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Abstract. New models for the finite one-dimensional harmonic osaHatre
proposed based upon the algebn#®)., andsu(2).. These algebras are de-
formations of the Lie algebras(2) andsu(2) extended by a parity operator,
with deformation parameter. Classes of irreducible unitary representations of
u(2)~ andsu(2), are constructed. It turns out that in these models the spactr
of the position operator can be computed explicitly, and the corresponding
(discrete) wavefunctions can be determined in terms of Haitynomials.
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1 Introduction

Discrete and finite quantum systems have attracted muchtiatiein recent
years [1]. Such systems have been useful in areas such asigquaomput-

ing and quantum optics [2, 3]. However, in a finite-dimensiddilbert space,
the canonical commutation relations no longer hold. Seéveride oscillator

models have been proposed on different defining relations.irerest comes
from models related to a Lie algebra or its deformation.

For a one-dimensional finite oscillator, the position opar4, its correspond-
ing momentum operatgi and the Hamiltoniarfl, which is the generator of
time evolution, should satisfy the compatibility of Harilfs equations with
the Heisenberg equations:

[H,§) = —ip,  [H,p]=iq, (1)

in units with mass and frequency both equal to 1, And 1. Furthermore, one
requires [4]:
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e all operatorsj, p, H belong to some (Lie) algebra (or superalgebta)

e the spectrum off in (unitary) representations of is equidistant.

The case with4 = su(2) has been investigated in [4—6]. In the common
su(2) representations, labelled by an integer or half-intggéne Hamiltonian

is given by H = Jy + j + 1, whereJ, = J. is the diagonabu(2) operator
and its spectrum is + 1 (n = 0,1,...,25). ¢ = 2(J4 + J_) = J, and

p = %(JJr - J_) = —J,, satisfying the relations (1), have a finite spectrum
given by {—j,—j + 1,...,4+j} [4]. The discrete position wavefunctions are
given by Krawtchouk functions and their shape is reminisggrthose of the
canonical oscillator [4]. Under the limjt — oo they coincide with the canoni-
cal wavefunctions in terms of Hermite polynomials [4, 7].

In the present paper we construct two new models for the fimigeadimensional
harmonic oscillator based on the algebré®),, andsu(2),,, one-parameter de-
formations of the Lie algebrag2) andsu(2) (see [8, 9] for more details). In
section 2 the deformed algebré2),, its representations and the corresponding
model are constructed. The spectrum of the position operatal its eigen-
vectors are determined. The structure of these eigengeiststudied, yielding
position wavefunctions. Similarly, in section 3 we consittee model corre-
sponding tosu(2),,.

2 The u(2), model

Definition 1 Let« be a parameter. The algebrg?2),, is a unital algebra with
basis elementsy, J., J_, C and P subject to the following relations:

e (' commutes with all basis elements,
e Pis a parity operator satisfying®> = 1 and

[P, Jo] = PJo— JoP =0, {P,Js}=PJi+J:P=0. (2)

e Thesu(2) relations are deformed as follows:

[Jo, 1] = £J4, (3)
[(Ji,J-] =2Jo — (2a+ 1)?P — (2a + 1)CP. (4)

Proposition 2 Letj be a half-integer (i.e2j is odd), and consider the spatg
with basis vectorsj, —j), |7, —j7 + 1), ..., |4,4). Assume thatr > —1. Then
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the following action turnd/; into an irreducible representation spacewq®),,.

Clj,m) = (2 + 1) [§,m), (5)
Plj,m) = (=1)77™ |j,m), (6)
Jolj,m) =m |j,m), @)
Jilj,m) = Vi —m)G+m+1)j,m+1), 7 + m-odd;
o Vi—-m+2a+1)j+m+2a+2)|j,m+1), j+m-even.
(8)
J_|j,m) = VG+m)(j—m+1)j,m-—1), j + m-even;
- Vii+m—+2a+1)(j —m+2a+2)|j,m—1), j +m-odd.
9)

Straightforward calculations show that all defining relas from Definition 1
are valid when acting on an arbitrary vectgrm). Irreducibility follows from
the fact that(J,)*|j, —5) is nonzero and proportional {g, —j + k) for k =

1,2,...,24, and similarly(J_)*|4, j) is nonzero.

If
1 ) - 1
G=5(r+ 0, p= %(J+ —J),  H=J+5C (10
it is easy to verify that (1) is satisfied and the spectruni/d$ indeed linear and
given by

1
n—|—§ (n=0,1,...,2j). (11)

From the actions (8)-(9), one finds that the operatotakes the matrix form

0 My O 0
My 0 M; --- 0

25— 0 M 0 . , (12)
Do Moj_q

with

Mk:{ (k+1)(2] — k), fhisodd; o

V(k+20+2)(2j —k+2a+1), if kiseven.

For this matrix, the eigenvalues are known explicitly [10].1

Proposition 3 The2j + 1 eigenvalueg of the position operatog in the repre-
sentationV/; are given by

1 o1 1
—04—]—5,—04—]—|—5,...,—04—1;a—|—17a+2,...,a+j—|—§. (14)
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So in theu(2),, oscillator model, there is a shift from the origin by+ 1.
The next result follows now from [11, Proposition 2]:

Proposition 4 The orthonormal eigenvector of the position operatan V; for
the eigenvaluegy,, denoted byyj, ¢x), is given by

J
Gar) = Y Uirmjirkldm). (15)

m=—j

Herein,U = (Uys)o<r,s<2j IS a(2j + 1) x (25 + 1) matrix with elements

D" 5 (. 1
U2r,j—s—% = Yorjtstg T 2 Qs(r;a,a+ 1,7 — 5)5 (16)
U. = -U S et t,a - 17
2r+1,j—s—1 = TV2r41j+s+1 = T \/5 QS(T,CY + 10,9 — §)a (17)
wherer,s € {0,1,...,j — %}. The functions) are normalized Hahn polyno-

mials [12].

Corollary 5 Theu(2),, oscillator wavefunctions are given by:

a " o1 13 .
(I)gn)(qk): (\/5) Qk*%(n7a7a+17]_§)7 k:§7§77]7
a (=" ~ o1 13 .
lala) = Quoy(matlag—5), k=g

3 The su(2), model

Definition 6 Leta be a parameter. The algebsa(2),, is a unital algebra with
basis elementsy, J.., J_ and P subject to the following relations:

e Pis a parity operator satisfying®> = 1 and
[P, Jo] = PJy — JoP =0, {P,J+}=PJr +J:P=0. (18)
e Thesu(2) relations are deformed as follows:

[Jo, Jx| = £, (19)
[Te,J_] = 2Jo + 220+ 1) Jo P. (20)
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Proposition 7 Letj be an integer (i.e2; is even), and consider the spaidé
with basis vectorgj, —j), |4, —7+ 1), ..., 14, 7). Assume thak > —1. Thenthe
following action turng¥’; into an irreducible representation spacesaf(2)., .

Plj,m) = (=1)7F™ |j,m), (21)
Jolj,m) =m |j,m), (22)
T ljum) = VG=—m)G+m+2a+2)|j,m+1), if j + m is even;
e VO—m+2a+1)(j+m+1) |jm+1), ifj+misodd,

(23)

J_|j,m) VGi+m+2a+1)(j—m+1)|j,m~—1), ifj+misodd;

_ m) =

g VG+m)G—m+2a+2)|j,m—1), if j + m is even.
(24)

Quite similar as in thesu(2), deformed case, the position, momentum and
Hamiltonian operators defined by:

.1 Lt ~ o1
=5+ J),  p=50Us—Jo),  H=d+ijt+;  (29)

satisfy (1). The spectrum of the position operat@s not equidistant, it is given
by

—ViRa+i+1), /([ —-1DR2a+7j),...,—V2a+2;0;v2a + 2,

coiatj+1). (26)

and the position wavefunctions by

« _1n~ . . .
q)én)(QK):(\/i) Qk(n;aaaa])a ’I’L:O71,...,], k:17"'1.77
(27)
« _1n~ . . .
(I)gn)-kl(qk):(\/i) Qr(n;a+1l,a+1,7—1), n=0,1,...,4, k=1,...,].
(28)

These discrete wavefunctions, given in terms of Hahn patyiats, have nice
properties, and they tend to the parabose wavefunctions wielarge. The
analysis shows that fax — —% they tend to the Krawtchouk wavefunctions
of the su(2) model; and fora — —% andj — oo they tend to the canonical
oscillator wavefunctions in terms of Hermite polynomials.
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