ) =(−1)mk+1,N+···+mpN (mkN + p + 1 − k)1/2

×
p
∏

j 6=k=1

(

mjN − mkN − j + k

mjN − mkN − j + k −OmjN−mkN

)1/2

. (5.13)

Herein O has been defined before (4.15).
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For j > N , only the rows with index j or larger can change, and the result is simply
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∣

∣

∣
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∣
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∣

∣
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∣

∣

∣

∣

∣

∣

↑
[m]N

...
[m]2

[m]1



























=

(

∏j−1
k=1(lk,j−1 − l〈j〉,j − 1)
∏j

k 6=〈j〉=1(lkj − l〈j〉,j)

)1/2

F̃〈j〉(m1N , m2N , . . . , mpN ), (5.14)

where again 〈j〉 ∈ {1, 2, . . . , p}. As before, (5.14) can be seen as a special case of (5.12).
We can now state:

Theorem 7 The osp(1|∞) representation V (p), i.e. the paraboson Fock representation of order p,
has an orthonormal basis consisting of all stable GZ-patterns with at most p nonzero entries per
row. The action of the osp(1|∞) generators b±j on the basis vectors |m) is given by (5.8)-(5.9),
where the actual matrix elements are presented in (5.12) and (5.14). Under this action, V (p) is a
unitary irreducible osp(1|∞) representation, generated by the vacuum vector |0〉 = |0) consisting of
the GZ-pattern with all zero entries.

The proof is essentially the same as that of Theorem 5. The essential part is again to show that
under the given actions V (p) is a representation of osp(1|∞). Here, one uses the results of [12] for
the case of a finite number of paraboson operators. Note that, using [12, Prop. 6], one would find
instead of (5.13):

Fk(m1N , m2N , . . . , mpN , 0, . . . , 0) =(−1)mk+1,N+···+mpN (mkN + N + 1 − k + EmkN
(p − N))1/2

×
N
∏

j 6=k=1

(

mjN − mkN − j + k

mjN − mkN − j + k −OmjN−mkN

)1/2

, (5.15)

with k ∈ {1, 2, . . . , p}. When mkN is even, (5.15) immediately reduces to (5.13) (the product
j 6= k = 1 upto N becomes a product upto p as mjN = 0 for all j > p). When mkN is odd, the
separate first factor in (5.15) becomes (mkN + N + 1 − k)1/2. However, writing out explicitly all
remaining factors in the product (5.15) (and using mjN = 0 for all j > p) many of these cancel
because they appear in the numerator and in the denominator, and also the separate factor cancels
with one in the denominator. The remaining expression is again (5.13).

We also mention, without giving further details, that the case p = 1 yields the known boson
Fock space.

As a final result, let us give the character of V (p). The generating vector |0) is h-diagonal, and

hj |0) =
p

2
|0). (5.16)

Here, hj = 1
2{b

+
j , b−j } and using the triple relations (2.11) one finds [hj , b

±
k ] = ±δjkb

±
k . It follows

that each basis vector |m) is h-diagonal, with

hj |m) = (
p

2
+
∑

i

mi,j −
∑

i

mi,j−1)|m), (5.17)

so the weight of |m) is

wt(|m)) = (k1, k2, k3, . . .), kj =
p

2
+
∑

i

mi,j −
∑

i

mi,j−1. (5.18)
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The character of V (p) is

char V (p) =
∑

|m)∈V (p)

xk1
1 xk2

2 xk3
3 · · · (5.19)

and we have

Theorem 8 The character of V (p) is given by

char V (p) = (x1x2 · · · )p/2
∑

λ, ℓ(λ)≤p

sλ(x), (5.20)

where the sum is over all partitions λ of length at most p.

For example,

char V (1) = (x1x2 · · · )1/2(1 + s1(x) + s2(x) + s3(x) + · · · ),
char V (2) = (x1x2 · · · )(1 + s1(x) + s2(x) + s11(x) + s3(x) + s21(x) + · · · ).

Also here, the character can be written in an alternative form. For Schur functions with a finite
number of variables, one has [11] (or [12, Eq. (5.17)])

∑

ℓ(λ)≤p

sλ(x1, . . . , xn) =
E(0,p)(x1, . . . , xn)

E(x1, . . . , xn)
=

E(0,p)(x1, . . . , xn)
∏

i(1 − xi)
∏

i<j(1 − xixj)
,

where E and E(0,p) are the expressions given in (3.10) and (3.16), restricted to a finite number of
variables. Hence one finds

char V (p) = (x1x2 · · · )p/2 E(0,p)(x)
∏

i(1 − xi)
∏

i<j(1 − xixj)

= (x1x2 · · · )p/2

∑

η∈E(−1)(|η|+r)/2sη(0,p)
(x)

∏

i(1 − xi)
∏

i<j(1 − xixj)
. (5.21)

6 Summary

The explicit construction of the parafermion and paraboson Fock representations was an unsolved
problem for many years. A solution was in principal offered by means of Green’s ansatz [5]. In
practice however, performing Green’s ansatz (i.e. extracting an irreducible component in a p-fold
tensor product) turned out to be difficult, and it has not lead to an explicit general solution. The
case of finite degrees of freedom, namely the explicit construction of the Fock space for n pairs of
parafermions and the Fock space for n pairs of parabosons was solved recently [12, 21]. For this
purpose we used the known relation between the Lie algebra so(2n + 1) and the n-parafermion
algebra, between the Lie superalgebra osp(1|2n) and the n-paraboson algebra, and the relation
between parafermion (resp. paraboson) Fock spaces and certain unitary irreducible representations
of these algebras. The main tools used in [12,21] are: the decomposition of an induced so(2n + 1)
and osp(1|2n) representation with respect to the compact subalgebra u(n), the use of u(n) GZ-
patterns to label basis vectors of the representations, the method of reduced matrix elements for
u(n) tensor operators, explicit u(n) CGCs, and computational techniques (using a computer algebra
package). From the point of view of quantum field theory the interesting cases are n = +∞. In
this paper we have extended the results of [12, 21] and constructed representations of order p for
an infinite set of parafermions and parabosons. The corresponding algebras are the infinite rank
Lie algebra so(∞) and the infinite rank Lie superalgebra osp(1|∞). The construction of the Fock
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spaces was possible because of the introduction of stable infinite GZ-patterns, the determination of
irreducible so(∞) and osp(1|∞) actions on them (employing the corresponding action in the finite
rank case) and stability properties of the reduced matrix elements of the finite n case when n goes
to infinity.

Thus in the series of papers [12,21] and the present one we have given solutions to a problem that
had been open for a long time. An interesting next step would be to investigate the representations
of the parastatistics algebra [14] consisting of a combined system of m pairs of parafermions and n
pairs of parabosons, known to be related to representations of the orthosymplectic Lie superalgebra
osp(2m + 1|2n) [17].
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