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After a general introduction to Wigner Quantum Systems, we define the three-
dimensional n-particle Wigner Quantum Oscillator, and its relation to the Lie
superalgebra s[(1|3n). In this framework, coordinates, momentum and the angular
momentum of the particles are defined and investigated. This investigation is done
in state spaces, using representation theory of s[(1|3n). For the case n = 1, the
main properties are listed, with an emphasis on the non-commutative coordinates
of the particle and its unconventional consequences. For general n, we study energy
spectra, angular momentum, and in particular the particle configuration and its
interpretation. Throughout, a comparison with the canonical oscillator solution is
given.

1. Wigner Quantum Systems

In one of his famous papers entitled Do the equations of motion determine
the quantum mechanical commutation relations? Wigner [1] introduced in
1950 the concept now referred to as a Wigner Quantum System. Wigner
himself considered the example of a one-dimensional harmonic oscillator,
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with Hamiltonian H = 1(5* + ¢?) (using here m = w = i = 1). Working
in the Heisenberg picture, he abandoned the requirement [§,p] = i (the
canonical commutation relation - CCR), but instead searched for all opera-
tors ¢ and p such that Hamilton’s equations zj = pand ﬁ = —q are identical
with the Heisenberg equations ¢ = i[H,§] and p = i[H,p]. The conclusion
of Wigner was that this system now has infinitely many solutions for the
“unknown operators” § and p, only one of which satisties the CCR [, p] = i.

Nowadays, it is known [2] that this problem posed by Wigner also has
a group-theoretical meaning. In fact, what Wigner did is equivalent to the
classification of the unitary representations of the Lie superalgebra osp(1|2).

Observe that at the time of Wigner it was already known that Hamil-
ton’s equations together with the CCRs imply the Heisenberg equations,
and that the Heisenberg equations together with the CCRs imply Hamil-
ton’s equations (Ehrenfest theorem [3]). Wigner showed, on the example
of the one-dimensional harmonic oscillator, that the compatibility of the
Heisenberg equations and Hamilton’s equations do not imply the validity
of the CCRs.

The ideas of Wigner can be further generalized in those cases when the
equations of motion admit more than one Hamiltonian [4]. For a recent
development along this line we refer to [5] and the references therein. Here
we are not concerned with this aspect.

For us, a Wigner Quantum System (WQS) [2, 6] is defined as an n-
particle system in three dimensions with Hamiltonian

N P ~ o
H=) % +V(Ri,Rs,...,Ry), (1)

depending on 6n variables R, = (}?al, Raz, Rag) and P, = (Pal, Pa2, 15(13),
with @ = 1,2,...,n, to be interpreted as (Cartesian) coordinates and mo-
menta of the particles, respectively. All postulates of ordinary quantum
mechanics should hold, i.e.

P1 The state space W is a Hilbert space. To every physical observable
O there corresponds a Hermitian (self-adjoint) operator 0 acting
in W.

P2 The observable O can take on only those values which are eigen-
values of O. The expectation value of the observable O in a state

¢ is given by (O)y = (1, 00)/(¢,1)).

But the postulate on CCRs is replaced by:
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P3 Hamilton’s equations and the Heisenberg equations hold and are
identical (as operator equations) in W.

In the following sections, we shall consider such systems for a simple Hamil-
tonian, i.e. the harmonic oscillator Hamiltonian.

2. The three-dimensional n-particle Wigner Quantum
Oscillator (WQO)

As a special case of (1), we consider the harmonic oscillator Hamiltonian

B3 (e Re), ©)

in terms of the 6n variables (operators) Rai and P, i =123 a=
1,2...,n). By postulate P3: the 3D vector operators Ry,...,R,, and

Py, ..., P, must satisfy Hamilton’s equations
X ~ X 1 -~
P, = —-mw’R,, R, =—P,, (3)
m
where, as usual, the dot refers to time derivation, and the Heisenberg equa-
tions
X VRPN X T A
P, = E[H;Pa]a R, = ﬁ[HaRa]a (4)
for « = 1,2,...,n. Moreover (3) and (4) should be identical as operator
equations. This leads to the following compatibility conditions (CCs):
PN ~ PN b~
[H,Po] = iltmw’Ra, [H,Ra] = —%Pa. (5)

The task is now to find operator solutions of (5). This turns out to be a
difficult problem, for which not all solutions are known. On the other hand,
one particular solution is well known, namely the canonical bose solution
where [Raj,fjgk] = ih(SaB(Sjk and [Raj;RBk] = [Paj,pgk] =0.

More than 20 years ago, other classes of solutions for (5) were discovered.
One class of solutions can be formulated by means of the Lie superalgebra
osp(1|6n) [2], and is related to parabose operators [7]. In this paper we
shall consider a second class of solutions, first observed by Palev [2], and
related to the Lie superalgebra s[(1|3n).

For this purpose, consider new (unkown) operators as linear combina-
tion of the old ones,

(3n — 1)mw (3n—1) 4

A =\ T e 0 T e ©)
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In terms of these operators, (2) becomes:

7= H, with H, = A 7
2 Ha wi - Z{ oAz, (7)
and the compatibility conditions (5) read:
Z Z[{Aﬁy’ (::Ez] =F(3n - l)A(:xti' (8)
B=1j=1

All solutions of (8) are not known, but the following yields an important
family of solutions:

[{Aaz7AB]} A'yk] - Jkdﬁ’Y ai 511605Afyk7
[{Aal’AﬁJ} A'yk] zk‘sa'yA + ‘SzJ‘SaBA»yk: (9)
{A+ A+ } - {Aaz7 ﬂ]} -

i’

It is easy to verify that (9) implies indeed (8). The main observation
of [2] is that the operators Afz. (i =1,2,3 and @ = 1,2,...,n), subject
to the above relations (9), are odd elements generating the Lie superalge-
bra sl(1|3n). They are sometimes referred to as creation and annihilation
operators (CAOs) of s[(1|3n).

Observe that the operators Rak and Pak depend on time, and so do the
CAOs. By Hamilton’s equations

A () = FiwAZ, (1)

one has as solution A%, (t) = A% (0) eT®!. Therefore, it is sufficient that
the defining relations (9) hold at time ¢ = 0 and we write Az,‘fk = Aik(o).

Explicitly, one has:
\/ (3n — 1)mw l)mw (AZje™™" + A ™),
= iy Gy (e = A, (10)

For later comparison, we recall here also the canonical solution for (2):

iwt B~ —iwt
V (3n — 1)mw l)mw Bl + Boye ™),

3n —-1) "‘ke Boxe
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where Biﬁk are ordinary Bose creation and annihilation operators, satisfying
(B> B;k] = 0j10ap and [ij, Bgck] = 0. It is known that the elements B,
(as odd generators) and their anti-commutators {B;rj,ng} generate the

Lie superalgebra osp(1|6n) [8].

3. The angular momentum operators

The operators R, = (Ral, Rao, f%ag) and P, = (Isal, Py, ﬁag) of the
WQO are interpreted and referred to as the position and momentum oper-
ators of the particle . We introduce one more physical notion, namely the
angular momentum of this particle. Since the operator R, x P, no longer
satisfies the usual requirements, we follow an alternative definition for the
angular momentum. For the particle «, its angular momentum operator

M, = (Mal,Mag,Ma3) should be such that

e its components are in the enveloping algebra of R, =
(Ral, Rao, Rag) and P, = (Pal,lsaz, pag) (and linear in these com-
ponents);

o N al, J\Zfaz and Mag commute with the Hamiltonian;

e they span a basis of the Lie algebra s0(3).

This leads to a unique solution [6], given by:

3

3
~ 3n—1 . . . _
My = — T k;l €jri{Rak, Pu} = —i 12;1 em{At, ALY,  (12)

where €y is the familiar antisymmetric tensor. Using (12) and (9), one
can verify that the components of M, and Mg commute for a # §, and
that indeed the following relations hold:

[Maja My = iijzMal, [Maj,ﬁ] =0. (13)

Apart from the single particle angular momentum, we define as compo-
nents of the total angular momentum of the n-particle system:

n
M=) M, j=1,23. (14)
a=1

It is easy to verify that these operators generate an s0(3) subalgebra of
s[(1|3n).
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4. The state spaces (representations)

In order to investigate physical properties of the WQO, we need to consider
the state spaces in which the operators act. According to the postulates,
the state space W is a Hilbert space, and (Afj)f = AZ;. The last condition
implies that the operators A;tj act in “unitary” (or star) representations of
sI(1]3n).

All the unitary irreducible representations (irreps) of s{(M|N) have been
classified [9]: essentially they are the typical, the covariant and the con-
travariant representations. Here, we make one further choice: instead of
considering all unitary representations, we shall study only one class of
them, namely the so-called Fock type representations [10] of sI(1|3n). The
advantage of these representations is the fact that all operators have a
simple action in a particular basis.

The Fock representations are characterized by a positive integer p: W =
W (p) is a finite dimensional covariant irrep with highest weight (p,0, ..., 0).
It is determined by the relations:

A;j |0) =0, A;jAEk |0) = POapljk |0), (15)

a formulation reminiscent of the definition of “parastatistics of order p”.
Observe that W (p) is a typical irrep when p > 3n and atypical when p < 3n.

It is easy to construct a basis for W(p). Let © be a string of 0’s and
1’s:

0= (011,012,613,...0n1,0n2,0n3), 0. € {0,1} (16)
Then, an orthonormal basis of W (p) is given by the vectors

|p; ©) = |p; 611,612,013, .- - ,0n1,0n2,0n3)

— (p_q)!(Aii-l)en (AT2)912(A1F3)913

p!
- (A:1)0"1(A:2)6"2(A:3)0"3 |0), (17)
where
n 3
q= Z Z oai (18)
a=1i=1

must satisfy:

0 < g < min(p, 3n). (19)
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The action of the CAOs reads:

AL |p;©) = bai(—1)%=\/p— g+ 1|p; ©),;, (20)
At [p0) =(1 —Gm-)(— )i v/p—q|p; O)az (21)
where
Yai= D O,
(B3)<(ai)
with lexicographical ordering on the pairs (ai). In (20)-(21), |p;©)4;
stands for the state obtained from |p;©) after the replacement of 6,; by
acz'i = (1 - oai)'
The explicit Fock space representation of the WQO defined by (16)-(21)

is reminiscent of the familiar Fock space representation of the canonical
quantum oscillator which has as basis vectors

|®) = |¢117¢12;¢13; -y Pn1s Pn2, Pn3)
_ ¢11 B+ d12 B+ d13 ...
- 11T = (B (BL)(BE)

a=11i=1

- (Bh)?" (B,) 72 (Bif5)?"* | 0) (22)

with ¢o; € {0,1,2,...}. Clearly, it is infinite-dimensional, and the action
of the Bose creation and annihilation operators is as usual:

(}) =V ¢ai | q’)*ai: B(-)tz' | (}) =V ¢ai + 1 | ¢>+ai; (23)
where | ®)1,; is obtained from | ®) through replacing ¢o; by ¢o; £1. It is

known that this Fock space is a particular (infinite-dimensional) irreducible
representation of the Lie superalgebra osp(1|6n) [8]

5. Properties of the single particle 3D WQO [11]

Let us first consider the case n = 1; since the subscript « is now superfluous,
it will be dropped from the notation in this section.
The Hamiltonian H is diagonal in the basis |p; ©), and one finds:

. . hw
H|p;©) = E;|p;©) with Eq:7(3p—2q), (24)

so the energy levels are equidistant in steps of hw/2. Also the operator M2
is diagonal, with

M2|p ) {0 if01:02:€3;

2
2|p; ©) otherwise. (25)
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So the angular momentum of the single particle is 0 or 1. This also follows
from a decomposition of W (p) with respect to the subalgebra so(3).

The most striking properties of the single particle WQO are related to
the fact that its position or momentum operators are non-commutative:

[Ri,Rj]#0 and [P, P]#0for i#j=1,23. (26)

On the other hand, the square operators R? and P? are integrals of motion;
in fact,

3
2 . 2 .
e= —H=""R>=—"P?= A A7) 2
‘ il = AT A7) (27)

This implies that in “stationary states” (a superposition of states with the
same g) the particle is at a fixed distance g, = 4/ 52— (3p — 2g) from the
origin.

However, one can even be more specific about possible outcomes of a
position measurement. Indeed, it is not difficult to verify that the set of

operators
A, R2,P, B2, B2, R2, P2, B2, P2
mutually commute, and are all diagonal in the |p; ©)-basis. Before de-

ducing physical consequences from this, let us for convenience introduce
dimensionless notation for energy, position and momentum:

. 2 - Lo [2mw NP 2 5
€= EH’ 7i(t) = TRz(t)a pi(t) = mthz(t)- (28)
From (20)-(21) it now follows that (k =1,2,3):

2|p; ©) = Pilp; ©) = (p — q + 61)|p; ©), (29)
Pp;©) = 3p—29)|p;0),  (g=061 + 02 +63). (30)

Furthermore, since 7%, 75 and 73 mutually commute, their eigenvalues can
be measured simultaneously. So, if the system is in a fixed state |p; ©),
measurements of position imply that the particle will be detected in one of
the eight “nests” with coordinates

ri=xvp—q+6b, ro=%p—q+6, r3=%\p—q+63;, (31)

on a sphere with radius p, = v/3p — 2¢.

Consider, as an example, the state |p;0,0,1) (with p > 2). The pos-
sible outcomes of measurements of the position operators imply that the
particle is in one of eight nests indicated in Figure 1(a), even though its



December 15, 2003 9:40 WSPC/Trim Size: 9in x 6in for Proceedings VarnaProceedings

precise position cannot be determined due to the non-commutativity of the
operators 7, (k = 1,2,3). For each of the eight basis states |p;6), such a
configuration holds, except when p < 2. For p < 2, the representation is
atypical and of smaller dimension; then also the coordinate configurations
collapse.

Figure 1. (a) Possible outcomes of the measurements of the coordinates 74 of the parti-
cle in the stationary state |p;0,0,1) are illustrated by means of eight nests. (b) Possible
outcomes of the measurements of rotated coordinates §; of the particle in this eigenstate.

By examining the eigenvectors of 7, one can draw conclusions about
the occupation probabilities of the 8 nests, even though the 8 probabilities
themselves cannot be determined.

Note that similar conclusions can be drawn with respect to the momen-
tum of the particle.

It should be emphasized that due to the non-commutativity, the posi-
tion of the particle is not absolute but relative to which coordinates are
being measured. For example, one can consider measurements of the coor-
dinates sg(t) with respect to an alternative frame of reference. In case of
an orientation obtained by rotating the frame of reference through an angle
¢ about the third axis, one has

§1(t) = cos @1 (t) + sin @72 (t);
2(t) = —sin @71 (t) + cos ¢ra(t); (32)
83(t) = 73(t)-

Once again, the squares of these operators 87 mutually commute (but not
with f,%), and their eigenvalues are of the same type p — ¢ + 6. The eigen-

>



December 15, 2003 9:40 WSPC/Trim Size: 9in x 6in for Proceedings VarnaProceedings

10

vectors of 37 are in general linear combination of the states |p; 8), although
our example state |p;0,0,1) happens to be directly an eigenvector of the
42. The actions indicate that the sites corresponding to possible values of
measurements of the coordinates §; are again nests on a sphere of radius
Pq, but the nests define a rectangular parallelepiped obtain by rotating the
original one about the third axis through an angle ¢, see Figure 1(b).

The explanation for these different outcomes lies in the fact that the
particle itself cannot be localised, since measurements of its coordinates do
not mutually commute. It is the choice of coordinate to be measured that
leads to the observed value corresponding to the associated eigenvalue.

6. The n-particle WQO [12]

We now return to the n-particle WQO, with Hamiltonian given by (7). Its
energy spectrum can be computed using the basis (17), with actions (20)-
(21):

R A e .

for ¢ =0,1,2,...,min(3n,p) and determined by (18).
This is to be compared with the spectrum of the canonical solution in
the Fock space with basis vectors (22):

H|®) = E,|®) where E, = hw (gn + q) (34)

with ¢ =30, 7| bai.

These energy spectra, together with their multiplicities, can also be
found from branching rules with respect to a gl(1) subalgebra of the Lie
superalgebra under consideration. For the WQO, this branching rule is
described by (see e.g. [13])

s((1)3n) — gl(1) @ s((3n)

min(p,3n)
3n(p—
WE) — Y Vet @ VitGamy
q=0

where the superscripts refer to the highest weights of the representation
in partition notation. The gl(1) generator is (3n — 1)/(fw) times the
Hamiltonian. The branching rule also implies that the multiplicity of E; is
equal to the dimension of the s[(3n) irrep with partition labels (17), thus

mult(E,) = (3:)
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For the canonical solution, the Fock space described by the basis vec-
tors (22) is the infinite-dimensional irrep of osp(1|6n) which decomposes
into the sum of the two infinite-dimensional irreducible metaplectic or os-
cillator representations of sp(6n) [14, 15], and then into finite-dimensional
irreducible representations of gl(1) @ s((3n), according to the following
branching rules:

osp(1|6n) — sp(6n) — gl(1 )695[(3n)

n+q
Fock — Vo ten) © Vepton) — Z Vaiy @ Vaigan)-

So now the energy multiplicity is equal to the dimension of the s[(3n) irrep
_ ~1
with partition labels (g), i.e. mult(E,) = (3n . + q>‘

Next, we turn our attention to the angular momentum of the n-particle
WQO. Similarly to the one particle case, one obtains

M2 |p; ©) = 84 2|p; ©), (35)
where

5. = 0 if Hal = 0(12 = 0(13;
& 1 otherwise.

In other words, the WQO behaves like a collection of spin zero and spin
one particles.

Although the stationary states |p; ©) are eigenvectors of 1\7[%[, they are
not eigenstates of either M; or M2. This makes it more difficult to compute
the possible values of the total angular momentum of the system. One
classical way to determine these values, is to compute the decomposition of
the representation space according to a branching rule with respect to the
50(3) subalgebra generated by the total angular momentum components.
For the WQQO, this branching rule is described by

sl(1|3n) — gl(1) @ sl(3n) — gl(1) ® sl(3) @ sl(n)
— gl(1) ® s0(3) ® sl(n) — gl(1) ® s0(3)
and the decomposition of the irrep W (p) can be computed for each n (al-

though no closed formula can be given for all n). The total angular mo-
mentum ranges from 0 to n (with multiplicities).
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Observe that for the canonical case, one should examine the branching
rule

osp(1|6n) — sp(6n) — gl(1) @ sl(3n) — gl(1) @ sl(3) @ sl(n)
— gl(1) ® s0(3) ®sl(n) — gl(1) ® s0(3)

for the Fock space spanned by (22). In this case, the total angular momen-
tum can take infinitely many values.

Finally, we shall make some observations on the possible oscillator con-
figurations for the n-particle WQO. As before, it is convenient to use di-
mensionless operators:

3n—1 N ) )
fak (t) — %Rak(t) — A;_k efzwt =+ A;k ezwt_ (36)

Then
fik = {AJark ) A;k} (37)

and the basis vectors |p; ©) are directly eigenvectors of these coordinate
operators:

72, | p; ©) =12, | p; ©), with r2, = p— g+ Oak- (38)

Since the squares of the coordinate operators all commute, [fii,f%j] =0
for all a, B,1,7, the conclusions about particle coordinates are similar as
in the n = 1 case: as far as coordinates is concerned, one simply gets a
superposition of n single particle systems. In other words, if the system is
in the state |p; ©), measurements of the coordinates r,j of the ath particle
can yield only

ok = £/P—q+ 0y, for k=1,2,3.

This corresponds to measuring the particle « in one of 8 nests on a sphere
with radius po, = v/3p — 3¢ + ga, Where o = 041 + 02 + bas.

As in the single particle case, however, one has to be careful about
conclusions related to the position of particles, since the actual position op-
erators do not commute (only their squares commute), and so the particles
cannot be absolutely localised. The non-commutativity of the underlying
geometry is also reflected by the action of the following commutator upon
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a basis state (for (ai) < (87)):
[Fai(t), 73; ()] ;- -+, 0ir---,085,- )
= (—1)¥ei v <2€i2‘”t9ai96j Vi—a+1)p—q+2)
+(0ai — 055)*(2p — 20 + 1)

_'_26712“@“@%\/@ —qg—1(p- q)) |p; ... Oy .. ,gﬁj, sy

where 8., = 1 — 0.. The right hand side of this expression is nonzero for
allp>q+2.

In these circumstances, we must expect some difficulties over the inter-
pretation of the measurement of the distance between two particles a and
B. Let us, in line with classical notions of distance, define dAiﬁ (t) as the
square distance operator for particles a and 3, where

Z Failt) — P5i (1)) . (39)

In particular, consider the case n = 2, with « = 1 and 8 = 2. A com-
putation of the eigenvalues of d2,(t) in a typical irrep W (p) leads to the
following list:

(6p)1 (6p —12)4 (6p — 22)3

(6p — 4)3 (6p — 14)9 (6p — 24)3

(6p — 6)3 (6p —16)o (6p — 26)3 (40)
(6p — 8)3 (6p — 18)4 (6p — 30)1

(6p — 10)9 (6p — 20)9

The multiplicity of each eigenvalue is given here as a subscript.

Suppose that the system is in the state |p; 0) = [p;0,0,0,0,0,0). The
nest coordinates for the two particles are r1; = +,/p and ry; = +,/p for
i = 1,2,3. Thus, the square distances between these nests are determined
by

3
Z (7‘1,’ — 7'2i)2 S {0, 4p, 8p, 12p}. (41)
i=1
So the spectrum of eigenvalues of d2,(t) given in (40) does not contain for
general p the values of the squares of the distances between nests as given
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in (41). This is only an apparent contradiction. After all, the states |p; ©)
are not eigenstates of d2,(t), and d2,(t) does not commute with #2,(t) and
75 (t)-

There is, however, a way in which even these considerations about
square distances between particles are consistent with the nest interpre-
tation. For this purpose, let us return to the general case (arbitrary n > 2)
with particles a and 8. As usual in quantum mechanics, the expectation
value of the square distance operator is given by:

Pap(t) = (0] dzs(t) p; ©), (42)

and it yields the average value of the square distance of the two particles.
A careful computation, expressing d2 5(t) in terms of the operators Ajfk and
using their action, leads to the following result:

@,5(t) = 6p— 6q + qo + g5 = p2 + p, (43)

where ¢o = a1 + 0a2 + 043 and p, = /3p — 3¢ + ¢, (similarly for gg and
pg). Note that p, and pg are the radii of the spheres on which particles o
resp. B are located.

As a consistency check, we will compare this to the classical average, i.e.
the value diﬁ being the average of the square of the distance between the
nests available to particles o and . In this case, another careful computa-
tion (including relations satisfied by occupancy probabilities) leads indeed
to the same value:

d%p = 6p—6q+ qa + a5 = P2 + P3. (44)

Quite generally, the expectation values of all operators related to localisa-
tion of particles are in agreement with the computation of a classical average
using the notion of nests as being the actual positions of the particles.

7. Conclusions

We have considered a major class of non-canonical solutions for the oscilla-
tor Hamiltonian of n particles in three-dimensional space, i.e. the n-particle
WQO in 3D. Our class of solutions is formulated in the framework of the
Lie superalgebra sl(1|3n).

We have constructed Fock type representations W (p) as state spaces for
the WQO. These representations are finite-dimensional. The energy of the
system is quantized, with equally spaced finite spectrum. The angular mo-
mentum is also quantized, with single particle angular momenta 0 or 1. But
also the coordinates and momenta are quantized, having a finite spectrum
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and leading to a finite number of “nests”. The coordinate operators do not
commute. There is a sense in which WQSs provide a natural framework
for considering non-commutative coordinates, since the non-commutativity
comes automatically (and does not need to be introduced ad hoc as in many
other approaches).
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