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Abstract

Para-Bose and para-Fermi statistics are known to be associated with repre-
sentations of the Lie (super)algebras of classB. We develop a framework
for the generalization of quantum statistics based on the Lie superalgebras
A(m|n), B(m|n), C(n) andD(m|n).

1 Introduction

It has been known for more than 50 years that generalizationsof ordinary Bose
and Fermi quantum statistics are possible if one abandons the requirement for
the commutator or anticommutator of two fields to be ac-number. The commu-
tation (resp. anticommutation) relations between the Bose(resp. Fermi) creation
and annihilation operators (CAOs) can be replaced by a weaker system of triple
relations for the so-called para-Bose operators [1]

[{Bξ
j , Bη

k}, Bǫ
l ] = (ǫ − ξ)δjlB

ξ
k + (ǫ − η)δklB

η
j ,

ξ, η, ǫ = ±; j, k, l = 1, . . . , n (1)

and para-Fermi operators [1]

[[F ξ
j , F η

k ], F ǫ
l ] =

1

2
(ǫ − η)2δklF

ξ
j − 1

2
(ǫ − ξ)2δjlF

η
k ,

ξ, η, ǫ = ± or ± 1; j, k, l = 1, . . . , n. (2)

It was shown by Kamefuchi and Takahashi [2], and by Ryan and Sudarshan [3],
that the Lie algebra generated by the2n elementssF ξ

i subject to the relations (2)
is the Lie algebraso(2n+1) ≡ Bn. Similarly Ganchev and Palev [4] discovered
a new connection, namely between para-Bose statistics and the orthosymplectic
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Lie superalgebra (LS)osp(1|2n) ≡ B(0|n) [5]. The LS generated by2n odd
elementsBξ

i , subject to the relations (1) isosp(1|2n) ≡ B(0|n) [5]. Therefore
para-statistics can be associated with representations ofthe Lie (super)algebras
of classB. Alternative types of generalized quantum statistics in the framework
of other classes of simple Lie algebras or superalgebras have been considered
in particular by Palev [6]- [14]. Furthermore, a complete classification of all
the classes of generalized quantum statistics for the classical Lie algebrasAn,
Bn, Cn andDn, by means of their algebraic relations, was given in [15]. In
the present paper we make a similar classification for the basic classical Lie
superalgebras.

2 Preliminaries, definition and classification method

Let G be a basic classical Lie superalgebra.G has aZ2-gradingG = G0̄ ⊕ G1̄;
an elementx of G0̄ is an even element (deg(x) = 0), an elementy of G1̄ is an
odd element (deg(y) = 1). The Lie superalgebra bracket is denoted by[[x, y]].
In the universal enveloping algebra ofG, this stands for

[[x, y]] = xy − (−1)deg(x) deg(y)yx,

if x andy are homogeneous. So the bracket can be a commutator or an anti-
commutator.

A generalized quantum statistics associated withG is determined byN cre-
ation operatorsx+

i and N annihilation operatorsx−
i . Inspired by the para-

statistics, Palev’s statistics and [15], these2N operators should generate the
Lie superalgebraG, subject to certain triple relations. LetG+1 andG−1 be the
subspaces ofG spanned by the CAOs:

G+1 = span{x+
i ; i = 1 . . . , N}, G−1 = span{x−

i ; i = 1 . . . , N}. (3)

We do not require that these subspaces are homogeneous. Putting G±2 =
[[G±1, G±1]] and G0 = [[G+1, G−1]], the condition thatG is generated by
the 2N elements subject to triple relations only, leads to the requirement that
G = G−2 ⊕G−1 ⊕G0 ⊕G+1 ⊕G+2, and this must be aZ-grading ofG. Since
these subspaces are not necessarily homogeneous, thisZ-grading is in general
not consistent with theZ2-grading.

We impose two further requirements: first of all, the generating elementsx±
i

must be root vectors ofG. Secondly,ω(x+
i ) = x−

i , whereω is the standard
antilinear anti-involutive mapping ofG (in terms of root vectorseα, ω satisfies
ω(eα) = e−α). This leads to the following definition:

Definition 1 Let G be a basic classical Lie superalgebra, with antilinear anti-
involutive mappingω. A set of2N root vectorsx±

i (i = 1, . . . , N ) is called a
set of creation and annihilation operators forG if:

• ω(x±
i ) = x∓

i ,

• G = G−2 ⊕ G−1 ⊕ G0 ⊕ G+1 ⊕ G+2 is a Z-grading ofG, with G±1 =
span{x±

i , i = 1 . . . , N} andGj+k = [[Gj , Gk]].
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The algebraic relationsR satisfied by the operatorsx±
i are the relations of a

generalized quantum statistics (GQS) associated withG.

A consequence of this definition is that the algebraic relationsR consist of
quadratic and triple relations only. Another consequence is thatG0 is a subal-
gebra ofG spanned by root vectors ofG, i.e. G0 is a regular subalgebra ofG.
By the adjoint action, the remainingGi’s areG0-modules. Thus the following
technique can be used in order to obtain a complete classification of all GQS
associated withG:

1. Determine all regular subalgebrasG0 of G.

2. For each regular subalgebraG0, determine the decomposition ofG into
simpleG0-modulesgk (k = 1, 2, . . .).

3. Investigate whether there exists aZ-grading ofG of the form

G = G−2 ⊕ G−1 ⊕ G0 ⊕ G+1 ⊕ G+2, (4)

where eachGi is either directly a modulegk or else a sum of such modules
g1 ⊕ g2 ⊕ · · · , such thatω(G+i) = G−i.

If the Z-grading is of the form (4) withG±2 6= 0, we shall say that it has
length5; if G+2 = 0 (thenG−2 = 0, but G±1 6= 0), then theZ-grading is of
length 3.

In the following section we shall give a summary of the classification process
for the basic classical Lie superalgebrasA(m|n), B(m|n), B(0|n), D(m|n) and
C(n). For more details on the classification techniques, see [16].

3 Classification

3.1 The Lie superalgebra A(m|n)

Let G be the special linear Lie superalgebraA(m|n) ≡ sl(m + 1|n + 1), con-
sisting of traceless(m + n + 2) × (m + n + 2) matrices. The root vectors of
G are known to be the elementsejk (j 6= k = 1, . . . ,m + n + 2), whereejk

is a matrix with zeros everywhere except a 1 on the intersection of row j and
columnk. TheZ2-grading is such thatdeg(ejk) = θjk = θj + θk, where

θj =

{

0 if j = 1, · · · ,m + 1
1 if j = m + 2, · · · ,m + n + 2.

(5)

The root corresponding toejk (j, k = 1, . . . ,m + 1) is given byǫj − ǫk; for
em+1+j,m+1+k (j, k = 1, . . . , n + 1) it is δj − δk; and for ej,m+1+k, resp.
em+1+k,j , (j = 1, . . . ,m + 1, k = 1, . . . , n + 1) it is ǫj − δk, resp.δk − ǫj . The
anti-involution is such thatω(ejk) = ekj .

In order to find regular subalgebras ofG = A(m|n), one should delete nodes
from the Dynkin diagrams ofA(m|n) (first the ordinary, and then the extended).
Step 1.Delete nodei from the distinguished Dynkin diagram. ThenA(m|n) =
G−1⊕G0⊕G+1, with G0 = sl(i)⊕sl(m+1−i|n+1) for i = 1, . . . ,m+1 and
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G0 = sl(m+1|i−m−1)⊕sl(n+m+2−i) for i = m+2, . . . ,m+n+1; G−1 =
span{ekl; k = 1, . . . , i, l = i + 1, . . . ,m + n + 2}; G+1 = span{elk; k =
1, . . . , i, l = i + 1, . . . ,m + n + 2} andN = i(m + n + 2 − i).

For i = 1, N = m + n + 1. Puttinga−
j = e1,j+1, a+

j = ej+1,1, j =
1, · · · ,m + n + 1, the relationsR are:

[[a+
j , a+

k ]] = [[a−
j , a−

k ]] = 0,

[[[[a+
j , a−

k ]], a+
l ]] = (−1)θj+1δjka+

l + δkla
+
j , (6)

[[[[a+
j , a−

k ]], a−
l ]] = −(−1)θj+1δjka−

l − (−1)θj+1,k+1θl+1δjla
−
k .

For m = 0, these are the relations ofA-superstatistics [10], [14]. Also for
generalm andn, these relations have been considered in another context [13].

For i = 2, N = 2(m + n). One puts

a−
−,j = e1,j+2, a−

+,j = e2,j+2, j = 1, . . . ,m + n,

a+
−,j = ej+2,1, a+

+,j = ej+2,2, j = 1, . . . ,m + n.

Then the corresponding relations read (ξ, η, ǫ = ±; j, k, l = 1, . . . ,m + n):

[[a+
ξj , a

+
ηk]] = [[a−

ξj , a
−
ηk]] = 0,

[[a+
ξj , a

−
−ξk]] = 0, [[a+

−j , a
−
−k]] = [[a+

+j , a
−
+k]], j 6= k, (7)

[[a+
+j , a

−
−j ]] = [[a+

+k, a−
−k]], for θj = θk,

[[a+
−j , a

−
+j ]] = [[a+

−k, a−
+k]], for θj = θk,

[[[[a+
ξj , a

−
ηk]], a+

ǫl]] = (−1)deg(a+

ξj
) deg(a−

ηk
)+δξ,−ηθ12 deg(a+

ǫl
)δηǫδjka+

ξl

+δξηδkla
+
ǫj ,

[[[[a+
ξj , a

−
ηk]], a−

ǫl ]] = −(−1)deg(a+

ξj
) deg(a−

ηk
)δξǫδjka−

ηl

−(−1)θj+2,k+2 deg(a−

ǫl
)δξηδjla

−
ǫk.

Step 2. Delete nodei andj from the distinguished Dynkin diagram. We have
G0 = H + sl(i) ⊕ sl(j − i) ⊕ sl(m + 1 − j|n + 1) for 1 ≤ i < j ≤ m + 1,
G0 = H+sl(i)⊕sl(m+1−i|j−m−1)⊕sl(m+n+2−j) for 1 ≤ i ≤ m+1,
m+2 ≤ j ≤ m+n+1 andG0 = H +sl(m+1|i−m−1)⊕sl(j−i)⊕sl(m+
n + 2− j) for m + 2 ≤ i < j ≤ m + n + 1. There are six simpleG0-modules.
All the possible combinations of these modules give rise to gradings of length 5.
There are three different ways in which theseG0-modules can be combined. To
characterize these three cases, it is sufficient to give onlyG−1:

G−1 = span{ekl, elp; k = 1, . . . , i, p = j + 1, . . . ,m + n + 2,

l = i + 1, . . . , j}, with N = (j − i)(m + n + 2 − j + i); (8)

G−1 = span{ekl, epk; k = 1, . . . , i, p = j + 1, . . . ,m + n + 2},
l = i + 1, . . . , j, with N = i(m + n + 2 − i); (9)

G−1 = span{ekl, elp; k = 1, . . . , i, l = j + 1, . . . ,m + n + 2},
p = i + 1, . . . , j, with N = j(m + n + 2 − j). (10)
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For j − i = 1 one can label the CAOs as follows:a−
k = ek,i+1, a+

k =
ei+1,k, k = 1, . . . , i; a−

k = ei+1,k+1, a+
k = ek+1,i+1, k = i + 1, . . . ,m +

n + 1. Using

〈k〉 =

{

0 if k = 1, . . . , i,
1 if k = i + 1, . . . ,m + n + 1,

(11)

the quadratic and triple relations now read:

[[a+
k , a+

l ]] = [[a−
k , a−

l ]] = 0, k, l = 1, . . . , i or k, l = i + 1, . . . ,m + n + 1,

[[a−
k , a+

l ]] = [[a+
k , a−

l ]] = 0, k = 1, . . . , i, l = i + 1, . . . ,m + n + 1,

[[[[a+
k , a−

l ]], a+
p ]] = (−1)〈l〉+〈p〉+〈k〉θk+1,i+1δkla

+
p

+(−1)〈l〉+〈p〉+(1−〈l〉)θl,i+1(θlk+θk,i+1)δlpa
+
k ,

k, l = 1, · · · , i, or k, l = i + 1, . . . ,m + n + 1,

[[[[a+
k , a−

l ]], a−
p ]] = −(−1)〈l〉+〈p〉+deg(a+

k
)[〈k〉θk+1,l+1+(1−〈l〉)θl,i+1]δkpa

−
l

−(−1)〈l〉+〈p〉+〈k〉θk+1,i+1δkla
−
p ,

k, l = 1, · · · , i, or k, l = i + 1, . . . ,m + n + 1,

[[[[aξ
k, aξ

l ]], a
−ξ
p ]] = −(−1)

1
2
θp,i+1[(1+ξ)θl+1,i+1+(1−ξ)θk,l+1]δkpa

ξ
l

+(−1)
1
2
(1+ξ)θl+1,i+1(θk,i+1+θk,l+1)δlpa

ξ
k,

k = 1, . . . , i, l = i + 1, . . . ,m + n + 1,

[[[[aξ
k, aξ

l ]], a
ξ
p]] = 0, ξ = ±; k, l, p = 1, . . . ,m + n + 1. (12)

Step 3.If we delete three or more nodes from the distinguished Dynkin diagram,
the resultingZ-gradings ofA(m|n) are no longer of the required form.

Step 4. If we delete nodei from the extended distinguished Dynkin diagram,
the remaining diagram is again (a non-distinguished Dynkindiagram) of type
A(m|n), soG0 = G, and there are no CAOs.

Step 5. Delete nodei andj (i < j) from the extended distinguished Dynkin
diagram. ThenA(m|n) = G−1 ⊕ G0 ⊕ G+1 with G0 = H + sl(m|n + 1) or
H + sl(m + 1|n) when the nodes are adjacent, andG0 = H + sl(k|l)⊕ sl(p|q)
with k + p = m + 1 andl + q = n + 1 when the nodes are nonadjacent.

G−1 = span{ekl; k = i + 1 . . . , j, l 6= i + 1, . . . , j}

andN = (j − i)(n + m + 2 − j + i).

Step 6.Delete nodesi, j andk from the extended distinguished Dynkin diagram
(i < j < k). For three adjacent nodesG0 = H +sl(m−1|n+1), H +sl(m|n)
or H + sl(m + 1|n − 1). For two adjacent and one nonadjacent nodesG0 =
H + sl(l|p) ⊕ sl(q|r) with l + q = m, p + r = n + 1 or l + q = m + 1,
p+r = n. If all three nodes are nonadjacentG0 = H+sl(l|p)⊕sl(q|r)⊕sl(s|t)
with l + q + s = m + 1, p + r + t = n + 1. One or two of these three Lie
superalgebras issl(r|0) = sl(0|r) = sl(r). There are three different ways in
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which the correspondingG0-modules can be combined. We give here onlyG−1:

G−1 = span{eps, esq; p = 1, . . . , i, k + 1, . . . , n + m + 2,

s = i + 1, . . . , j, q = j + 1, . . . , k},
with N = (j − i)(n + m + 2 − j + i);

G−1 = span{eps, eqp; p = 1, . . . , i, k + 1, . . . , n + m + 2,

s = i + 1, . . . , j, q = j + 1, . . . , k},
with N = (k − i)(n + m + 2 + i − k);

G−1 = span{epq, eqs; p = 1, . . . , i, k + 1, . . . , n + m + 2,

s = i + 1, . . . , j, q = j + 1, . . . , k},
with N = (k − j)(n + m + 2 + j − k).

Step 7.If we delete four or more nodes from the extended distinguished Dynkin
diagram theZ-grading ofA(m|n) satisfies no longer the required properties.

Step 8. Next, one should repeat the process for all nondistinguished Dynkin
diagrams ofG and their extensions. The only new result corresponds to Step 6
deleting three nonadjacent nodes from the extended Dynkin diagram. We have
G0 = H + sl(l|p)⊕ sl(q|r)⊕ sl(s|t) with l + q + s = m+1, p+ r + t = n+1
and in some cases none of the three algebras issl(r|0) = sl(0|r) = sl(r).

3.2 The Lie superalgebras B(m|n)

We summarize the classification process for the Lie superalgebrasB(m|n) giv-
ing for all nonisomorphic GQS the subalgebraG0 (eachG0 contains the com-
plete Cartan subalgebraH, so we only list the remaining part ofG0 = H + · · · );
the lengthℓ of theZ-grading and the numberN of annihilation operators:

G0 = H + · · · ℓ N

sl(k|l) ⊕ B(m − k|n − l) 5 (k + l)(2m − 2k + 2n − 2l + 1)
(k = 0, . . . ,m; l = 0, . . . , n;
(k, l) 6∈ {(0, 0), (1, 0)})
B(m − 1|n) [(k, l) = (1, 0)] 3 2m + 2n − 1

The most interesting case is withk = m, l = n. ThenG0 = sl(m|n), N =
n + m and the CAOs:

b−j ≡ B−
j = −

√
2(e2m+1,2m+1+n+j + e2m+1+j,2m+1),

b+
j ≡ B+

j =
√

2(e2m+1,2m+1+j − e2m+1+n+j,2m+1),

b−n+k ≡ F−
k =

√
2(ek,2m+1 − e2m+1,m+k),

b+
n+k ≡ F+

k =
√

2(e2m+1,k − em+k,2m+1),

j = 1, . . . , n; k = 1, . . . ,m,
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with

deg(b±j ) = 〈j〉 =

{

1 if j = 1, . . . , n
0 if j = n + 1, . . . , n + m

satisfy only triple relations:

[[[[bξ
j , b

η
k]], bǫ

l ]] = −2δjlδǫ,−ξǫ
〈l〉(−1)〈k〉〈l〉bη

k + 2ǫ〈l〉δklδǫ,−ηbξ
j ,

ξ, η, ǫ = ± or ± 1; j, k, l = 1, . . . , n + m.

Note thatB±
j , j = 1, . . . , n (resp. F±

k , k = 1, . . . ,m) are para-Bose (1)
(resp. para-Fermi (2)) CAOs. The fact thatB(m|n) can be generated byn
pairs of para-Bose andm pairs of para-Fermi operators has been discovered
by Palev [17].

In the next subsections we summarize the classification process for the Lie
superalgebrasB(0|n), D(m|n) andC(n).

3.3 The Lie superalgebras B(0|n)

G0 = H + · · · ℓ N

sl(i) ⊕ B(0|n − i) 5 i(2n − 2i + 1)
(i = 1, . . . , n)

The most interesting case corresponds toi = n. ThenN = n; the CAOs

B−
j = −

√
2(e1,1+n+j + e1+j,1), j = 1, . . . , n,

B+
j =

√
2(e1,1+j − e1+n+j,1), j = 1, . . . , n

are all odd generators ofB(0|n) and the relationsR consists of the triple para-
Bose relations (1).

3.4 The Lie superalgebras D(m|n)

G0 = H + · · · ℓ N

sl(k|l) ⊕ D(m − k|n − l) 5 2(k + l)(m + n − k − l)
(k = 0, 1, . . . ,m;
l = 0, 1, . . . , n;
(k, l) 6∈ {(0, 0), (1, 0), (m − 1, n), (m,n)})

D(m − 1|n) [(k, l) = (1, 0)] 3 2(m + n − 1)

sl(m|n) [(k, l) = [m,n)] 3 (m+n)(m+n+1)
2 − m

sl(m − 1|n) [(k, l) = (m − 1, n)] 5 (m+n)(m+n+1)
2 − m

sl(m − 1|n) [(k, l) = (m − 1, n)] 5 2(m + n − 1)
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3.5 The Lie superalgebras C(n)

G0 = H + · · · ℓ N

sl(k|l) ⊕ D(1 − k|n − 1 − l) 5 2(k + l)(n − k − l)
(k = 0, 1; l = 1, . . . , n − 2)

Cn−1 [(k, l) = (1, 0)] 3 2(n − 1)

sl(1|n − 1) [(k, l) = (1, n − 1)] 3 n(n + 1)/2 − 1

sl(n − 1) [(k, l) = (0, n − 1)] 5 n(n + 1)/2 − 1

sl(n − 1) [(k, l) = (0, n − 1)] 5 2(n − 1)

4 Conclusions and possible applications

We have obtained a complete classification of all GQS associated with the basic
classical Lie superalgebras. The familiar cases (para-Bose, para-Fermi andA-
(super)statistics) appear as simple examples in our classification. In order to talk
about a quantum statistics in the physical sense, one shouldtake into account
additional requirements for the CAOs, related to certain quantization postulates.
These conditions are related to the existence of state spaces, in which the CAOs
act in such a way that the corresponding observables are Hermitian operators.
We hope that some cases of our classification will yield interesting GQS also
from this point of view.

As a second application, we mension the problem of finding solutions of
the compatibility conditions (CCs) of a Wigner quantum oscillator system [18].
These compatibility conditions take the form of certain triple relations for op-
erators. So formally the CCs appear as special triple relations among operators
which resemble the creation and annihilation operators of ageneralized quantum
statistics. One can thus investigate which formal GQSs alsoprovide solutions of
the CCs. It turns out that the classification presented here,with CAOs consisting
of odd generators only, yields new solutions of these compatibility conditions
corresponding to each basic classical Lie superalgebra [19].
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