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Abstract. New models for the finite one-dimensional harmonic oscillator are
proposed based upon the algebrasu(2)α andsu(2)α. These algebras are de-
formations of the Lie algebrasu(2) andsu(2) extended by a parity operator,
with deformation parameterα. Classes of irreducible unitary representations of
u(2)α andsu(2)α are constructed. It turns out that in these models the spectrum
of the position operator can be computed explicitly, and that the corresponding
(discrete) wavefunctions can be determined in terms of Hahnpolynomials.
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1 Introduction

Discrete and finite quantum systems have attracted much attention in recent
years [1]. Such systems have been useful in areas such as quantum comput-
ing and quantum optics [2, 3]. However, in a finite-dimensional Hilbert space,
the canonical commutation relations no longer hold. Several finite oscillator
models have been proposed on different defining relations. Our interest comes
from models related to a Lie algebra or its deformation.

For a one-dimensional finite oscillator, the position operator q̂, its correspond-
ing momentum operator̂p and the HamiltonianĤ , which is the generator of
time evolution, should satisfy the compatibility of Hamilton’s equations with
the Heisenberg equations:

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, (1)

in units with mass and frequency both equal to 1, and~ = 1. Furthermore, one
requires [4]:
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• all operatorŝq, p̂, Ĥ belong to some (Lie) algebra (or superalgebra)A;

• the spectrum of̂H in (unitary) representations ofA is equidistant.

The case withA = su(2) has been investigated in [4–6]. In the common
su(2) representations, labelled by an integer or half-integerj, the Hamiltonian
is given byĤ = J0 + j + 1

2 , whereJ0 = Jz is the diagonalsu(2) operator
and its spectrum isn + 1

2 (n = 0, 1, . . . , 2j). q̂ = 1
2 (J+ + J−) = Jx and

p̂ = i
2 (J+ − J−) = −Jy, satisfying the relations (1), have a finite spectrum

given by{−j,−j + 1, . . . ,+j} [4]. The discrete position wavefunctions are
given by Krawtchouk functions and their shape is reminiscent of those of the
canonical oscillator [4]. Under the limitj → ∞ they coincide with the canoni-
cal wavefunctions in terms of Hermite polynomials [4,7].

In the present paper we construct two new models for the finiteone-dimensional
harmonic oscillator based on the algebrasu(2)α andsu(2)α, one-parameter de-
formations of the Lie algebrasu(2) andsu(2) (see [8, 9] for more details). In
section 2 the deformed algebrau(2)α, its representations and the corresponding
model are constructed. The spectrum of the position operator, and its eigen-
vectors are determined. The structure of these eigenvectors is studied, yielding
position wavefunctions. Similarly, in section 3 we consider the model corre-
sponding tosu(2)α.

2 The u(2)α model

Definition 1 Letα be a parameter. The algebrau(2)α is a unital algebra with
basis elementsJ0, J+, J−, C andP subject to the following relations:

• C commutes with all basis elements,

• P is a parity operator satisfyingP 2 = 1 and

[P, J0] = PJ0 − J0P = 0, {P, J±} = PJ± + J±P = 0. (2)

• Thesu(2) relations are deformed as follows:

[J0, J±] = ±J±, (3)

[J+, J−] = 2J0 − (2α+ 1)2P − (2α+ 1)CP. (4)

Proposition 2 Let j be a half-integer (i.e.2j is odd), and consider the spaceVj
with basis vectors|j,−j〉, |j,−j + 1〉, . . ., |j, j〉. Assume thatα > −1. Then
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the following action turnsVj into an irreducible representation space ofu(2)α.

C|j,m〉 = (2j + 1) |j,m〉, (5)

P |j,m〉 = (−1)j+m |j,m〉, (6)

J0|j,m〉 = m |j,m〉, (7)

J+|j,m〉 =

{√
(j −m)(j +m+ 1) |j,m+ 1〉, j +m-odd;√
(j −m+ 2α+ 1)(j +m+ 2α+ 2) |j,m+ 1〉, j +m-even.

(8)

J−|j,m〉 =

{√
(j +m)(j −m+ 1) |j,m− 1〉, j +m-even;√
(j +m+ 2α+ 1)(j −m+ 2α+ 2) |j,m− 1〉, j +m-odd.

(9)

Straightforward calculations show that all defining relations from Definition 1
are valid when acting on an arbitrary vector|j,m〉. Irreducibility follows from
the fact that(J+)k|j,−j〉 is nonzero and proportional to|j,−j + k〉 for k =
1, 2, . . . , 2j, and similarly(J−)k|j, j〉 is nonzero.

If

q̂ =
1

2
(J+ + J−), p̂ =

i

2
(J+ − J−), Ĥ = J0 +

1

2
C, (10)

it is easy to verify that (1) is satisfied and the spectrum ofĤ is indeed linear and
given by

n+
1

2
(n = 0, 1, . . . , 2j). (11)

From the actions (8)-(9), one finds that the operator2q̂ takes the matrix form

2q̂ =




0 M0 0 · · · 0
M0 0 M1 · · · 0

0 M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 M2j−1 0



, (12)

with

Mk =

{√
(k + 1)(2j − k), if k is odd;√
(k + 2α+ 2)(2j − k + 2α+ 1), if k is even.

(13)

For this matrix, the eigenvalues are known explicitly [10,11].

Proposition 3 The2j + 1 eigenvaluesq of the position operator̂q in the repre-
sentationVj are given by

−α− j − 1

2
,−α− j +

1

2
, . . . ,−α− 1;α+ 1, α+ 2, . . . , α+ j +

1

2
. (14)
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So in theu(2)α oscillator model, there is a shift from the origin byα+ 1
2 .

The next result follows now from [11, Proposition 2]:

Proposition 4 The orthonormal eigenvector of the position operatorq̂ in Vj for
the eigenvalueqk, denoted by|j, qk), is given by

|j, qk) =

j∑

m=−j

Uj+m,j+k|j,m〉. (15)

Herein,U = (Urs)0≤r,s≤2j is a (2j + 1)× (2j + 1) matrix with elements

U2r,j−s− 1
2

= U2r,j+s+ 1
2

=
(−1)r√

2
Q̃s(r;α, α + 1, j − 1

2
), (16)

U2r+1,j−s− 1
2

= −U2r+1,j+s+ 1
2

= − (−1)r√
2
Q̃s(r;α + 1, α, j − 1

2
), (17)

wherer, s ∈ {0, 1, . . . , j − 1
2}. The functions̃Q are normalized Hahn polyno-

mials [12].

Corollary 5 Theu(2)α oscillator wavefunctions are given by:

Φ
(α)
2n (qk) =

(−1)n√
2
Q̃k− 1

2
(n;α, α+ 1, j − 1

2
), k =

1

2
,
3

2
, . . . , j;

Φ
(α)
2n+1(qk) =

(−1)n√
2
Q̃k− 1

2
(n;α+ 1, α, j − 1

2
), k =

1

2
,
3

2
, . . . , j.

3 The su(2)α model

Definition 6 Letα be a parameter. The algebrasu(2)α is a unital algebra with
basis elementsJ0, J+, J− andP subject to the following relations:

• P is a parity operator satisfyingP 2 = 1 and

[P, J0] = PJ0 − J0P = 0, {P, J±} = PJ± + J±P = 0. (18)

• Thesu(2) relations are deformed as follows:

[J0, J±] = ±J±, (19)

[J+, J−] = 2J0 + 2(2α+ 1)J0P. (20)
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Proposition 7 Let j be an integer (i.e.2j is even), and consider the spaceWj

with basis vectors|j,−j〉, |j,−j+1〉, . . ., |j, j〉. Assume thatα > −1. Then the
following action turnsWj into an irreducible representation space ofsu(2)α.

P |j,m〉 = (−1)j+m |j,m〉, (21)

J0|j,m〉 = m |j,m〉, (22)

J+|j,m〉 =
{√

(j −m)(j +m+ 2α+ 2) |j,m+ 1〉, if j +m is even;√
(j −m+ 2α+ 1)(j +m+ 1) |j,m+ 1〉, if j +m is odd,

(23)

J−|j,m〉 =
{√

(j +m+ 2α+ 1)(j −m+ 1) |j,m− 1〉, if j +m is odd;√
(j +m)(j −m+ 2α+ 2) |j,m− 1〉, if j +m is even.

(24)

Quite similar as in thesu(2)α deformed case, the position, momentum and
Hamiltonian operators defined by:

q̂ =
1

2
(J+ + J−), p̂ =

i

2
(J+ − J−), Ĥ = J0 + j +

1

2
, (25)

satisfy (1). The spectrum of the position operatorq̂ is not equidistant, it is given
by

−
√
j(2α+ j + 1),−

√
(j − 1)(2α+ j), . . . ,−

√
2α+ 2; 0;

√
2α+ 2,

. . . ,
√
j(2α+ j + 1). (26)

and the position wavefunctions by

Φ
(α)
2n (qk) =

(−1)n√
2
Q̃k(n;α, α, j), n = 0, 1, . . . , j, k = 1, . . . , j,

(27)

Φ
(α)
2n+1(qk) =

(−1)n√
2
Q̃k(n;α+1, α+1, j− 1), n = 0, 1, . . . , j, k = 1, . . . , j.

(28)
These discrete wavefunctions, given in terms of Hahn polynomials, have nice
properties, and they tend to the parabose wavefunctions when j is large. The
analysis shows that forα → − 1

2 they tend to the Krawtchouk wavefunctions
of the su(2) model; and forα → − 1

2 andj → ∞ they tend to the canonical
oscillator wavefunctions in terms of Hermite polynomials.
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