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Abstract

Para-Bose and para-Fermi statistics are known to be associated wéh rep
sentations of the Lie (super)algebras of cl&éssWe develop a framework

for the generalization of quantum statistics based on the Lie superalgebras
A(m|n), B(m|n), C(n) andD(m/|n).

1 Introduction

It has been known for more than 50 years that generalizatibosdinary Bose
and Fermi quantum statistics are possible if one abandensetiuirement for
the commutator or anticommutator of two fields to berrumber. The commu-
tation (resp. anticommutation) relations between the Breesp. Fermi) creation
and annihilation operators (CAOSs) can be replaced by a wegktem of triple
relations for the so-called para-Bose operators [1]

[{BS, B}, Bf] = (e — £)8;B; + (e — )6 BY,
577]76:i;j7k7l:17"'an (1)

and para-Fermi operators [1]

1 1
F5, B0 F] = (e = )8 = 5 (e = €70,

Ene=+or£1; 4 kil=1,...,n (2)

It was shown by Kamefuchi and Takahashi [2], and by Ryan anth&han [3],
that the Lie algebra generated by meelementssil?f subject to the relations (2)
is the Lie algebrao(2n+1) = B,,. Similarly Ganchev and Palev [4] discovered
a new connection, namely between para-Bose statisticdhanathosymplectic
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Lie superalgebra (LS)sp(1|2n) = B(0|n) [5]. The LS generated bgn odd
eIementst, subject to the relations (1) isp(1|2n) = B(0|n) [5]. Therefore
para-statistics can be associated with representatiotie dfie (super)algebras
of classB. Alternative types of generalized quantum statistics eftamework

of other classes of simple Lie algebras or superalgebras been considered
in particular by Palev [6]- [14]. Furthermore, a completassification of all
the classes of generalized quantum statistics for theictddse algebras4,,,
B,, C, and D,,, by means of their algebraic relations, was given in [15]. In
the present paper we make a similar classification for thé dassical Lie
superalgebras.

2 Preliminaries, definition and classification method

Let G be a basic classical Lie superalgelfahas aZ,-gradingG = G5 @ Gi;
an element: of Gj is an even elementl¢g(x) = 0), an elemeny of Gy is an
odd elementdeg(y) = 1). The Lie superalgebra bracket is denoted[byy].
In the universal enveloping algebra@f this stands for

[, y] = zy — (—1)2eB@) B0y,

if x andy are homogeneous. So the bracket can be a commutator or an anti
commutator.

A generalized quantum statistics associated @itls determined byV cre-
ation operatorSr:j and N annihilation operatorg;; . Inspired by the para-
statistics, Palev’s statistics and [15], thex¥ operators should generate the
Lie superalgebr&-, subject to certain triple relations. Lét, ; andG_; be the
subspaces aff spanned by the CAOs:

Gy =spadzf;i=1...,N}, G_i=sparfz;;i=1...,N}. (3)

We do not require that these subspaces are homogeneousngRit, =
[G+1,G+1] and Gy = [G41,G_1], the condition thatG is generated by
the 2N elements subject to triple relations only, leads to the irequent that
G=G_28G_1DGydG41 @ Gya, and this must be Z-grading ofG. Since
these subspaces are not necessarily homogeneou&-ghnéling is in general
not consistent with th&,-grading.

We impose two further requirements: first of all, the gen’rag;aflalement&;IE
must be root vectors oft. Secondlyw(z;) = x;, wherew is the standard
antilinear anti-involutive mapping af (in terms of root vectors,,, w satisfies
w(eq) = e_4). This leads to the following definition:

Definition 1 LetG be a basic classical Lie superalgebra, with antilinear anti
involutive mappingv. A set of2N root vectors.ycjE (i=1,...,N)iscalled a
set of creation and annihilation operators fGrif:

i) F

o w(z;) ==z,

e G=G_28G_18Gy® G411 & G4oisaZ-grading of G, withG1, =
span{z, i=1...,N}andG,,; = [G}, Gi].
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The algebraic relationsk satisfied by the operatorﬁf are the relations of a
generalized quantum statistics (GQS) associated @ith

A consequence of this definition is that the algebraic retestiR consist of
qguadratic and triple relations only. Another consequerdiatGy is a subal-
gebra ofG spanned by root vectors ¢, i.e. G is a regular subalgebra ¢f.
By the adjoint action, the remaining;’s are Go-modules. Thus the following
technique can be used in order to obtain a complete clagsificaf all GQS
associated witld7:

1. Determine all regular subalgebr@g of G.

2. For each regular subalgehf®, determine the decomposition 6f into
simpleGy-modulesg;, (k =1,2,...).

3. Investigate whether there existZarading ofG of the form
G=G,0G 180G 3G Gy, 4

where eacld; is either directly a modulg;, or else a sum of such modules
g1 g2 ®---,suchthat(G4;) = G_;.

If the Z-grading is of the form (4) withG.o # 0, we shall say that it has
length5; if G.5 = 0 (thenG_; = 0, butGy; # 0), then theZ-grading is of
length 3.

In the following section we shall give a summary of the clfisation process
for the basic classical Lie superalgebrb@n|n), B(m|n), B(0|n), D(m|n) and
C(n). For more details on the classification techniques, see [16]

3 Classification

3.1 The Lie superalgebra A(m|n)

Let G be the special linear Lie superalgebtémn|n) = si(m + 1|n + 1), con-
sisting of tracelesgm + n + 2) x (m + n + 2) matrices. The root vectors of
G are known to be the elements, (j # k£ = 1,...,m + n + 2), wheree;,

is a matrix with zeros everywhere except a 1 on the interseaf row j and
columnk. TheZ,-grading is such thateg(e;i) = 0,1, = 0; + 65, where

(0 if j=1,,m+1
%‘{1ifj=m+z~,m+n+z ©)

The root corresponding t@;;, (j,k = 1,...,m + 1) is given bye; — ¢; for
em+titijmiirk G,k = 1,...,n+ 1) itis 6; — d; and fore; y,y14k, resp.
emtitk i, G=1,....m+1L,k=1...,n+1)itise; — i, resp.d, —e;. The
anti-involution is such thav(e;,) = e;.

In order to find regular subalgebras@f= A(m|n), one should delete nodes
from the Dynkin diagrams ofi(m|n) (first the ordinary, and then the extended).
Step 1.Delete node from the distinguished Dynkin diagram. Theifm|n) =
G_18Go®G 41, WithGy = sl(i)®sl(m+1—iln+1)fori=1,...,m+1and
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Go = sl(m+1ji—m—1)®sl(n+m+2—i)fori = m+2,... ,m+n+1;G_1 =
span{eg;; k=1,...,4, l =i+ 1,...,m+n+2}; G;1 = span{ey; k =
L...,i,l=i+1,....m+n+2}andN =i(m +n+2 —1).

Fori=1,N=m+n+1. Puttinga; = e1,j+1, aj = €j4+1,1, J
1,---,m+n+ 1, the relationsR are:

la), a1 =laj,a;]=0,
laf . a; ], a1 = (=1)%* 8;xa] + dia, 6)
M(I;aaﬂ],aﬂ] = —(—1)‘91“6]»;{(1; — (—1)9j+1,k+19l+15jla;'

Form = 0, these are the relations of-superstatistics [10], [14]. Also for
generaln andn, these relations have been considered in another cont&xt [1
Fori =2, N = 2(m + n). One puts

a” ;= €142, ay ;= €2+2, J=1...,m+n,
_ + _
al ;= ¢€jya1, ay ;= €j+2,2, j=1...,m+n.

Then the corresponding relations regdf,e = +; 5, k, I =1,...,m +n):

[[a5+j7a$k]] = [ag;, a1 =0,

ool =0 ] lhand TR

lat;,a”;] = lafy, a2, ], foro; =6y,

la¥;, a%,] = laZy, aZyl, for 6; = by,

el ] = ()P e g, s
+5€n5klaj}a

llag, apl, agl = —(~1)%8@&) e85, 5,0

— (1)l deslaa) e, 6,

Step 2. Delete node andj from the distinguished Dynkin diagram. We have
Go=H+sl(i) sl(j—i)Dslim+1—jn+1l)forl <i<j<m+1,
Go=H+sl(@)@slim+1—i|lj—m—1)®sl(m+n+2—j)forl <i <m+1,
m+2<j<m+4n+landGy = H+sl(m+1li—m—1)®sl(j—i)®sl(m+
n+2—j)form+2 <i<j<m+n+ 1. There are six simpl&/y-modules.
All the possible combinations of these modules give riser&alipgs of length 5.
There are three different ways in which th&ggmodules can be combined. To
characterize these three cases, it is sufficient to give Gnly.

G_1 = spafex,ep; k=1,....5,p=75+1,....m+n+2,
l=i+1,...,5}, withN=(—)(m+n+2—3j+1); (8)
G_1 = spadep,epp; k=1,...,4, p=j+1,....m+n+2}
l=i+1,...,5, with N =i(m+n+2—1); 9)
G_1 = spadep,ep; k=1,...,4,l=j+1,..., m+n+2}

p=i+1,....75, with N = j(m +n+2—j). (10)
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Forj — i = 1 one can label the CAOs as followsi, = e it1, a',: =

€i+1,k; ]C:L,Z, a;:61+17k+1, a$:ek+1,i+1, k‘:z+1,,m+
n + 1. Using
0 if k=1,....i,
<k>_{1 if k=i¢4+1,....m+n+1, (11)

the quadratic and triple relations now read:

laf,af] =[ay,a;]=0, k,l=1,...60rk,l=i+1,....m+n+1,
lay a1 =[a},a;]=0, k=1,...i, l=i+1,....om+n+1,
[[[[az,al ]]7(1; = (_1)<l>+< >+<k>9k+1,i+15kla;‘
+(_1)<l>+<p>+(17<l>)6['i+l(61k+9k'i+1)6lpa;l_,
kil=1,---,i,ork,l=i+1,.... m+n+1,

—(-1 ()+(p)+deg(a )[<k>ak+l’l+l+(1_<l))0l’i+1]6kpa;

—(-1

[lai a1 a1 =
E)Oki1,it1 5kla

yooe i, ork,l=1+1,. m+n—|—1,
10 i1 [(14+E)0i41,i41+(1— E)Gk l+1]6k a5

)
)
k,l=1,-
[laf a1 a, €] = —(~1)
+(— 1)5(1+€)9z+1 it+1(Ok,i+1+0k,041) Sipa
kzl,...,z,l71+1,...,m+n+1,
[laf,a;],a5] =0, €=+ klp=1,....,m+n+L (12)

Step 3.1f we delete three or more nodes from the distinguished Dydiagram,
the resultingZ-gradings ofA(m|n) are no longer of the required form.

Step 4. If we delete node from the extended distinguished Dynkin diagram,
the remaining diagram is again (a non-distinguished Dymkiigram) of type
A(mln), soGy = G, and there are no CAOs.

Step 5. Delete node andj (i < j) from the extended distinguished Dynkin
diagram. Themd(m|n) = G_1 © Go ® G4 With Gy = H + sl(m|n + 1) or

H + sl(m + 1|n) when the nodes are adjacent, aig= H + si(k|l) ® sl(p|q)
with k +p = m + 1 andl + ¢ = n + 1 when the nodes are nonadjacent.

G_y=spadey; k=i+1...,5, l#i+1,...,5}

andN =(j —i)(n+m+2—j+1).

Step 6.Delete nodes, j andk from the extended distinguished Dynkin diagram
(¢ < j < k). For three adjacent nodé& = H +sl(m —1|n+1), H + sl(m|n)

or H + sl(m + 1|n — 1). For two adjacent and one nonadjacent nodgs=

H +si(llp) @ sl(glr)ywithi+g=m,p+r=n+1lorl4+qg=m+1,
p+r = n. Ifall three nodes are nonadjacént = H+sl(l|p)®sl(q|r) @ sl(s|t)
withi+¢g+s=m+1,p+r+t=n+ 1. One or two of these three Lie
superalgebras isi(r|0) = sl(0]r) = sl(r). There are three different ways in
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which the corresponding,-modules can be combined. We give here daHly; :
G_1 = spadeps,esq; p=1,...,0,k+1,....n+m+2,
s=i+1,....,5,¢g=7+1,...,k},
WithN =G —d9)(n+m+2—j+1);
G_1 = spafdeps,eqp; p=1,...,05,k+1,...,n+m+2,
s=i+1,....5,q=73+1,...,k},
with N = (k—i)(n+m+2+i—k);
G_1 = spadepg,eqs; p=1,...,0,k+1,...,n+m+2,
s=i+1,....5,q=73+1,...,k},
With N = (k—j)(n+m+2+j — k).
Step 7.1f we delete four or more nodes from the extended distingeddbynkin
diagram theZ-grading of A(m/|n) satisfies no longer the required properties.

Step 8. Next, one should repeat the process for all nondistingdigbynkin
diagrams ofG and their extensions. The only new result corresponds o Gte
deleting three nonadjacent nodes from the extended Dyn&graim. We have
Go=H+sl(llp)@sl(glr) @ sl(s|t)withl+qg+s=m+1,p+r+t=n+1
and in some cases none of the three algebraigi$0) = sl(0|r) = si(r).

3.2 The Lie superalgebras B(m/|n)

We summarize the classification process for the Lie supebedgB(m|n) giv-
ing for all nonisomorphic GQS the subalgelirg (eachG, contains the com-
plete Cartan subalgeb¥fa, so we only list the remaining part 6fo = H+- - -);
the length? of the Z-grading and the numbéy of annihilation operators:

Go=H+ - (| N

sl(k|l) ® B(m — kln —1) 5 (k+0)(2m—2k+2n—-21+1)
(k=0,....m;1=0,...,n;
(k1) £{(0,0),(1,0)})

B(m —1|n) [(k,1)=(1,0)] | 3| 2m+2n—1

The most interesting case is with= m,l = n. ThenGy = sl(m|n), N =
n + m and the CAOs:

by = By = —V2(eamt12mt14n+j + €2mt14j,2ms1)s
= Bl = V2(comi12mi11j — €amiiintj2mil)s
b;Jrk =F = \/i(ek,2m+1 - 62m+1,m+k);

-t _
ik = F = V2(€2mi1,k — €mtk2mi1)s
ji=1....,n; k=1,...,m,
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with
i 1 if j=1,...,n
deg(bj)—<J>—{0 if j=n+1,....,n4+m

satisfy only triple relations:

[165, 71, 6] = —28;10c, ¢ (1) OB 4 26056, b5,
Ene=+or+1; g kil=1....,n+m.

Note thatBy,j = 1,...,n (resp.F; ,k = 1,...,m) are para-Bose (1)
(resp. para-Fermi (2)) CAOs. The fact thB{m|n) can be generated by
pairs of para-Bose anth pairs of para-Fermi operators has been discovered
by Palev [17].

In the next subsections we summarize the classificationegeofor the Lie
superalgebra®(0|n), D(m|n) andC(n).

3.3 The Lie superalgebras B(0|n)

Go=H+--- (N

sl(i)@BOn—14) | 5| i(2n—2i+1)
(i=1,...,n)

The most interesting case correspondston. ThenN = n; the CAOs
Bj_ = 7\/5(6171-‘1-77.-‘1-]' +61-"-_74,1)7 j = 15"'7"7
B} =V2(e1145 — €14nt51), j=1,...,n

are all odd generators @ (0|n) and the relation® consists of the triple para-
Bose relations (1).

3.4 The Lie superalgebras D(m|n)

Go=H+-- ¢ N

sl(k|l) ® D(m — kln —1) 5(2(k+)(m+n—Fk—-1)
(k=0,1,...,m;

1=0,1,...,n;

(kal) ¢ {(070)7 (170)a (m - 17”)» (m»n)})

D(m—1n)  [(k,1) = (1,0)] 3| 2(m+n—1)

slimln) — [(k,1) = [m,n)] 3| lmbnuintl) _
slim—1ln)  [(k,1) = (m —1,n)] 5 | (minllmintl) _ p,
sl(m —1|n) [(k,1) = (m —1,n)] 5| 2(m+n-1)
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3.5 The Lie superalgebras C(n)

Go=H+ - | N

sl(k[l) @ D(1 — kjn— 1 —1) 520+ Dmn—k—1)
(=0,11=1,....n—2)

Cn-1 [(k,1) = (1,0)] 3|2(n-1)

sl(1jn —1) [(k,)=(1,n—=1)] | 3| n(n+1)/2—-1
sl(n—1) [(k,1) = (0,n —1)] 5(nn+1)/2-1
sl(n —1) [(k,1) = (0,n —1)] 5|2(n-1)

4 Conclusions and possible applications

We have obtained a complete classification of all GQS assatigith the basic
classical Lie superalgebras. The familiar cases (par&Buara-Fermi and!-
(super)statistics) appear as simple examples in our titzggin. In order to talk
about a quantum statistics in the physical sense, one slakadinto account
additional requirements for the CAOs, related to certaiangization postulates.
These conditions are related to the existence of state spacghich the CAOs
act in such a way that the corresponding observables areitiroperators.
We hope that some cases of our classification will yield ggéng GQS also
from this point of view.

As a second application, we mension the problem of findingtewis of
the compatibility conditions (CCs) of a Wigner quantum Batir system [18].
These compatibility conditions take the form of certaipliirelations for op-
erators. So formally the CCs appear as special triple oglatamong operators
which resemble the creation and annihilation operatorgeieeralized quantum
statistics. One can thus investigate which formal GQSspisede solutions of
the CCs. It turns out that the classification presented kétie CAOs consisting
of odd generators only, yields new solutions of these coibifiat conditions
corresponding to each basic classical Lie superalgebia [19
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