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Abstract

It is known that there is a close connection between the Fock space of
pairs of boson operatorBE (i = 1,2,...,n) and the so-calledneta-
plecticrepresentatiof’ (1) of the Lie superalgebrasp(1|2n) with lowest
weight (1/2,1/2,...,1/2). On the other hand, the defining relations of
osp(1]2n) are equivalent to the defining relationssopairs of paraboson
operatorsf. In particular, with the usual star conditions, this implies that
the “parabosons of order” correspond to a unitary irreducible (infinite-
dimensional) lowest weight representatigip) of osp(1|2n) with lowest
weight(p/2,p/2,...,p/2). Apart from the simple casgs= 1 orn =1,
these representations had never been constructed due to computgifional
ficulties, despite their importance.

We have how managed to give an explicit and elegant construction @f thes
representation¥ (p), and can present explicit actions or matrix elements
of theosp(1|2n) generators. Essentially;(p) is constructed as a quotient
module of an induced module. In all steps of the construction and for the
chosen basis vectors, the subalgelira) of osp(1|2n) plays a crucial role.

1 Introduction

Green [1] generalized the classical notion of Bose opesaibbosons to para-
bose operators or parabosons. The first applications wepeantum field the-
ory [2—-4] and quantum statistics (para-statistics) [1]%le generalization of the
usual boson Fock space is characterized by a parametferred to as the order
of the paraboson. For a single parabososs 1, the structure of the paraboson
Fock space is well known [6]. Surprisingly, for a systemmgbarabosons with
n > 1, the structure of the paraboson Fock space is not known, teeergh it
can in principle be constructed by means of the so-calleéiGaasatz [1, 5].



2 Paraboson representations

In this paper, we analyse the structure of the paraboson Bpake, for
arbitrary p andn. An important step in the solution was made many years
ago by Ganchev and Palev [7], who discovered the relatiowdmin pairs
of parabosons and the defining relations for the orthosyctipleie superalge-
braosp(1|2n) [8]. From their result it follows that the paraboson Fockcspaf
orderp is a certain infinite-dimensional unitary irreducible regpentation (unir-
rep) V(p) of osp(1]2n). Here, we construct this representatiBiip) explic-
itly. Our solution uses group theoretical techniques, irtipalar the branching
osp(1|2n) D sp(2n) D u(n). This allows us to construct a proper Gelfand-
Zetlin (GZ) basis for some induced representation [9], frehich the basis for
the irreducible representatidf(p) follows. For the representatidn(p) we give
an orthogonal GZ-basis, the action (matrix elements) optiraboson operators
in this basis, and also the character. More details of thiysisgresented here
can be found in the extended paper [10].

2 The paraboson Fock space V(p)

For a single paing = 1) of paraboson operatobs, b~ [1], the defining relation
is a triple relation (with anticommutatdr, .} and commutatof., .]) given by

[{b=,b%},b%] = £2b*. (1)

The paraboson Fock space [6] is a Hilbert space with vacuwtor@), char-
acterized by the following conditions:

(0j0)y =1, b=[0) =0, (b5)T = b7,
{v=,67}10) = p|0), (2)

and by irreducibility under the action éf, b=. Herein,p is a parameter, known
as the order of the paraboson. In order to have a genuine [maduct for the
Hilbert spacep should be positive and real: > 0. A set of basis vectors for
this space, which will be denoted B¥(p), is given by

(b+)2k <b+)2k+1

2 /KN (p/2)1 2k /E2(p/2) e

This basis is orthogonal and normalized; the syn{agl = a(a +1)--- (a +
k — 1) is the common Pochhammer symbol.

If one consider$™ andb~ as odd generators of a Lie superalgebra, then the
elements{b™, "}, {b",b~} and{b~, b~ } form a basis for the even part of this
superalgebra. Using the relations (1) it is easy to seeltimstiperalgebra is the
orthosymplectic Lie superalgebrap(1|2), with even partsp(2) = sp(2,R).
The paraboson Fock spat&p) is then a unirrep obsp(1]2). It splits as the
direct sum of two positive discrete series representat@ng(2): one with
lowest weight vectot0) (lowest weightp/2) and basis vectorRk), and one
with lowest weight vectofl) (lowest weightl +p/2) and basis vector@k +1).
For p = 1 the paraboson Fock space coincides with the ordinary bosok F
space.

|2k) = 0),  Rk+1) = 0). @)
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Let us now consider the case ofpairs of paraboson operatdv‘;“ (j =
1,...,n). The defining triple relations for such a system are giveniy [

{65, b}, B5] = (€ — )85} + (€ — m)dwdS, @)

wherej, k,1 € {1,2,...,n} andn,e,¢ € {+,—} (to be interpreted as-1
and —1 in the algebraic expressions— £ ande — n). The paraboson Fock
spaceV (p) is the Hilbert space with vacuum vect®)), defined by means of
(G, k=1,2,...,n)

— -10) = T\

and by irreducibility under the action of the algebra sparmethe elements;,
b; (7 =1,...,n), subject to (4). The parametgiis referred to as the order of

the paraboson system. In genepdab thought of as a positive integer, and for
p = 1 the paraboson Fock spatép) coincides with the ordinary-boson Fock
space. We shall see that also certain non-intggetlues are allowed.

Constructing a basis for the Fock spacép) turns out to be a difficult prob-
lem. Even the simpler question of finding the structuré/dp) (weight struc-
ture) was not solved until now. In [10] we unravel the struetaf 1V (p), deter-
mine for whichp-valuesV (p) is actually a Hilbert space, construct an orthogo-
nal (normalized) basis fdr'(p), and give the actions of the generatbifson the
basis vectors. A summary will be presented here.

3 Relation with the Lie superalgebra osp(1]2n)

The orthosymplectic superalgebssp(1|2n) is one of the basic classical Lie
superalgebras [8]. It consists of matrices of the form

0 a o
ai b ¢ , (6)
—at d b

wherea anda; are(1 x n)-matricesp is any(n x n)-matrix, andc andd are
symmetric(n x n)-matrices. The even elements have- a; = 0 and the odd
elements are those with= ¢ = d = 0. It will be convenient to have the row
and column indices running frotto 2n (instead ofl to 2n + 1), and to denote
by e;; the matrix with zeros everywhere except an position(s, j). Then the
Cartan subalgebrpof osp(1|2n) is spanned by the diagonal elements

hj=ejj—entjmt;  (G=1...,n) 7)

In terms of the dual basis of h*, the odd root vectors and corresponding roots
of osp(1|2n) are given by:

€0,k — €n+k,0 < _6k7 k= I,...,n,

€0,n+k + €k,0 < Ok, k=1,...,n.
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The even roots and root vectors are

€jk — entkntj < 05 — Ok, jAk=1,...,n,
ej,n+k+ek,n+jH6j+5ka jSkZla"'anv
€ntjk T €ntk,j < —0; — O, j<k=1,...,n.

If we introduce the following multiples of the odd root vergo
b—]: = \/§(€O7n+k+€k70)7 b]: = \/i(eo,k_en-‘rk,O) (k =1,... ,Tl) (8)

then it is easy to verify that these operators satisfy thetrielations (4). Since
all even root vectors can be obtained by anticommute[iiogr,ﬁ)};}, the following
holds [7]

Theorem 1 (Ganchev and Palev) As a Lie superalgebra defined by generators
and relationsosp(1]2n) is generated bg2n odd elementéf subject to the fol-
lowing (paraboson) relations:

[{bg’ bz}v bﬂ = (E - 5)5jlbz + (6 — 77)5klb§- (9)

The paraboson operatdr}‘ are the positive odd root vectors, and theare the
negative odd root vectors.

Recall that the paraboson Fock sp&tl) is characterized by (5). Further-
more, it is easy to verify that

{07, b5y =2n;  (j=1,...,n). (10)
Hence we have the following:

Corollary 2 The paraboson Fock spadé(p) is the unitary irreducible repre-
sentation obsp(1|2n) with lowest weight%, 2,..., L).

In order to construct the representatibiip) [11] one can use an induced
module construction. The relevant subalgebraspfl|2n) are easy to describe
by means of the odd generatd.»;%.

Proposition 3 A basis for the even subalgebsp(2n) of osp(1|2n) is given by
the2n? + n elements

(o700 A<j<k<n), {0} Q<jk<n). (11

Then? elements
are a basis for thep(2n) subalgebrai(n).
Note that with{bj, b, } = 2Ejy, the triple relations (9) imply the relations

[Eij, Ex) = 01 Ey — 61;Ey;. In other words, the elemen{ﬁj,bk‘.} form, up
to a factor 2, the standardn) or gl(n) basis elements.
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So the odd generatot@t clearly reveal the subalgebra chaisp(1|2n) D
sp(2n) D u(n). Note thatu(n) is, algebraically, the same as the general linear
Lie algebragl(n). But the conditionsﬁb;t)T = b imply that we are dealing here
with the “compact form'u(n).

The subalgebrai(n) can be extended to a parabolic subalgeBreof
osp(1]2n) [11]:

P = spar{{b}, by }.b7, (b7, bg } [ 4,k =1,...,n}. (13)

Recall that{b; ,b; }|0) = pd;x[0), with {b;,b7} = 2h;. This means

that the space spanned ly) is a trivial one—di]me%sionah(n) module C|0)

of weight (%,...,%). Sinceb; |0) = 0, the moduleC|0) can be extended to
a one-dimensiongP module. Now we are in a position to define the induced
osp(1]2n) moduleV (p):

V(p) = IndP M), (14)
This is anosp(1]2n) representation with lowest weigfit,...,5). By the

Poincag-Birkhoff-Witt theorem [9, 11], it is easy to give a basis 16(p):

(OF)* - ) (fof by DB (o] by DR - ({bf 1, b ) F=10), (25)
kl, cey kn, k12, k13- .. s knfl,n S Z+.

The difficulty comes from the fact that in gene#a(p) is not a simple module
(i.e. not an irreducible representation)wsh(1/2n). Let M (p) be the maximal
nontrivial submodule o¥ (p). Then the simple module (irreducible module),
corresponding to the paraboson Fock space, is

V(p) = V(p)/M(p). (16)

The purpose is now to determine the vectors belonging/{@), and hence to
find the structure oV (p). This is not our only goal: we also want to find explicit
matrix elements of thesp(1|2n) generatoréji in an appropriate basis &f(p).

4 Paraboson Fock representations of osp(1|2n)

We shall start our analysis by considering the induced med(ih). Computing
the action of the generatobégL in the basis (15) turns out to be very difficult:
we managed to do this fasp(1]4) (i.e. n = 2) but not for larger values af.
Furthermore, from this action itself it was still very haoddetermine the vectors
belonging toM (p). For this reason, we have introduced a new basid/fgr).
In this new basis, matrix elements can be computed, and fnesetexpressions
it will be clear which vectors belong t/ (p).

The “old” basis forV (p) has been given in (15). From this basis, it is easy
to write down the character df (p): this is a formal infinite series of terms
pxyt - zdn, with (i, ..., jn) @ weight of V(p) and i1 the dimension of this

weight space. So the vacuum vecfoy of V(p), of weight(%,..., %), yields
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aterm:rlg zp = (z1---x,)P/? in the charactechar V(p). The weight of a
general vector follows from (15), and contributes a term

k1 k ki3

R (mlxg)k”(xlxg) p/2

o (T 1) (@ - xy)
in the character oft’(p). Summing over all basis vectors (i.e. over all
ki, o kn, k1o, k13- kn1.n) yields

(z1---xn)P/?
HZL:1(1 — ;) H1gj<kgn(1 —xTk)
Such expressions have an interesting expansion in termshaoir 8unctions.

char V(p) =

17

Proposition 4 (Cauchy, Littlewood) Let x4,...,x, be a set ofn variables.
Then [12]
1
- = sa(zi, ... xn) = sx(x)
Lo (=) H1§j<k§n(1 — z;T) Z/\: Z/\:
(18)

In the right hand side, the sum is over all partitiohnsand s (x) is the Schur
symmetric function [13].

Forn variables;sy(z) = 0 if the length¢(\) is greater tham, so in practice the
sum is over all partitions of length less than or equat.to

The characters of finite dimensiongln) representations are given by such
Schur functionss (z). Hence such expansions are useful since they yield the
branching tou(n) of the osp(1|2n) representatio’/ (p). But for such finite
dimensionalu(n) representations labelled by a partition there is a known
basis: the Gelfand-Zetlin basis (GZ) [14, 15]. We shall usau{n) GZ basis
vectors as our new basis fbi(p). Thus the new basis &f (p) consists of vectors
of the form

Min e e Mnp—1,n Mpyn
m) = [m)" Mip-1 " *°° Mp_1np_1 [m]™
m)=|m)" =| . =
|m)n71
mii

(19)
where the top line of the pattern, also denoted byrifaple [m]", is any parti-
tion A (consisting of non increasing nonnegative numbers) Wit) < n. The
labelp itself is dropped in the notation of the vectdrs); strictly speaking we
should denote our vectors by; m). The remaining: — 1 lines of the pattern
will sometimes be denoted lyn)"~!. So allm,; in the above GZ-pattern are
nonnegative integers, satisfying thetweenness conditions

M 41 = Mij 2 My j+1 (1<i<j<n-—-1). (20)

Note that, since the weight ¢6) is (£,..., %), the weight of the above vector
is determined by

N

—1

k
+ ijk — mj k-1 |m). (22)
j=1

Jj=1

N3
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Now we develop a technique to compute the matrix elemenb@t oh this

basis. By the triple relations, one obtains
b 07}, 05] = 28;ub;

With the identification{b;", b; } = 2E;; inthe standard(n) basis, this is equiv-
alent to the adjoint actioft;; - e, = d;xe;. In other words, the triple relations
imply that (b, b3, ..., b)) is a standard(n) tensor of rank 1,0, ...,0). This
means that one can attach a unique GZ-pattern with tog (ine- 0 to everyb,
corresponding to the weightd;. Explicitly:

10---000
10---00

T

bj ~0---0 ) (22)
0

where the pattern consists pf 1 zero rows at the bottom, and the first- j + 1
rows are of the form0 - - - 0. The tensor product rule im(n) reads

([m]") @ (10---0) = ([m]}1) @ (Imf}s) @ -~ @ ([ml},)  (23)

where([m]™) = (min, Man, - .., Mn,) and a subscript-k indicates an incre-
ment of thekth label by+1:

(Im]he) = (Man, oo smpn £ 1,000 mpy). (24)

In the right hand side of (23), only those components whiehsdifl partitions
(i.e. consisting of nondecreasing integers) survive.
A general matrix element dﬁ can now be written as follows:

m/ +m = [m]ik + [m]n
( |bj| ) ( |m/)n—l J |m)n—1 >
10000 | bl
- ( )1 o N1 > x ([m] g l16T][[m]").
m 0 Im/)

(25)

The first factor in the right hand side isién) Clebsch-Gordan coefficient [16],
the second factor is a reduced matrix element. By the tensaiupt rule, the
firstline of [m’) has to be of the form (24), i.én/]" = [m]}, for somek-value.
The speciali(n) CGCs appearing here are well known, and have fairly sim-

ple expressions. They can be found, e.g. in [16]. They canxpeessed by
means ofi(n)-u(n—1) isoscalar factorandu(n—1) CGC's, which on their turn
are written by means af(n — 1)-u(n — 2) isoscalar factors antdn —2) CGC'’s,

etc. The explicit form of the specialn) CGCs appearing here is given in Ap-
pendix A of [10]. The actual problem is now converted into fingexpressions
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for the reduced matrix elements, i.e. for the functidng[m|™), for arbitrary
n-tuples of non increasing nonnegative intedets’ = (m1,, Man, .- -, Mpn):

Fi([m]™) = Fi(man, man, - .., man) = (M]3 [[b7[|[[m]"). (26)

So one can write:

. 1000 | bl ],
b; m>=z( et o iy )qumm vl )
em/ 0
(27)
. e 10000 | I | i,
b; m):ﬁ;( iyt e >Fk<[m]_k> et )
(28)

Forj = n, the CGCs in (27)-(28) take a simple form [16], and we have

- n- . 1/2
b |m) :Z Hk:ll(mk,nf1 — My —k+1—1)
' H:/;éizl(mkn — My — k +1)

i=1

X Fi(m1n7 man, ... 7mnn) |m)+in; (29)

n n—1 . 1/2
( k=1 (mk,n—l — My, — k + z)
)

b;m = L .
| ) ; Hk;ﬁi:l(mkn—mm—k—i—z—i—l

XFi(m1n7~-~7min_1;-~-amnn) |m)—zn (30)

In order to determine the unknown functionsl;,, one can start from the fol-
lowing action:

n n—1
{0, b5} m) = 2halm) = (0 + 203 myn = 3 m-)lm). (31
Jj=1 j=1

Expressing the left hand side by means of (29)-(30), one finglsstem of cou-
pled recurrence relations for the functiofRs. Taking the appropriate boundary
conditions into account, we have been able to solve thiesysf relations. The
calculations were still very hard, and without the use of Mape would not
have found the solution. We only present the final result:here

Proposition 5 The reduced matrix elemenkg appearing in the actions dijt
on vectorgm) of V(p) are given by:

Fk(mlna mon, ... amnn) = (_1)mk+17n+---+mnn

X (mkn+n+1—k+€mkn(p—n))1/2

X ﬁ ( Mjn, — Mpn, — J + k )1/2
Mjn — Mkn -7+ k— Om]n_mkn 7

k=1
(32)
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where& and O are theevenandoddfunctions defined by

&; =11if jis even and 0 otherwise
O; = 11if jis odd and 0 otherwise (33)

The proof consists of verifying that all triple relationg (8ld when acting on
any vectorjm). Each such verification leads to an algebraic identity weri-
ablesmy,,...,m,,. In these computations, there are some intermediate verifi-
cations: e.g. the actio{bj, b, }/m) should leave the top row of the GZ-pattern
|m) invariant (since{bj*, b, } belongs tau(n)). Furthermore, it must yield (up
to a factor 2) the known action of the standafet) matrix elements;, in the
classical GZ-basis.

The next task is to deduce the structurd/gp) from the general expression
of the matrix elements i (p). For this purpose, it is essential to investigate
for which basis elementgn’) the reduced matrix elemeifm/]™||b™||[m]™)
becomes zero. This will be governed by the factor

(mgn +n+1—k+En,, (p—n))

in the expression of([m]™), since this is the only factor in the right hand
side of (32) that may become zero. If this factor is zero omtieg, the assigned
vector|m’) belongs taV/ (p). Recall that the integers ;,, satisfym.,, > mo,, >
<o > My, > 0. If my,, = 0 (its smallest possible value), then this factotip
takes the valu¢p — k + 1). So thep-valuesl,2,...,n — 1 will play a special
role. Let us depict these factors in a scheme (here shown foB):

0,0,0] [1,0,0] 2,0,0] (3,0,0] (4,0,0] [5,0,0] 6,0,0
| \ | \ | \ | \ | \ |
\ \ \ \ \ \ \
1,1,0] 12,1,0] 13,1,0] 4,1,0] QLOF*
N 22,032, 04 2,0—
\ \\ \\ N \
\ \ R o\
1,1,17 2,1,11%7 3, 1,117 %L1F*
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In this diagram, there is an edge between two partitigng™) and ([m']™) =
([m]%,,) if the reduced matrix elemert{m]|’, |[b*]|[m]") = Fi([m]") is in
general nonzero. For the boldface lines, the relevantffdei@, +n+ 1 — k +
Em,.,, (p—n)) is equal tap—1; for the dotted lines, this factor is equalte- 2. As

a consequence, for = 1 the irreducible modulé’ (p) corresponds to the first
line of the scheme only, i.e. only partitiofign]™) of length 1 appear (the length
of a partition is the number of nonzero parts). et 2, the irreducible module
V(p) is composed of partition§m|™) of length 1 or 2 only. This observation
holds in general, due to the factgr — & + 1) for F. This finally leads to the
following result:

Theorem 6 Theosp(1|2n) representatiori/ (p) with lowest weightZ,..., %)
isa unirrep ifand only ip € {1,2,...,n —1} orp > n — 1.
Forp>n—1,V(p) =V(p) and
(z1---x,)P/?
[L( =) [T (1 — k)
= (z1 -~-a:n)p/225>\(x) (35)
A

char V(p) =

(34)

Forp e {1,2,...,n— 1}, V(p) = V(p)/M(p) with M (p) # 0. The structure
of V(p) is determined by

char V(p) = (z1 - - 2, )P/? Z sx(x) (36)

A, Z(A)Sp
wherel(\) is thelengthof the partition).

The explicit action of thesp(1|2n) generators if¥ (p) is given by (27)-(28), and
the basis is orthogonal and normalized. Boe {1,2,...,n — 1} this action
remains valid, provided one keeps in mind that all vectorhwi, 1, # 0
must vanish.

Note that the first line of Theorem 6 can also be deduced fraff) {ghere
all lowest weight unirreps afsp(1|2n) are classified by means of their lowest
weight.

In [10], we discuss an alternative expression &hear V(p), whenp €
{1,2,...,n — 1}. This expression takes the following form:

2 (=1) sy ()
[LA = 2) [T (1 = 2jak)

In the numerator of the right hand side, the sum is over aliitiars » of the

form
() o

char V(p) = (z1 - - x,)P/? (37)

ar+p ax+p -+ G +p
in Frobenius notation (see [13] for this notation), and

cp=a1+ax+ - +a, +7. (39)
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5 Conclusions

In this contribution, we have presented a solution to a gmobthat has been
open for many years, namely giving the explicit structurgpafaboson Fock
representations. In order to solve this problem, we have aseombination
of known techniques and new computational power. We usedaiticplar:
the relation with unirreps of the Lie superalgelbp(1|2n), the decomposi-
tion of the induced modul® (p) with respect of the compact subalgebsa),
the known GZ-basis fon(n) representations, the method of reduced matrix el-
ements fo(n) tensor operators and known expressions for cett&ir) CGCs
and isoscalar factors.

The solution given here is also the explicit solution thauigidoe obtained
by means of Green’s ansatz [1]. The method of Green’s ansaasdy to de-
scribe, but difficult to perform, and has not lead to the eip8olution of the
paraboson Fock representations, as presented here. &seapation theoretic
terms, Green’s ansatz amounts to consideringptf@d tensor product of the
ordinary boson Fock spac#,(1)®?, and extracting in this tensor product the
irreducible component with lowest weigt¥, ..., §).

Since the actions of alisp(1|2n) generatorsbjE are known explicitly, one
can also determine the action of ali(2n) basis element$bf,bf}. Under
this sp(2n) action,V (p) is in general not irreducible. It is not very difficult to
determine its irreduciblep(2n) components. Fop > n — 1, V(p) hasn + 1
irreduciblesp(2n) components. Fgy € {1,2,...,n— 1}, V(p) has onlyp + 1
irreduciblesp(2n) components. The characters of thesgn) unirreps can be
obtained from the character bf(p), see [10].
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