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Abstract

It is known that there is a close connection between the Fock space ofn
pairs of boson operatorsB±

i
(i = 1, 2, . . . , n) and the so-calledmeta-

plecticrepresentationV (1) of the Lie superalgebraosp(1|2n) with lowest
weight (1/2, 1/2, . . . , 1/2). On the other hand, the defining relations of
osp(1|2n) are equivalent to the defining relations ofn pairs of paraboson
operatorsb±

i
. In particular, with the usual star conditions, this implies that

the “parabosons of orderp” correspond to a unitary irreducible (infinite-
dimensional) lowest weight representationV (p) of osp(1|2n) with lowest
weight(p/2, p/2, . . . , p/2). Apart from the simple casesp = 1 or n = 1,
these representations had never been constructed due to computationaldif-
ficulties, despite their importance.

We have now managed to give an explicit and elegant construction of these
representationsV (p), and can present explicit actions or matrix elements
of theosp(1|2n) generators. Essentially,V (p) is constructed as a quotient
module of an induced module. In all steps of the construction and for the
chosen basis vectors, the subalgebrau(n) of osp(1|2n) plays a crucial role.

1 Introduction

Green [1] generalized the classical notion of Bose operators or bosons to para-
bose operators or parabosons. The first applications were inquantum field the-
ory [2–4] and quantum statistics (para-statistics) [1,5].The generalization of the
usual boson Fock space is characterized by a parameterp, referred to as the order
of the paraboson. For a single paraboson,n = 1, the structure of the paraboson
Fock space is well known [6]. Surprisingly, for a system ofn parabosons with
n > 1, the structure of the paraboson Fock space is not known, eventhough it
can in principle be constructed by means of the so-called Green ansatz [1,5].
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2 Paraboson representations

In this paper, we analyse the structure of the paraboson Fockspace, for
arbitrary p and n. An important step in the solution was made many years
ago by Ganchev and Palev [7], who discovered the relation betweenn pairs
of parabosons and the defining relations for the orthosymplectic Lie superalge-
braosp(1|2n) [8]. From their result it follows that the paraboson Fock space of
orderp is a certain infinite-dimensional unitary irreducible representation (unir-
rep) V (p) of osp(1|2n). Here, we construct this representationV (p) explic-
itly. Our solution uses group theoretical techniques, in particular the branching
osp(1|2n) ⊃ sp(2n) ⊃ u(n). This allows us to construct a proper Gelfand-
Zetlin (GZ) basis for some induced representation [9], fromwhich the basis for
the irreducible representationV (p) follows. For the representationV (p) we give
an orthogonal GZ-basis, the action (matrix elements) of theparaboson operators
in this basis, and also the character. More details of the analysis presented here
can be found in the extended paper [10].

2 The paraboson Fock space V (p)

For a single pair (n = 1) of paraboson operatorsb+, b− [1], the defining relation
is a triple relation (with anticommutator{., .} and commutator[., .]) given by

[{b−, b+}, b±] = ±2b±. (1)

The paraboson Fock space [6] is a Hilbert space with vacuum vector |0〉, char-
acterized by the following conditions:

〈0|0〉 = 1, b−|0〉 = 0, (b±)† = b∓,

{b−, b+}|0〉 = p |0〉, (2)

and by irreducibility under the action ofb+, b−. Herein,p is a parameter, known
as the order of the paraboson. In order to have a genuine innerproduct for the
Hilbert space,p should be positive and real:p > 0. A set of basis vectors for
this space, which will be denoted byV (p), is given by

|2k〉 =
(b+)2k

2k
√

k!(p/2)k

|0〉, |2k + 1〉 =
(b+)2k+1

2k
√

k!2(p/2)k+1

|0〉. (3)

This basis is orthogonal and normalized; the symbol(a)k = a(a + 1) · · · (a +
k − 1) is the common Pochhammer symbol.

If one considersb+ andb− as odd generators of a Lie superalgebra, then the
elements{b+, b+}, {b+, b−} and{b−, b−} form a basis for the even part of this
superalgebra. Using the relations (1) it is easy to see that this superalgebra is the
orthosymplectic Lie superalgebraosp(1|2), with even partsp(2) = sp(2, R).
The paraboson Fock spaceV (p) is then a unirrep ofosp(1|2). It splits as the
direct sum of two positive discrete series representationsof sp(2): one with
lowest weight vector|0〉 (lowest weightp/2) and basis vectors|2k〉, and one
with lowest weight vector|1〉 (lowest weight1+p/2) and basis vectors|2k+1〉.
For p = 1 the paraboson Fock space coincides with the ordinary boson Fock
space.
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Let us now consider the case ofn pairs of paraboson operatorsb±j (j =
1, . . . , n). The defining triple relations for such a system are given by [1]

[{bξ
j , b

η
k}, bǫ

l ] = (ǫ − ξ)δjlb
η
k + (ǫ − η)δklb

ξ
j , (4)

wherej, k, l ∈ {1, 2, . . . , n} and η, ǫ, ξ ∈ {+,−} (to be interpreted as+1
and−1 in the algebraic expressionsǫ − ξ and ǫ − η). The paraboson Fock
spaceV (p) is the Hilbert space with vacuum vector|0〉, defined by means of
(j, k = 1, 2, . . . , n)

〈0|0〉 = 1, b−j |0〉 = 0, (b±j )† = b∓j ,

{b−j , b+
k }|0〉 = p δjk |0〉, (5)

and by irreducibility under the action of the algebra spanned by the elementsb+
j ,

b−j (j = 1, . . . , n), subject to (4). The parameterp is referred to as the order of
the paraboson system. In generalp is thought of as a positive integer, and for
p = 1 the paraboson Fock spaceV (p) coincides with the ordinaryn-boson Fock
space. We shall see that also certain non-integerp-values are allowed.

Constructing a basis for the Fock spaceV (p) turns out to be a difficult prob-
lem. Even the simpler question of finding the structure ofV (p) (weight struc-
ture) was not solved until now. In [10] we unravel the structure of V (p), deter-
mine for whichp-valuesV (p) is actually a Hilbert space, construct an orthogo-
nal (normalized) basis forV (p), and give the actions of the generatorsb±j on the
basis vectors. A summary will be presented here.

3 Relation with the Lie superalgebra osp(1|2n)

The orthosymplectic superalgebraosp(1|2n) is one of the basic classical Lie
superalgebras [8]. It consists of matrices of the form





0 a a1

at
1 b c

−at d −bt



 , (6)

wherea anda1 are(1 × n)-matrices,b is any(n × n)-matrix, andc andd are
symmetric(n × n)-matrices. The even elements havea = a1 = 0 and the odd
elements are those withb = c = d = 0. It will be convenient to have the row
and column indices running from0 to 2n (instead of1 to 2n + 1), and to denote
by eij the matrix with zeros everywhere except a1 on position(i, j). Then the
Cartan subalgebrah of osp(1|2n) is spanned by the diagonal elements

hj = ejj − en+j,n+j (j = 1, . . . , n). (7)

In terms of the dual basisδj of h∗, the odd root vectors and corresponding roots
of osp(1|2n) are given by:

e0,k − en+k,0 ↔ −δk, k = 1, . . . , n,

e0,n+k + ek,0 ↔ δk, k = 1, . . . , n.
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The even roots and root vectors are

ej,k − en+k,n+j ↔ δj − δk, j 6= k = 1, . . . , n,

ej,n+k + ek,n+j ↔ δj + δk, j ≤ k = 1, . . . , n,

en+j,k + en+k,j ↔ −δj − δk, j ≤ k = 1, . . . , n.

If we introduce the following multiples of the odd root vectors

b+
k =

√
2(e0,n+k+ek,0), b−k =

√
2(e0,k−en+k,0) (k = 1, . . . , n) (8)

then it is easy to verify that these operators satisfy the triple relations (4). Since
all even root vectors can be obtained by anticommutators{bξ

j , b
η
k}, the following

holds [7]

Theorem 1 (Ganchev and Palev) As a Lie superalgebra defined by generators
and relations,osp(1|2n) is generated by2n odd elementsb±k subject to the fol-
lowing (paraboson) relations:

[{bξ
j , b

η
k}, bǫ

l ] = (ǫ − ξ)δjlb
η
k + (ǫ − η)δklb

ξ
j . (9)

The paraboson operatorsb+
j are the positive odd root vectors, and theb−j are the

negative odd root vectors.
Recall that the paraboson Fock spaceV (p) is characterized by (5). Further-

more, it is easy to verify that

{b−j , b+
j } = 2hj (j = 1, . . . , n). (10)

Hence we have the following:

Corollary 2 The paraboson Fock spaceV (p) is the unitary irreducible repre-
sentation ofosp(1|2n) with lowest weight(p

2 , p
2 , . . . , p

2 ).

In order to construct the representationV (p) [11] one can use an induced
module construction. The relevant subalgebras ofosp(1|2n) are easy to describe
by means of the odd generatorsb±j .

Proposition 3 A basis for the even subalgebrasp(2n) of osp(1|2n) is given by
the2n2 + n elements

{b±j , b±k } (1 ≤ j ≤ k ≤ n), {b+
j , b−k } (1 ≤ j, k ≤ n). (11)

Then2 elements
{b+

j , b−k } (j, k = 1, . . . , n) (12)

are a basis for thesp(2n) subalgebrau(n).

Note that with{b+
j , b−k } = 2Ejk, the triple relations (9) imply the relations

[Eij , Ekl] = δjkEil − δliEkj . In other words, the elements{b+
j , b−k } form, up

to a factor 2, the standardu(n) or gl(n) basis elements.
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So the odd generatorsb±j clearly reveal the subalgebra chainosp(1|2n) ⊃
sp(2n) ⊃ u(n). Note thatu(n) is, algebraically, the same as the general linear
Lie algebragl(n). But the conditions(b±j )† = b∓j imply that we are dealing here
with the “compact form”u(n).

The subalgebrau(n) can be extended to a parabolic subalgebraP of
osp(1|2n) [11]:

P = span{{b+
j , b−k }, b−j , {b−j , b−k } | j, k = 1, . . . , n}. (13)

Recall that{b−j , b+
k }|0〉 = p δjk |0〉, with {b−j , b+

j } = 2hj . This means
that the space spanned by|0〉 is a trivial one-dimensionalu(n) moduleC|0〉
of weight (p

2 , . . . , p
2 ). Sinceb−j |0〉 = 0, the moduleC|0〉 can be extended to

a one-dimensionalP module. Now we are in a position to define the induced
osp(1|2n) moduleV (p):

V (p) = Indosp(1|2n)
P C|0〉. (14)

This is anosp(1|2n) representation with lowest weight(p
2 , . . . , p

2 ). By the
Poincaŕe-Birkhoff-Witt theorem [9,11], it is easy to give a basis for V (p):

(b+
1 )k1 · · · (b+

n )kn({b+
1 , b+

2 })k12({b+
1 , b+

3 })k13 · · · ({b+
n−1, b

+
n })kn−1,n |0〉, (15)

k1, . . . , kn, k12, k13 . . . , kn−1,n ∈ Z+.

The difficulty comes from the fact that in generalV (p) is not a simple module
(i.e. not an irreducible representation) ofosp(1|2n). Let M(p) be the maximal
nontrivial submodule ofV (p). Then the simple module (irreducible module),
corresponding to the paraboson Fock space, is

V (p) = V (p)/M(p). (16)

The purpose is now to determine the vectors belonging toM(p), and hence to
find the structure ofV (p). This is not our only goal: we also want to find explicit
matrix elements of theosp(1|2n) generatorsb±j in an appropriate basis ofV (p).

4 Paraboson Fock representations of osp(1|2n)

We shall start our analysis by considering the induced moduleV (p). Computing
the action of the generatorsb±j in the basis (15) turns out to be very difficult:
we managed to do this forosp(1|4) (i.e. n = 2) but not for larger values ofn.
Furthermore, from this action itself it was still very hard to determine the vectors
belonging toM(p). For this reason, we have introduced a new basis forV (p).
In this new basis, matrix elements can be computed, and from these expressions
it will be clear which vectors belong toM(p).

The “old” basis forV (p) has been given in (15). From this basis, it is easy
to write down the character ofV (p): this is a formal infinite series of terms
µxj1

1 · · ·xjn
n , with (j1, . . . , jn) a weight ofV (p) andµ the dimension of this

weight space. So the vacuum vector|0〉 of V (p), of weight(p
2 , . . . , p

2 ), yields
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a termx
p
2

1 · · ·x
p
2
n = (x1 · · ·xn)p/2 in the characterchar V (p). The weight of a

general vector follows from (15), and contributes a term

xk1

1 · · ·xkn
n (x1x2)

k12(x1x3)
k13 · · · (xn−1xn)kn−1,n(x1 · · ·xn)p/2

in the character ofV (p). Summing over all basis vectors (i.e. over all
k1, . . . , kn, k12, k13 . . . , kn−1,n) yields

char V (p) =
(x1 · · ·xn)p/2

∏n
i=1(1 − xi)

∏

1≤j<k≤n(1 − xjxk)
. (17)

Such expressions have an interesting expansion in terms of Schur functions.

Proposition 4 (Cauchy, Littlewood) Let x1, . . . , xn be a set ofn variables.
Then [12]

1
∏n

i=1(1 − xi)
∏

1≤j<k≤n(1 − xjxk)
=
∑

λ

sλ(x1, . . . , xn) =
∑

λ

sλ(x)

(18)
In the right hand side, the sum is over all partitionsλ and sλ(x) is the Schur
symmetric function [13].

Forn variables,sλ(x) = 0 if the lengthℓ(λ) is greater thann, so in practice the
sum is over all partitions of length less than or equal ton.

The characters of finite dimensionalu(n) representations are given by such
Schur functionssλ(x). Hence such expansions are useful since they yield the
branching tou(n) of the osp(1|2n) representationV (p). But for such finite
dimensionalu(n) representations labelled by a partitionλ, there is a known
basis: the Gelfand-Zetlin basis (GZ) [14, 15]. We shall use theu(n) GZ basis
vectors as our new basis forV (p). Thus the new basis ofV (p) consists of vectors
of the form

|m) ≡ |m)n ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1

... . .
.

m11











=

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

(19)
where the top line of the pattern, also denoted by then-tuple [m]n, is any parti-
tion λ (consisting of non increasing nonnegative numbers) withℓ(λ) ≤ n. The
labelp itself is dropped in the notation of the vectors|m); strictly speaking we
should denote our vectors by|p;m). The remainingn − 1 lines of the pattern
will sometimes be denoted by|m)n−1. So allmij in the above GZ-pattern are
nonnegative integers, satisfying thebetweenness conditions

mi,j+1 ≥ mij ≥ mi+1,j+1 (1 ≤ i ≤ j ≤ n − 1). (20)

Note that, since the weight of|0〉 is (p
2 , . . . , p

2 ), the weight of the above vector
is determined by

hk|m) =





p

2
+

k
∑

j=1

mjk −
k−1
∑

j=1

mj,k−1



 |m). (21)
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Now we develop a technique to compute the matrix elements ofb±i in this
basis. By the triple relations, one obtains

[{b+
i , b−j }, b+

k ] = 2δjkb+
i .

With the identification{b+
i , b−j } = 2Eij in the standardu(n) basis, this is equiv-

alent to the adjoint actionEij · ek = δjkei. In other words, the triple relations
imply that(b+

1 , b+
2 , . . . , b+

n ) is a standardu(n) tensor of rank(1, 0, . . . , 0). This
means that one can attach a unique GZ-pattern with top line10 · · · 0 to everyb+

j ,
corresponding to the weight+δj . Explicitly:

b+
j ∼

10 · · · 000
10 · · · 00
· · ·
0 · · · 0
· · ·
0

, (22)

where the pattern consists ofj−1 zero rows at the bottom, and the firstn−j+1
rows are of the form10 · · · 0. The tensor product rule inu(n) reads

([m]n) ⊗ (10 · · · 0) = ([m]n+1) ⊕ ([m]n+2) ⊕ · · · ⊕ ([m]n+n) (23)

where([m]n) = (m1n,m2n, . . . ,mnn) and a subscript±k indicates an incre-
ment of thekth label by±1:

([m]n±k) = (m1n, . . . ,mkn ± 1, . . . ,mnn). (24)

In the right hand side of (23), only those components which are still partitions
(i.e. consisting of nondecreasing integers) survive.

A general matrix element ofb+
j can now be written as follows:

(m′|b+
j |m) =

(

[m]n+k

|m′)n−1

∣

∣

∣

∣

∣

b+
j

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

=

(

[m]n

|m)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

× ([m]n+k||b+||[m]n).

(25)

The first factor in the right hand side is au(n) Clebsch-Gordan coefficient [16],
the second factor is a reduced matrix element. By the tensor product rule, the
first line of |m′) has to be of the form (24), i.e.[m′]n = [m]n+k for somek-value.

The specialu(n) CGCs appearing here are well known, and have fairly sim-
ple expressions. They can be found, e.g. in [16]. They can be expressed by
means ofu(n)-u(n−1) isoscalar factorsandu(n−1) CGC’s, which on their turn
are written by means ofu(n−1)-u(n−2) isoscalar factors andu(n−2) CGC’s,
etc. The explicit form of the specialu(n) CGCs appearing here is given in Ap-
pendix A of [10]. The actual problem is now converted into finding expressions
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for the reduced matrix elements, i.e. for the functionsFk([m]n), for arbitrary
n-tuples of non increasing nonnegative integers[m]n = (m1n,m2n, . . . ,mnn):

Fk([m]n) = Fk(m1n,m2n, . . . ,mnn) = ([m]n+k||b+||[m]n). (26)

So one can write:

b+
j |m) =

∑

k,m′

(

[m]n

|m)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

Fk([m]n)

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

,

(27)

b−j |m) =
∑

k,m′

(

[m]n−k

|m′)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

Fk([m]n−k)

∣

∣

∣

∣

∣

[m]n−k

|m′)n−1

)

.

(28)

For j = n, the CGCs in (27)-(28) take a simple form [16], and we have

b+
n |m) =

n
∑

i=1

(

∏n−1
k=1(mk,n−1 − min − k + i − 1)
∏n

k 6=i=1(mkn − min − k + i)

)1/2

× Fi(m1n,m2n, . . . ,mnn) |m)+in; (29)

b−n |m) =

n
∑

i=1

(

∏n−1
k=1(mk,n−1 − min − k + i)

∏n
k 6=i=1(mkn − min − k + i + 1)

)1/2

× Fi(m1n, . . . ,min − 1, . . . ,mnn) |m)−in. (30)

In order to determine then unknown functionsFk, one can start from the fol-
lowing action:

{b−n , b+
n }|m) = 2hn|m) = (p + 2(

n
∑

j=1

mjn −
n−1
∑

j=1

mj,n−1))|m). (31)

Expressing the left hand side by means of (29)-(30), one findsa system of cou-
pled recurrence relations for the functionsFk. Taking the appropriate boundary
conditions into account, we have been able to solve this system of relations. The
calculations were still very hard, and without the use of Maple we would not
have found the solution. We only present the final result here:

Proposition 5 The reduced matrix elementsFk appearing in the actions ofb±j
on vectors|m) of V (p) are given by:

Fk(m1n,m2n, . . . ,mnn) = (−1)mk+1,n+···+mnn

× (mkn + n + 1 − k + Emkn
(p − n))1/2

×
n
∏

j 6=k=1

(

mjn − mkn − j + k

mjn − mkn − j + k −Omjn−mkn

)1/2

,

(32)
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whereE andO are theevenandoddfunctions defined by

Ej = 1 if j is even and 0 otherwise,

Oj = 1 if j is odd and 0 otherwise. (33)

The proof consists of verifying that all triple relations (9) hold when acting on
any vector|m). Each such verification leads to an algebraic identity inn vari-
ablesm1n, . . . ,mnn. In these computations, there are some intermediate verifi-
cations: e.g. the action{b+

j , b−k }|m) should leave the top row of the GZ-pattern
|m) invariant (since{b+

j , b−k } belongs tou(n)). Furthermore, it must yield (up
to a factor 2) the known action of the standardu(n) matrix elementsEjk in the
classical GZ-basis.

The next task is to deduce the structure ofV (p) from the general expression
of the matrix elements inV (p). For this purpose, it is essential to investigate
for which basis elements|m′) the reduced matrix element([m′]n||b+||[m]n)
becomes zero. This will be governed by the factor

(mkn + n + 1 − k + Emkn
(p − n))

in the expression ofFk([m]n), since this is the only factor in the right hand
side of (32) that may become zero. If this factor is zero or negative, the assigned
vector|m′) belongs toM(p). Recall that the integersmjn satisfym1n ≥ m2n ≥
· · · ≥ mnn ≥ 0. If mkn = 0 (its smallest possible value), then this factor inFk

takes the value(p − k + 1). So thep-values1, 2, . . . , n − 1 will play a special
role. Let us depict these factors in a scheme (here shown forn = 3):

2, 2, 1

0, 0, 0 1, 0, 0 2, 0, 0 4, 0, 0 5, 0, 0 6, 0, 0

1, 1, 0 2, 1, 0 3, 1, 0 4, 1, 0 5, 1, 0

2, 2, 0 3, 2, 0 4, 2, 0

2, 1, 1 3, 1, 1 4, 1, 1

3, 3, 0

3, 2, 1

2, 2, 2

3, 0, 0

1, 1, 1
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In this diagram, there is an edge between two partitions([m]n) and([m′]n) =
([m]n+k) if the reduced matrix element([m]n+k||b+||[m]n) = Fk([m]n) is in
general nonzero. For the boldface lines, the relevant factor (mkn + n + 1− k +
Emkn

(p−n)) is equal top−1; for the dotted lines, this factor is equal top−2. As
a consequence, forp = 1 the irreducible moduleV (p) corresponds to the first
line of the scheme only, i.e. only partitions([m]n) of length 1 appear (the length
of a partition is the number of nonzero parts). Forp = 2, the irreducible module
V (p) is composed of partitions([m]n) of length 1 or 2 only. This observation
holds in general, due to the factor(p − k + 1) for Fk. This finally leads to the
following result:

Theorem 6 Theosp(1|2n) representationV (p) with lowest weight(p
2 , . . . , p

2 )
is a unirrep if and only ifp ∈ {1, 2, . . . , n − 1} or p > n − 1.
For p > n − 1, V (p) = V (p) and

char V (p) =
(x1 · · ·xn)p/2

∏

i(1 − xi)
∏

j<k(1 − xjxk)
(34)

= (x1 · · ·xn)p/2
∑

λ

sλ(x) (35)

For p ∈ {1, 2, . . . , n − 1}, V (p) = V (p)/M(p) with M(p) 6= 0. The structure
of V (p) is determined by

char V (p) = (x1 · · ·xn)p/2
∑

λ, ℓ(λ)≤p

sλ(x) (36)

whereℓ(λ) is thelengthof the partitionλ.

The explicit action of theosp(1|2n) generators inV (p) is given by (27)-(28), and
the basis is orthogonal and normalized. Forp ∈ {1, 2, . . . , n − 1} this action
remains valid, provided one keeps in mind that all vectors with mp+1,n 6= 0
must vanish.

Note that the first line of Theorem 6 can also be deduced from [17], where
all lowest weight unirreps ofosp(1|2n) are classified by means of their lowest
weight.

In [10], we discuss an alternative expression forchar V (p), when p ∈
{1, 2, . . . , n − 1}. This expression takes the following form:

char V (p) = (x1 · · ·xn)p/2

∑

η(−1)cηsη(x)
∏

i(1 − xi)
∏

j<k(1 − xjxk)
. (37)

In the numerator of the right hand side, the sum is over all partitions η of the
form

η =

(

a1 a2 · · · ar

a1 + p a2 + p · · · ar + p

)

(38)

in Frobenius notation (see [13] for this notation), and

cη = a1 + a2 + · · · + ar + r. (39)
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5 Conclusions

In this contribution, we have presented a solution to a problem that has been
open for many years, namely giving the explicit structure ofparaboson Fock
representations. In order to solve this problem, we have used a combination
of known techniques and new computational power. We used in particular:
the relation with unirreps of the Lie superalgebraosp(1|2n), the decomposi-
tion of the induced moduleV (p) with respect of the compact subalgebrau(n),
the known GZ-basis foru(n) representations, the method of reduced matrix el-
ements foru(n) tensor operators and known expressions for certainu(n) CGCs
and isoscalar factors.

The solution given here is also the explicit solution that would be obtained
by means of Green’s ansatz [1]. The method of Green’s ansatz is easy to de-
scribe, but difficult to perform, and has not lead to the explicit solution of the
paraboson Fock representations, as presented here. In representation theoretic
terms, Green’s ansatz amounts to considering thep-fold tensor product of the
ordinary boson Fock space,V (1)⊗p, and extracting in this tensor product the
irreducible component with lowest weight(p

2 , . . . , p
2 ).

Since the actions of allosp(1|2n) generatorsb±j are known explicitly, one
can also determine the action of allsp(2n) basis elements{b±j , b±k }. Under
this sp(2n) action,V (p) is in general not irreducible. It is not very difficult to
determine its irreduciblesp(2n) components. Forp > n − 1, V (p) hasn + 1
irreduciblesp(2n) components. Forp ∈ {1, 2, . . . , n− 1}, V (p) has onlyp + 1
irreduciblesp(2n) components. The characters of thesesp(2n) unirreps can be
obtained from the character ofV (p), see [10].
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