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Abstract

In the Wigner framework, one abandons the assumption that the usual canonical commuta-
tion relations are necessarily valid. Instead, the compatibility of Hamilton’s equations and the
Heisenberg equations are the starting point, and no further assumptions are made about how
the position and momentum operators commute. Wigner quantization leads to new classes of
solutions, and representations of Lie superalgebras are needed to describe them. For the n-
dimensional Wigner harmonic oscillator, solutions are known in terms of the Lie superalgebras
osp(1|2n) and gl(1|n). For n = 3N , the question arises as to how the angular momentum
decomposition of representations of these Lie superalgebras is computed. We construct gener-
ating functions for the angular momentum decomposition of specific series of representations of
osp(1|6N) and gl(1|3N), with N = 1 and N = 2. This problem can be completely solved for
N = 1. However, for N = 2 only some classes of representations allow executable computations.
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1 Introduction

The Hamiltonian of the n-dimensional non-isotropic harmonic oscillator with mass m and frequen-
cies ωj (j = 1, . . . , n) is given by

Ĥ =
1

2m

nX
j=1

p̂2
j +

m

2

nX
j=1

ω2
j q̂

2
j , (1)

where the position and momentum operators are denoted by p̂j and q̂j respectively. We will look at
this Hamiltonian in the framework of Wigner quantization, a concept which has been triggered by
Wigner in [1], but was really introduced much later by Palev [2, 3, 4]. Since the Wigner perspective
has already been considered in detail by Lievens and Van der Jeugt in [5], we will only present their
results succinctly. For a more thorough deduction of the results, we refer to the aforementioned
paper.

Wigner quantization dictates that the canonical commutation relations involving p̂j and q̂j
should be replaced by less restrictive compatibility conditions (CCs). These arise by imposing the
equivalence of Hamilton’s equations and the Heisenberg equations. For the n-dimensional Wigner
harmonic oscillator, the CCs are given by

[Ĥ, q̂j ] = − i~
m
p̂j , [Ĥ, p̂j ] = i~mω2

j q̂j ,

for j = 1, . . . , n. By introducing new operators a±j by

a±j =

É
mωj
2~

q̂j ∓
iÈ

2m~ωj
p̂j (2)

we can rewrite the Hamiltonian as

Ĥ =
~
2

nX
j=1

ωj{a+
j , a

−
j }.

In terms of these new operators, the compatibility conditions take the form

nX
j=1

ωj
�
{a+

j , a
−
j }, a

±
k

�
= ±2ωka

±
k , (3)

for k = 1, . . . , n. Since the position and momentum operators are self-adjoint, we have (a±j )† = a∓j .

It turns out that we can find operators a±j subject to the latter hermiticity conditions and to the
compatibility conditions (3) in terms of Lie superalgebra generators.

There are two known classes of solutions for the non-isotropic case; we can express a±j in terms
of elements of osp(1|2n) and gl(1|n). For each of these solutions, the spectrum of the Hamiltonian
in specific Lie superalgebra representations was found in [5]. In their paper the authors give a nice
overview of the relevant representations and their characters, and they present the energy spectrum
by means of spectrum generating functions. For a detailed analysis, we refer the reader to that
paper and the references therein. In this text we will summarize the elements of this paper that
are useful for our purposes. It should be noted that we will restrict ourselves to the isotropic case
where ωj = ω for all j = 1, . . . , n.

When both Lie superalgebra solutions are examined, it is time to move forward to the main
objective of this paper. The solution of the Wigner quantum system under consideration depends
on the Lie superalgebra representation V , in which the operators a±j act. So the purpose is to study
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properties of the Wigner oscillator in different representations, one of which will correspond to the
canonical case. For the three-dimensional N -particle Wigner harmonic oscillator, i.e. the case n =
3N , we want to find the angular momentum/energy contents of Lie superalgebra representations
of osp(1|6N) and gl(1|3N). In particular, this means we will try to discover which representations
of so(3) occur in the decomposition of specific Lie superalgebra representations at a given energy
level. We will use the tool of generating functions to achieve this aim. The aspired results are
known in the canonical case, and we will compare this case to the new solutions offered by Wigner
quantization.

First, we discuss the orthosymplectic case in sections 2, 3 and 4. The osp(1|2n) solution to the
Wigner problem is discussed in section 2. All of the results in this introductory section stem from [5].
In section 3 we explain how the angular momentum contents of the osp(1|6N) representations V (p)
can be found by means of generating functions, both theoretically as practically. The actual
generating functions for representations of osp(1|6) and osp(1|12) are computed in section 4. We
also plot the angular momentum/energy contents in so-called (E, j)-diagrams and compare with
the canonical case in this section. The Lie superalgebra solution gl(1|n) is handled in sections 5, 6
and 7. In the concluding section, we summarize our main results.

2 The osp(1|2n) solution

The orthosymplectic Lie superalgebra osp(1|2n) is generated by its odd elements b±j (j = 1, . . . , n).
These paraboson operators are subject to the so-called defining triple relations given by [6]�

{bξj , b
η
k}, b

ε
l

�
= (ε− ξ)δjlbηk + (ε− η)δklb

ξ
j . (4)

In these triple relations, j, k and l are elements from the set {1, 2, . . . , n} and η, ξ, ε ∈ {+,−} (to
be interpreted as +1 and −1 in the algebraic expressions (ε − ξ) and (ε − η)). The even elements

of osp(1|2n) are formed by taking anti-commutators {bξj , b
η
k}.

We can use the paraboson operators to find solutions for the Wigner quantization discussed
earlier. Indeed, writing a±j as

a−j = b−j , a+
j = b+j , (5)

with (j = 1, 2, . . . , n), we see that the compatibility conditions (3) are satisfied using the defining
triple relations (4). The Hamiltonian (1) then takes the following form:

Ĥ =
~ω
2

nX
j=1

{b+j , b
−
j }.

In order to obtain that (a±j )† = a∓j , we need to work with suitable representations of osp(1|2n).

In the paraboson Fock space V (p) we automatically have (b±j )† = b∓j , which makes this unitary
irreducible representation of osp(1|2n) an appropriate choice. In [7] the representation V (p) was
thoroughly investigated, resulting in an explicit basis, matrix elements and character formulas.
The main theorem of that paper gives the conditions on p for V (p) to be a unitary irreducible
representation and it states the character of the representation [7, Theorem 7].

Theorem 1 The osp(1|2n) representation V (p) with lowest weight ( p2 , . . . ,
p
2) is a unirrep if and

only if p ∈ {1, . . . , n− 1} or p > n− 1.
The character of V (p) is given by

charV (p) = (x1 · · ·xn)p/2
X

λ, `(λ)≤dpe
sλ(x) (6)

The ceiling function dpe is there to cover the cases where n− 1 < p < n.
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We have used the notation sλ(x) = sλ(x1, . . . , xn) for the symmetric Schur function, which vanishes
when the length of the partition λ, denoted by `(λ), exceeds the number of variables n. The length of
a partition is its number of parts. For a deep introduction to partitions and symmetric polynomials,
we refer to Macdonald [8].

For our purposes, the character formula (6) is inadequate. Instead the following equivalent
formula [7] for p ∈ {1, 2, . . . , n− 1} will be more practical:

charV (p) = (x1 · · ·xn)p/2
E(0,p)Q

i(1− xi)
Q
j<k(1− xjxk)

, (7)

with
E(0,p) =

X
η

(−1)cηsη(x1, . . . , xn).

In this expression for E(0,p), the sum is over all partitions of the form

η =

�
a1 a2 · · · ar

a1 + p a2 + p · · · ar + p

�

in Frobenius notation, and
cη = a1 + a2 + · · ·+ ar + r.

In the Frobenius notation for partitions, the first and second row denote the lengths of the rows
and columns in the Young diagram of the partition, counted from the diagonal. For the partition
η, a typical shape of the Young diagram is given in Figure 1.

a1

a2

a3

a1 a2 a3

p

p

p

Figure 1: Young diagram of the partition η in Frobenius notation for r = 3.

A simple expression for E(0,p) exists when p = 1 and p = n− 1. In these cases we have

charV (1) = (x1 · · ·xn)1/2 1Q
i(1− xi)

(8)

and

charV (n− 1) = (x1 · · ·xn)(n−1)/2 (1− x1 · · ·xn)Q
i(1− xi)

Q
j<k(1− xjxk)

. (9)

It is possible to find the spectrum of the Hamiltonian Ĥ in the representation V (p). In fact, a
straightforward technique described in [5] delivers the spectrum generating function spec Ĥ, which
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assigns all eigenvalues of Ĥ to a power of t. The multiplicity of an energy level E is then given by
the coefficient of tE . For the osp(1|2n) solution, the spectrum generating function takes the form

spec Ĥ =
X
k≥0

X
λ, |λ|=k, `(λ)≤dpe

sλ(1, . . . , 1) t~ω(np
2

+k), (10)

where |λ| is the order of the partition, by which we mean the sum of its parts. The energy levels
are equidistant and can be written as

E
(p)
k = ~ω(

np

2
+ k),

with k = 0, 1, 2, . . .. The multiplicities of these energy levels are equal to

µ(E
(p)
k ) =

X
λ, |λ|=k, `(λ)≤dpe

sλ(1, . . . , 1).

For p = 1 all of the results above coincide with the canonical results. Indeed, p = 1 represents
canonical quantization.

3 Angular momentum decomposition of osp(1|2n)
The main objective of the present paper is to find the angular momentum content of Lie superalge-
bra representations related to the Wigner quantization of the 3D Wigner harmonic oscillator, both
for osp(1|2n) and gl(1|n) with n = 3N . Both cases are dissimilar with respect to the dimension of
the representation spaces, so a proper approach is needed to tackle both problems. This asks for a
small clarification.

We would like to describe the angular momentum content with a generating function. The
representation V (p) of osp(1|2n) is infinite-dimensional, which implies that it is impossible to
construct a generating function comprising all osp(1|2n) representations. Therefore, our objective in
the osp(1|2n) case is to construct a generating function for every representation V (p) separately. In
the gl(1|n) solution, examined from section 5 onwards, the representations will be finite-dimensional.
In that case, the generating function will contain variables characterizing the gl(1|n) representation.

We would like to find how the Hilbert space in which the Hamiltonian acts decomposes to so(3)
representations. In this section we will discuss the osp(1|2n) case, where n = 3N . In that case we
can rely on the embedding

osp(1|6N) ⊃ sp(6N) ⊃ u(3N) ⊃ u(3)⊕ u(N) ⊃ so(3)⊕ u(1) (11)

to come up with a generating function that represents the angular momentum decomposition of
the osp(1|6N) representation V (p). Some explanation is needed to see why this is the correct
embedding to use, i.e. to see why the angular momentum operators are elements of this so(3)
subalgebra of osp(1|6N).

3.1 Angular momentum

For n = 3, our physical system is a three-dimensional harmonic oscillator. In a canonical context,
the angular momentum operators are defined by M = q̂× p̂, or

Mj =
3X

k,l=1

εjkl q̂kp̂l, (j = 1, 2, 3),
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where εjkl is the Levi-Civita symbol. Since the position and momentum operator cannot be assumed
to commute in Wigner quantization, a logical definition of the angular momentum operators is

Mj =
1

2

3X
k,l=1

εjkl{q̂k, p̂l}, (j = 1, 2, 3),

which, by means of (2), can be written as

Mj =
−i~

2

3X
k,l=1

εjkl{a+
k , a

−
l }, (j = 1, 2, 3). (12)

The compatibility conditions (3) do not contain enough information to lead to commutation rela-
tions between M1, M2 and M3. However, in the osp(1|6) solution a±j = b±j one finds

[Mi,Mj ] = i~ εijkMk, (i, j, k = 1, 2, 3).

These are the commutation relations of so(3). Now, since the operators Mj are in essence elements
{b+k , b

−
l } of osp(1|6), they belong to the osp(1|6) subalgebra u(3) from the embedding

osp(1|6) ⊃ sp(6) ⊃ u(3) ⊃ so(3)⊕ u(1),

which follows from [7, Proposition 3]. The generalization to osp(1|6N) is rather straightforward.
The physical system is now an N -particle three-dimensional harmonic oscillator. The position and
momentum operators have a second index α, with α = 1, . . . , N . The angular momentum operators
of the particle α can be written as

Mj,α =
1

2

3X
k,l=1

εjkl{q̂k,α, p̂l,α} =
−i~

2

3X
k,l=1

εjkl{a+
k,α, a

−
l,α}, (j = 1, 2, 3).

The total angular momentum is obtained by adding all the angular momenta of the individual
particles. Thus we have

Mj =
NX
α=1

Mj,α, (j = 1, 2, 3). (13)

These Mj are elements of the u(3) subalgebra of osp(1|6N) and satisfy the so(3) commutation
relations. Therefore the angular momentum components generate the so(3) subalgebra of u(3) in
the following chain of subalgebras:

osp(1|6N) ⊃ sp(6N) ⊃ u(3N) ⊃ u(3)⊕ u(N) ⊃ so(3)⊕ u(1).

The question now is how the osp(1|6N) representation V (p) decomposes with respect to these
subalgebras.

3.2 Decomposing the osp(1|6N) representation V (p)

The starting point of the decomposition of V (p) is the character of the Lie superalgebra repre-
sentation given by equation (6). Each Schur-function sλ(x1, . . . , xn), with λ = (λ1, . . . , λn) is the
character of an irreducible covariant tensor representation of u(n) [9] and corresponds to the u(n)
representation with highest weight λ, where n = 3N . In other words, equation (6) is a u(3N) char-
acter generating function. In contrast, we want the result of our analysis to be a representation
generating function. In other words, the generating function returns all representations of so(3)

6



that appear in the decomposition of a fixed representation V (p) of osp(1|6N). By means of an
example we will try to avoid confusion between both concepts.

The character of V (p) given by equation (6) is, as explained earlier, a u(3N) character generating
function. Indeed, it contains the characters of all u(3N) representations in the decomposition of the
osp(1|6N) representation V (p). Such a u(3N) character however, consist of many superfluous terms
if one only wishes to know which u(3N) representations appear. After all, a u(3N) representation
is characterized by a partition λ, so a term xλ = xλ11 . . . xλnn would suffice instead of sλ(x1, . . . , xn).

Consider the representation V (2) of osp(1|6) for example. Following equation (9) we see that
the u(3) character generating function takes the form

x1x2x3(1− x1x2x3)

(1− x1)(1− x2)(1− x3)(1− x1x2)(1− x1x3)(1− x2x3)
. (14)

The expansion of this function contains all u(3) characters in the decomposition of the osp(1|6)
representation V (2). The u(3) character generating function could just as well have been derived
directly from equation (6). The partitions λ in this equation have a maximum of two parts, so the
u(3) representation generating function is created by replacing every Schur function in equation (6)
by its leading term xλ11 xλ22 . We obtain

x1x2x3

∞X
λ2=0

∞X
λ1=λ2

xλ11 xλ22 =
x1x2x3

(1− x1)(1− x1x2)
. (15)

Every monomial xλ11 xλ22 in the expansion of this easier looking function corresponds to a u(3)
representation characterized by the partition λ. One can verify that the method described in the
next paragraph, applied to the u(3) character generating function (14), will indeed give (15) as a
result.

Let us now return to the general case and consider the branching to u(3)⊕ u(N) in (11). The
substitution

xi := ujvlz, (j = 1, 2, 3 and l = 1, . . . , N) (16)

in equation (7) yields a character generating function for u(3)⊕ u(N). The factor

z = t~ω

keeps track of the energy, since the power of z after the substitution (16) in (6) equals |λ| and the

order of the partition λ determines the energy level E
(p)
k , as can be seen from equation (10). We

will keep using this notation throughout the rest of the paper.
By now it should be clear that the u(3N) character generating function (7) is not a represen-

tation generating function. Likewise, after the substitution (16) one does not obtain a u(3)⊕ u(N)
representation generating function. Therefore, we need to describe a technique for changing a
character generating function into a representation generating function.

From character generating function to representation generating function

A character generating function for a simple Lie algebra g can generally be written as:

F (η) =
X
λ

χλ(η)Nλ,

where the sum runs over a fixed set of integrable highest weights of g, and where each character
χλ(η) is the coefficient of a variable Nλ of some sort. Suppose the vector η = (η1, . . . , ηm) has
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m components, corresponding to the number of nonzero Dynkin labels of λ. The Weyl character
formula allows us to write the characters as

χλ(η) =

X
w∈W

ε(w) ηw(λ+ρ)

ηρ
Y

α∈∆+

(1− η−α)
,

where W is the Weyl group, ρ is the Weyl tool and ∆+ is the set of positive roots of the Lie
algebra. In order to transform F (η) into a representation generating function, one has to multiply
F (η) by

Q
α∈∆+

(1 − η−α) and keep the terms in the dominant Weyl sector. All of this applied
to our situation, where the Lie algebra u(n) has the symmetric group as its Weyl group, means
that we need to maintain the terms in ηλ, where λ is a partition. One method of doing this, is by
making the substitution

η1 = c1η1, η2 =
c2

c1
η2, . . . ηm−1 =

cm−1

cm−2
ηm−1, ηm =

1

cm−1
ηm

in F (η)
Q
α∈∆+

(1 − η−α) and keep all positive powers of c1, . . . , cm. This comes down to finding

the term in c0
1 c

0
2 . . . c

0
m−1 in the power series expansion of the function

F (η)
Y

α∈∆+

(1− η−α)
1

(1− c−1
1 ) · · · (1− c−1

m )
.

Several computational software packages have specific methods of finding constant terms in an
expression.

For our u(3)⊕ u(N) character generating function, we would have to perform the substitution
described above for the variables ui, belonging to u(3), and vl, belonging to u(N). Since the next
step in the decomposition (11) is from u(3)⊕u(N) to so(3)⊕u(1), we want the u(N) representation
labels to be replaced by the dimension of the corresponding u(N) representation in the obtained
representation generating function for u(3)⊕ u(N).

Introducing the dimensions of the u(N) representations

Replacing a term vν = vν11 . . . vνNN by the dimension of the u(N) representation labeled by ν =
(ν1, . . . , νN ) demands knowledge of a so-called dimension generating function, in which the coef-
ficient of vν is the dimension of the corresponding u(N) representation. The dimension of such a
representation is known [8] and equals sν(1, . . . , 1). Thus, the dimension generating function we
need is of the form X

ν

sν(1, . . . , 1)vν .

An expression for this u(N) dimension generating function for general N is not known. However,
for our purposes the u(2) dimension generating function will be enough. In this N = 2 case we
have X

ν

sν(x1, x2)vν =
1

(1− x1v1)(1− x2v1)(1− x1x2v1v2)
. (17)

Indeed, the summation on the left-hand side can be written as

∞X
λ1=λ2

∞X
λ2=0

λ1−λ2X
k=0

xλ1−k1 xλ2+k
2 vλ11 vλ22 ,
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which simplifies to the right-hand side of (17). Therefore, the dimension generating function of
u(2) is

1

(1− v1)2(1− v1v2)
. (18)

We now want this u(2) dimension generating function and the previously obtained u(3) ⊕ u(2)
generating function – let us denote this by H2(u, v) – to be “substituted” in one another. Saying
that two generating functions F1(X,Y ) and F2(X,Z), with common variables X, are substituted
in each other, means that Xx is replaced in either of these generating functions by the coefficient
of Xx in the other. This is achieved by finding the term in X0 in either F1(X,Y )F2(X(−1), Z) or
F1(X(−1), Y )F2(X,Z), whichever is more easily calculated. Indeed, if F1(X,Y ) contains a term
p1(Y )Xx and F2(X(−1), Z) includes a term p2(Z)X(−x), then we find a term p1(Y )p2(Z) in the
product of both functions.

Here, we have H2(u, v) on the one hand and the u(2) dimension generating function (18) on the
other hand. Substituting these generating functions in each other is done by taking the constant
term in the variables v1 and v2 in the expansion of

H2(u, v)
1

(1− v−1
1 )2(1− v−1

1 v−1
2 )

.

This replaces the variables v1 and v2 in H2(u, v) by the dimensions of the corresponding u(2)
representations. Again, finding the constant term can be done by various mathematical software
packages.

Angular momentum content

What is left now is a generating function which models the decomposition of a u(3N) representation
into u(3) representations. These representations of u(3) are labeled by the variables u1, u2, u3, the
powers of which represent the partition (λ1, λ2, λ3) that characterizes the representation. Further
decomposition to so(3) is brought about by the known generating function for su(3) ⊃ so(3) [10],
given here in Dynkin label notation:

1 + PQJ

(1− PJ)(1−QJ)(1− P 2)(1−Q2)
, (19)

in which J is the so(3) label. Hence, the generating function for u(3) ⊃ so(3) in partition notation
can be written as

G(u1, u2, u3) =
1 + u2

1u2 J

(1− u1u2u3)(1− u1 J)(1− u1u2 J)(1− u2
1)(1− u2

1u
2
2)
. (20)

All factors from equation (19) appear in (20) in accordance with the relation [p, q] = [λ1−λ2, λ2−λ3],
except for (1− u1u2u3) in the denominator of (20). This is explained by the fact that the Dynkin-
label [p, q] is not influenced when a random integer is added to every part of the partition λ.

Substituting one of these generating functions into the other is done by a similar technique as
before. One just has to multiply the first generating function, embodying the embedding of u(3)
in osp(1|6N), by G(u−1

1 , u−1
2 , u−1

3 ) and take the term in u0
1u

0
2u

0
3 in this expression. The resulting

generating function describes the angular momentum content of the osp(1|6N) representation V (p).

4 Generating functions for osp(1|6) and osp(1|12)
Remember that the goal in the orthosymplectic case is to derive a generating function for each
representation separately. Such a generating function will be a function of two variables, J and z.
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The former labels the so(3) content of the representation V (p), while the latter accounts for the
u(1) part. In fact, each power of z stands for an energy level.

We can now apply the techniques described in the previous section to derive generating functions
for the angular momentum decomposition of the representations V (p) of osp(1|6) and osp(1|12).
However, the osp(1|6) case simplifies drastically as each representation V (p) decomposes to u(3)
right away. Therefore we can use a different logic to find the desired generating functions.

4.1 Generating functions for osp(1|6) ⊃ so(3)⊕ u(1)

From the character formula in equation (6) one can see that the representation V (p) of osp(1|6)
decomposes as a direct sum of u(3) representations labeled by a partition λ, where λ has at most
three parts. The branching of these u(3) representations can immediately be obtained with the
help of equation (20). We separate three cases: p = 1, p = 2 and p > 2.

p = 1 : All partitions in the character formula (6) have length 1, so λ2 = λ3 = 0. It is then
obvious that the generating function for p = 1 is simply G(z, 0, 0), where G(u1, u2, u3) is the
generating function (6). Not forgetting the factor z3p/2 for the energy we obtain

z3/2

(1− zJ)(1− z2)
. (21)

One can use this generating function to derive the so(3) representations that emerge at energy level

E
(1)
k . This information can be made accessible by means of a table in which the element in row k+1

and column j + 1 (counted from the bottom) marks the number of representations J j at energy

level E
(1)
k in the angular momentum decomposition of osp(1|6). We call this the (E, j)-diagram of

osp(1|6) for p = 1.
... . .

.

11/2 1 1 1
9/2 1 1
7/2 1 1
5/2 1
3/2 1

Ek
j 0 1 2 3 4 · · ·

Indeed, the first few terms in the expansion of (21) are

z3/2 + J z5/2 + (1 + J2) z7/2 + (J + J3) z9/2 + (1 + J2 + J4) z11/2 + · · · .

We see for example that at energy level E
(1)
k = 9/2~ω, there are two so(3) representations in the

decomposition of the osp(1|6) representation V (1), characterized by j = 1 and j = 3. Of course,
these results were already known because p = 1 represents the canonical case. This (E, j)-diagram
for instance also appears in [11].

p = 2 : The partition λ now has at most two parts, so λ3 = 0. The so(3)⊕ u(1) decomposition
of u(3) representations labeled by such partitions is given by G(z, z, 0). Therefore, we can write
the generating function for the angular momentum decomposition of osp(1|6) for p = 2 as

(1 + z3J) z3

(1− zJ)(1− z2J)(1− z2)(1− z4)
. (22)

10



As in the previous case, we can generate the (E, j)-diagram of osp(1|6) for p = 2.

... . .
.

7 2 1 3 1 1
6 2 1 1
5 1 1 1
4 1
3 1

Ek
j 0 1 2 3 4 · · ·

Let us look at the case Ek = 7~ω, i.e. k = 4 as an example. There are three partitions with two
parts of order 4, namely (4, 0, 0), (3, 1, 0), and (2, 2, 0). The so(3) representations that emerge in
these cases can be found by equation (20). In total we have

(1 + J2 + J4) + (J + J2 + J3) + (1 + J2).

This is in accordance with the coefficient of z7 in equation (22), as can be seen from the (E, j)-
diagram as well.

p > 2 : Since the length of the partitions in (6) cannot exceed the number of variables, we are
looking in this case at partitions of length at most 3. So the generating function for p > 2 is
z3p/2G(z, z, z), or

(1 + z3J) z3p/2

(1− zJ)(1− z2J)(1− z2)(1− z3)(1− z4)
. (23)

The (E, j)-diagram for p > 2 is given by.

... . .
.

3p/2 + 4 2 2 3 1 1
3p/2 + 3 1 2 1 1
3p/2 + 2 1 1 1
3p/2 + 1 1

3p/2 1

Ek
j 0 1 2 3 4 · · ·

Notice that for the lower energy levels, the cases p = 2 and p > 2 do not differ very much from the
canonical case. The larger discrepancies are found in higher energy regions.

4.2 Generating functions for osp(1|12) ⊃ so(3)⊕ u(1)

The previous case might have been very elementary, for osp(1|12) the computations are much
harder. In fact, it is not practically possible to find generating functions for all osp(1|12) represen-
tation V (p). For V (1) and V (2) however, we are able to follow all the steps from section 3.2 to
construct the generating function for the angular momentum decomposition. We were unable to
compute these generating functions for the representations V (p) with p ≥ 3.

The representation V (1)

We start with the character of V (1), given by equation (8), and perform the substitution (16), thus
creating a u(3)⊕ u(2) character generating function:

(u2
1u

2
2u

2
3 v1v2)3/2z3

(1− u1v1z)(1− u2v1z)(1− u3v1z)(1− u1v2z)(1− u2v2z)(1− u3v2z)
.

11



We need to change this into a representation generating function. To this end, we multiply the
previous function by Y

α∈∆+

(1− u−α)
Y

α′∈∆′+

(1− v−α′),

where ∆+ and ∆′+ are the positive roots of u(3) and u(2) respectively. Thus we have

∆+ = {(1,−1, 0), (1, 0,−1), (0, 1,−1)} and ∆′+ = {(1,−1)}.

Therefore we need to multiply our u(3)⊕ u(2) character generating function by

(1− u2

u1
)(1− u3

u1
)(1− u3

u2
)(1− v2

v1
)

and perform the substitutions

u1 = au1, u2 =
bu2

a
, u3 =

u3

b
, v1 = cv1, v2 =

v2

c
.

We want to keep all positive powers of a, b and c, so we multiply our function by

1

(1− a−1)(1− b−1)(1− c−1)

and find the constant term in a, b and c. This is the hardest step to compute. The term in a0b0c0

factorizes nicely as
(u2

1u
2
2u

2
3 v1v2)3/2z3

(1− u1v1z)(1− u1u2v1v2z2)
.

This is the u(3) ⊕ u(2) representation generating function, in which we want to change the u(2)
labels v1 and v2 by the dimensions of the corresponding u(2) representations. Following equation
(18), the u(2) dimension generating function is

1

(1− v1)2(1− v1v2)
.

Substituting this into the previously obtained u(3)⊕ u(2) representation generating function gives

u1u2u3 z
3

(1− u1z)2(1− u1u2z2)
.

The angular momentum content is then found by substituting this function and G(u1, u2, u3) from
equation (20) into each other. The resulting angular momentum generating function for the repre-
sentation V (1) of osp(1|12) is

(1 + Jz2) z3

(1− z2)3(1− Jz)2
. (24)

The (E, j)-diagram shows the result for the first few energy levels.

... . .
.

11/2 6 3 9 3 5
9/2 6 2 4
7/2 3 1 3
5/2 2
3/2 1

Ek
j 0 1 2 3 4 · · ·

12



The representation V (2)

The character of V (2), obtained from (7), does not factorize nicely. The angular momentum
generating function for V (2) can be constructed in precisely the same manner as for V (1). The
u(3)⊕ u(2) representation generating function in this case equals N/D, with

N = 1 + u21v21z3 + u221v32z5 + u321v42z6 + u321v33z6 − 2u321v42z6

− u421v52z7 − u421v43z7 − u422v53z8 − u431v53z8 − u432v63z9

− u432v54z9 − 2u532v64z10 + u532v73z10 + u532v64z10 + u632v74z11

+ u643v85z13 + u853v10,6z16

(25a)

and

D = (1− u1v1z)(1− u2v11z2)(1− u11v2z2)(1− u11v11z2)(1− u111v21z3)

(1− u22v22z4)(1− u211v31z4)(1− u211v22z4)(1− u222v33z6),
(25b)

where we have used the notation uλ = uλ11 uλ22 uλ33 , and similarly for v. The powers of z are
integers, not partitions. The angular momentum generating function, also quite cumbersome, has
a numerator equal to

z6
�
1 − 2z + 3z2 + Jz2 − 2z3 + 4Jz3 + 6z4 − 7Jz4 − 3J2z4 − J3z4 − 6z5 + 4Jz5 − 2J2z5

− 4J3z5 + 6z6 − 8Jz6 − 3J2z6 + 10J3z6 + 3J4z6 − 2z7 + 10Jz7 + 4J2z7 − 8J3z7

+ 3z8 − 14Jz8 − 16J2z8 + 13J3z8 − 3J4z8 − 3J5z8 − 2z9 + 2Jz9 + 6J2z9 − 12J3z9

+ 6J4z9 + 4J5z9 + z10 − 5Jz10 + 2J2z10 + 28J3z10 + 2J4z10 − 5J5z10 + J6z10

+ 4Jz11 + 6J2z11 − 12J3z11 + 6J4z11 + 2J5z11 − 2J6z11 − 3Jz12 − 3J2z12 + 13J3z12

− 16J4z12 − 14J5z12 + 3J6z12 − 8J3z13 + 4J4z13 + 10J5z13 − 2J6z13 + 3J2z14

+ 10J3z14 − 3J4z14 − 8J5z14 + 6J6z14 − 4J3z15 − 2J4z15 + 4J5z15 − 6J6z15 − J3z16

− 3J4z16 − 7J5z16 + 6J6z16 + 4J5z17 − 2J6z17 + J5z18 + 3J6z18 − 2J6z19 + J6z20
�
,

while the denominator is

(1− z4)4(1− z2)2(1− z)2(1− J2z2)(1− Jz2)3(1− Jz)2.

Schematically thrown into a (E, j)-diagram this gives

... . .
.

7 19 22 34 15 9
6 2 14 8 6
5 4 4 4
4 2
3 1

Ek
j 0 1 2 3 4 · · ·

for the lower energies.

5 The gl(1|n) solution

The elements of the general linear Lie superalgebra gl(1|n) are denoted by ejk, j, k = 0, 1, . . . , n,
where e0j and ej0 are the odd generators. The commutation and anti-commutation relations valid
for this algebra are

Jeij , eklK = δjkeil − (−1)deg(eij)deg(ekl)δilekj . (26)
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In terms of gl(1|n) generators, solutions of the compatibility conditions (3) can be written as

a−j =

Ê
2

n− 1
ej0, a+

j =

Ê
2

n− 1
e0j .

The hermiticity condition (a±)† = a∓ implies the star condition

(e0j)
† = ej0. (27)

The Hamiltonian can then be rewritten as

Ĥ =
~ω
n− 1

�
ne00 +

nX
j=1

ejj
�
.

The unitary representations of gl(1|n) compatible with the star condition (27) are known [12]: aside
from the typical representations, we have the covariant and contravariant tensor representations.
Here we are going to work with the covariant tensor representations Vλ, labeled by a partition λ
with λ2 ≤ n. The character of this representation was given by Berele and Regev in [13]. It is a
supersymmetric Schur function sλ(x1|y1, . . . , yn) that can be written as

charVλ = sλ(x1|y1, . . . , yn)

=
X
µ,ν

cλµνsµ(x1)sν′(y1, . . . , yn), (28)

where the coefficients cλµν are the Littlewood-Richardson coefficients and ν ′ is the conjugate partition
of ν, i.e. the partition that is obtained when the Young diagram of ν is transposed. The Littlewood-
Richardson coefficients are integers and arise as coefficients in the expansion of a product of two
Schur functions as a linear combination of Schur functions.

Equation (28) is worth a closer look. First, we note that sµ(x1) vanishes unless the length of
the partition µ is equal to one, the number of variables of the Schur function. Thus, only partitions
of the form µ = (r) are allowed. In this case we have

s(r)(x1) = xr1.

The Littlewood-Richardson coefficients simplify a lot in this case as well. In [8, §5] we find

cλ(r)ν =

(
1 if λ− ν is a horizontal r-strip

0 otherwise.

To explain what a horizontal r-strip is, we must first introduce the notion of a skew diagram.
Consider two partitions λ and ν such that νj ≤ λj for all j. In other words, the Young diagram of
ν is embedded in the Young diagram of λ. The set-theoretic difference θ = λ − ν is called a skew
diagram and contains the squares that belong to the Young diagram of λ but not to the Young
diagram of ν. If θ contains at most one block per column, i.e. θ′i ≤ 1, the skew diagram is called
a horizontal strip. A horizontal strip with r blocks is then called a horizontal r-strip. In Figure 2
we find an example of a horizontal 4-strip.

Combining these results, we find that equation (28) can conveniently be rewritten as

charVλ = sλ(x1| y) =
X
r≥0

xr1
X
ν

sν′(y),

where the second summation runs over all partitions ν such that λ− ν is a horizontal r-strip. The
first summation is not infinite. Since the Young diagram of the partition λ has λ1 columns, the

14
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Figure 2: The horizontal 4-strip λ− ν with λ = (5, 4, 2, 2, 1) and ν = (5, 2, 2, 1).

horizontal strip λ− ν can only have a maximum of λ1 parts. So r will never exceed the value λ1.
Another remark is that r cannot be too small either. If λ− ν would be an r-strip with r < λ1 − n,
then ν would have to be a partition with ν1 > n. This would imply that the length of the conjugate
partition ν ′ is larger than n, which means that the Schur function sν′(y) vanishes. Since λ1 − n
could be negative, we say that r takes values between r∗ and λ1, where r∗ is given by

r∗ =

(
0 if λ1 ≤ n
λ1 − n otherwise.

Since λ2 ≤ n, horizontal r-strips can always be formed for each r between r∗ and λ1. In conclusion,
the character can be simplified further as follows:

charVλ = sλ(x1| y) =
λ1X
r=r∗

xr1
X
ν

sν′(y), (29)

where the second sum is again taken over all partitions ν such that λ− ν is a horizontal r-strip.
Like in the osp(1|2n) case, a spectrum generating function can be produced. We confine our-

selves to giving the energy levels of the system. They can be written as

E
(λ)
k = ~ω

� |λ|
n− 1

+ r∗ + k
�
, (k = 0, . . . ,min(λ1, n)).

The total number of energy levels depends on λ1 and is equal to min(λ1, n) + 1.

6 Angular momentum decomposition of gl(1|n)
We will use many of the principles of the orthosymplectic case to find generating functions for
the angular momentum decomposition of gl(1|n) for n = 3N . One must always bear in mind,
however, that the gl(1|n) representations Vλ are finite-dimensional. Therefore our goal will be to

create a generating function in which the coefficient of Aλ = A
λ′1
1 . . . A

λ′n
n represents the angular

momentum decomposition of Vλ. We will thus construct a generating function comprising the
angular momentum decomposition of every gl(1|n) representation Vλ. This is different than our
approach for osp(1|2n), where the generating functions applied to just one representation V (p).

As before, the angular momentum operators will be part of the so(3) subalgebra of gl(1|3N) in
the chain of subalgebras

gl(1|3N) ⊃ u(3N) ⊃ u(3)⊕ u(N) ⊃ so(3)⊕ u(1) (30)

However, a little caution is required since it turns out that the angular momentum operators do
not immediately satisfy the commutation relations of so(3).
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6.1 Angular momentum

The angular momentum operators must obviously be defined independently from the choice of the
Lie superalgebra representation. Thus, just as in equation (12), we have

Mj =
−i~

2

3X
k,l=1

εjkl{a+
k , a

−
l }, (j = 1, 2, 3)

for n = 3, i.e. the three-dimensional Wigner harmonic oscillator. In the gl(1|3) solution a+
j = e0j

and a−j = ej0 one finds

[Mi,Mj ] =
i~
2
εijkMk, (i, j, k = 1, 2, 3).

So the operators Lj = 2Mj generate so(3). The purpose of angular momentum decomposition is
mainly finding the spectrum of operators like e.g. M2 or M3. Obviously, this spectrum only differs
by a factor from the spectrum of L2 and L3, so finding the so(3) content is again a useful problem
to tackle in this case.

For n = 3N , the N -particle three-dimensional Wigner harmonic oscillator, the angular momen-
tum operators Mj are defined as in equation (13). Again, apart from a factor 2 these operators

generate the so(3) subalgebra of gl(1|3N) in the gl(1|3N) solution a+
j =

È
2/(3N − 1) e0j and

a−j =
È

2/(3N − 1) ej0. Therefore we wish to know how the gl(1|3N) representation Vλ decom-
poses with respect to the chain of subalgebras (30).

6.2 Decomposing the gl(1|3N) representation Vλ

As in the osp(1|6N) case, the starting point of this decomposition is the character of Vλ, given by
equation (29). The Schur-functions sν′(y1, . . . , y3N ) in this character are characters of the u(3N)
representations that occur in this decomposition. The branching to u(3)⊕ u(N) representations is
done by the substitution

yi := ujvlz, (j = 1, 2, 3 and l = 1, . . . , N). (31)

The u(3) and u(N) representations that occur in this branching can be deduced from the following
known relation:

sν′(u1v1, . . . , u3vN ) =
X
σ,τ

gν′,σ,τ sσ(u1, u2, u3)sτ (v1, . . . , vN ),

which features the Kronecker coefficients gν′,σ,τ . These are the coefficients that appear when the
product of two characters of the symmetric group Sn are expanded in terms of Sn characters:

χσρχ
τ
ρ =

X
ν′
gν′,σ,τ χ

ν′
ρ ,

where σ, τ, ν ′ and ρ are partitions of n. Recently King and Welsh [14] developed a so-called “grand
generating function” for the Kronecker coefficients. Applied to our context, we can say that when
ν ′, σ and τ are partitions of n, the Kronecker coefficients are the coefficients of the term in znyν

′
uσvτ

in the expansion of

Y
i,j,k

1

(1− yiujvk z)
Y
i<j

�
1− yj

yi

�Y
i<j

�
1− uj

ui

�Y
i<j

�
1− vj

vi

�
. (32)

All products in this grand generating function run from 1 to the length of the corresponding par-
titions, which in our case would be 3N , 3 and N for ν ′, σ and τ respectively. This is already
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a generating function for the decomposition of u(3N) to u(3) ⊕ u(N). But the grand generating
function is not a u(3)⊕ u(N) representation generating function since its expansion contains many
terms of the form yµ1uµ2vµ3zn in which µ1, µ2 and µ3 are not partitions. However, the same tech-
nique as for the orthosymplectic case will turn the grand generating function into a representation
generating function. This step is computationally very demanding and can only be performed for
specific types of u(3N) representations.

Once this step is done, the rest is easy. The u(N) labels v1, . . . , vN need to be replaced by
the dimensions of their corresponding u(N) representations as before. The resulting generating
function then needs to substituted into the generating function (20) for the branching u(3) ⊃ so(3).

Generating functions for the angular momentum decomposition of the gl(1|3N) representations
Vλ, where λ1 = 1, have been constructed for general values of N in [15] using a different group
theoretical method. We were able to extend these results to other forms of λ, but only for gl(1|3)
and gl(1|6). For other values of N the computations prove to be too hard.

7 Generating functions for gl(1|3) and gl(1|6)
Since the length of the partition λ is arbitrary, a generating function in which the coefficient of
Aλ = Aλ11 Aλ22 . . . is the angular momentum decomposition of the gl(1|3N) representation Vλ would
have an infinite amount of variables Ai. Therefore we choose this angular momentum decomposition

to be accompanied by A
λ′1
1 . . . A

λ′n
n , thus creating a generating function with n = 3N variables. This

is possible because only the values of λ′1, . . . , λ
′
n affect the angular momentum decomposition of Vλ,

as can be seen from the character formula (29).
In the previous section we explained how a generating function for the decomposition of a u(3N)

representation in accordance with the chain of subalgebras

u(3N) ⊃ u(3)⊕ u(N) ⊃ so(3)⊕ u(1)

can be created. Let us denote this generating function by H(J,A1, . . . , An). The angular mo-
mentum decomposition of the gl(1|3N) representation Vλ will then be described by the following
generating function:

H(J,A1, . . . , An) z
|λ|
n−1

+r∗
min(λ1,n)Y

i=1

(1 +Aiz). (33)

To see why this is true, we first note that the bottom energy level equals |λ|
n−1 + r∗, which explains

the power of z in (33). Each value of r = r∗ + k then defines a new energy level and is thus
responsible for an extra factor z. For reasons of clarity, the rest of the analysis will be done for a
typical partition λ, with λ1 ≥ n. The same ideas can be adopted in the atypical cases.

For r = λ1 − n, i.e. on the ground energy level, there is only one partition ν for which λ − ν
is a horizontal r-strip. Its conjugate can be written as ν ′ = (λ′1, . . . , λ

′
n). The corresponding repre-

sentation of u(3N) decomposes to so(3) as described by the generating function H(J,A1, . . . , An),
so there must be at least one term

H(J,A1, . . . , An)

in the generating function we are trying to describe. In general there are n partitions ν such that
λ− ν is a horizontal (λ1 − n+ 1)-strip. Their conjugate partitions are of the form

ν ′ = (λ′1, . . . , λ
′
i − 1, . . . , λ′n),

where i = 1, . . . , n. The angular momentum decomposition of the u(3N) representations character-

ized by these partitions will be in the coefficient of A
λ′1
1 . . . A

λ′n
n in AiH(J,A1, . . . , An). Therefore,
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our generating function must also contain the term

H(J,A1, . . . , An) z (A1 + · · ·+An).

Note that it is possible that λ′i = λ′i+1, in which case ν ′ would not be a partition. However, in this

case the coefficient of Aν
′

in H(J,A1, . . . , An) will be zero. In other words, this “non-partition”
will not be counted at all.

The factor (A1 + · · ·+ An) in the term for r = λ1 − n+ 1 is in fact the elementary symmetric
polynomial e1(A1, . . . , An). The elementary symmetric polynomial ei in n variables is defined by
the sum of all possible products of i out of the n variables. We refer to Macdonald [8] for a more
elaborate introduction to elementary symmetric polynomials. For r = λ1−n+2 there are typically
n(n − 1)/2 partitions ν for which λ − ν is a horizontal r-strip. An analogous reasoning as before
shows that they are responsible for a term

H(J,A1, . . . , An) z2
X

1≤i<j≤n
AiAj

in our generating function. This term contains the elementary symmetric function e2(A1, . . . , An).
Taking all values of r into account, it is not so hard to see that the generating function for the
angular momentum decomposition of the gl(1|3N) representation Vλ equals

H(J,A1, . . . , An) z
|λ|
n−1

+λ1−n
nX
i=0

ei(A1, . . . , An)zi

in the typical case where λ1 ≥ n. In this expression we find back the generating function for
elementary symmetric functions, which can be rewritten (see for example Macdonald [8]) as

nX
i=0

ei(A1, . . . , An)zi =
nY
i=1

(1 +Aiz).

For the atypical cases, where λ1 < n, we can build up a similar analysis to eventually obtain the
generating function in equation (33).

Clearly, the most important part of our problem is finding the u(3N) ⊃ so(3) generating
function H(J,A1, . . . , An). However, for gl(1|3) this step is trivial, so the results can be written
down immediately.

7.1 Generating functions for gl(1|3) ⊃ so(3)

For the main part, the decomposition of the representation Vλ of gl(1|3) following the branching

gl(1|3) ⊃ u(3) ⊃ so(3)

is described by the generating function G(A1, A2, A3) given by equation (20), where A1, A2 and
A3 label the first three parts of the conjugate partition of λ. The rest of the generating function
follows from the previous discussion, equation (33) in particular, and depends on λ1. For λ1 ≥ 3
we find

z
|λ|
2

+r∗ (1 +A1z)(1 +A2z)(1 +A3z)(1 +A2
1A2 J)

(1−A1A2A3)(1−A1 J)(1−A1A2 J)(1−A2
1)(1−A2

1A
2
2)
. (34)

The cases where `(λ′) = 2 and `(λ′) = 1 are easily deduced from this equation by setting A3 = 0
and A2 = A3 = 0 respectively. For `(λ′) = 1 we find back the results from King, Stoilova and Van
der Jeugt in [15].
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The generating function (34) allows us to construct (E, j)-diagrams for any gl(1|3) represen-
tation Vλ. Some examples for the typical case are given below, with λa = (3, 1, 0) and λb =
(3, 2, 2, 1, 1).

5 1
4 1 1 1
3 1 1 1
2 1

Eλak
j 0 1 2

and

15/2 1 2 1 1
13/2 3 3 4 2 1
11/2 3 3 4 2 1
9/2 1 2 1 1

Eλbk
j 0 1 2 3 4 5

The information of these (E, j)-diagrams can be obtained from the coefficient of Aν
′
a and Aν

′
b in the

expansion of (34), for ν ′a = (2, 1, 1) and ν ′b = (5, 3, 1) respectively. As a primary difference with the
canonical case (and the osp(1|6N) case in general) we see that there is a finite amount of energy
levels. Also, at the bottom energy level we see more than one so(3)-multiplet. The first (E, j)-
diagram, where λ = (3, 1, 0) shows an exception to this remark. We also note that we still have
equidistant energy levels, and that there are again higher multiplicities of so(3) representations.

In the atypical cases, the number of energy levels decreases as the length of λ becomes smaller.
For λ = (2, 1, 1) we have

4 1 1
3 2 1 1
2 1 1 1

Eλk
j 0 1 2 3

There are only three energy levels in this case, and we observe that the vertical symmetry of the
(E, j)-diagram is now gone.

7.2 Generating functions for gl(1|6) ⊃ so(3)

The case gl(1|3) is deceivingly simple compared to gl(1|6). In fact, it will no longer be possible to
construct the generating function H(J,A1, . . . , A6) for all representations of u(6). More precisely,
we will only be able to handle the cases `(λ′) = 1 and `(λ′) = 2 completely, where λ is the partition
that characterizes the gl(1|6) representation Vλ.

The representation Vλ with `(λ′) = 1

We follow the procedure described in section 6.2 to obtain a generating function H(J,A1) which
will describe the angular momentum generating function for the u(6) representation characterized
by a partition ν ′, where ν ′ contains of one part only. The starting point is the grand generating
function (32) for N = 2:

(1− u2
u1

)(1− u3
u1

)(1− u3
u2

)(1− v2
v1

)

(1− u1v1A1)(1− u2v1A1)(1− u3v1A1)(1− u1v2A1)(1− u2v2A1)(1− u3v2A1)
,

where we have taken into account the fact that λ1 = `(λ′) = 1 and therefore only one parameter
A1 is necessary to describe the u(6) representation. We recognize this function from the V (1)
representation of osp(1|12), where the starting function was the same. Thus, the rest of the analysis
can be adopted from that case and eventually we find

H(J,A1) =
(1 + JA2

1)

(1−A2
1)3(1− JA1)2

.
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The generating function for the angular momentum decomposition of the gl(1|6) representation Vλ,
with `(λ′) = 1, then follows from equation (33) and is equal to

z
|λ|
5

(1 +A1z) (1 + JA2
1)

(1−A2
1)3 (1− JA1)2

. (35)

This is again confirmed by the results in [15].

The representation Vλ with `(λ′) = 2

Compared to the case where `(λ′) = 1, the denominator of the grand generating function will
have six extra factors containing A2, and the numerator must have an extra factor (1 − A2/A1).
From that point on, essentially all computations run along previously traveled paths. Yet, the
computer has a much harder time performing these computations, and we have the end result (see
Appendix A) as a witness. Some intermediate results are however interesting. The u(3) ⊕ u(2)
representation generating function in this case equals N/D with

N = 1 + u21v21A21 + u221v32A32 + u321v42A33 + u321v33A42 − 2u321v42A42

− u421v52A43 − u421v43A52 − u422v53A53 − u431v53A53 − u432v63A54

− u432v54A63 − 2u532v64A64 + u532v73A64 + u532v64A73 + u632v74A74

+ u643v85A85 + u853v10,6A10,6

(36a)

and

D = (1− u1v1A1)(1− u2v11A11)(1− u11v2A11)(1− u11v11A2)(1− u111v21A21)

(1− u22v22A22)(1− u211v31A22)(1− u211v22A31)(1− u222v33A33),
(36b)

where we have used the notation uσ = uσ11 uσ22 uσ33 , and similarly for v and A. This generating
function was first obtained by Patera and Sharp [16] as a plethysm generating function for two-
rowed representations of SU(n). In this paper, we have already computed N/D given by equation
(36) independently, not using the grand generating function of King and Welsh. Indeed, this
generating function and the function N/D, with numerator and denominator given by equation
(25), are similar. The only difference is that Aλ in (36) has been changed into z|λ| in equation
(25). The functions N/D given by equations (25) and (36) represent the u(3)⊕ u(2) branching of
all u(6) representations occurring in the representation V (2) of osp(1|12) and Vλ (with `(λ′) = 2)
of gl(1|6) respectively. The u(6) representations that occur in both cases are characterized by a
partition with a maximum length of two, so both generating functions must be equal.

Introducing the dimensions of the u(2) representations in our u(3)⊕u(2) representation generat-
ing function, and then substituting the result into G(u1, u2, u3) gives us the function H(J,A1, A2).
The unappealing sight of this function forces us to relocate its full expression to Appendix A. We
can still write our angular momentum content generating function as

z
|λ|
5 (1 +A1z)(1 +A2z)H(J,A1, A2).

Note that for A2 = 0 we must find back equation (35), which is indeed the case. It is interesting
to see what happens when the powers of A1 and A2 are equal. This means that we are looking
at u(6) representations with character sν′(A1, A2), where ν ′ is a partition for which both rows
have equal length. These representations are of interest in complexity theory and in the study of
qubits [17, 18]. The generating function in this case can be computed out of the previous one by
making the substitution

A1 = aA1, A2 =
A2

a
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and then looking for the constant term in a. We find that the u(6) ⊃ u(3) ⊕ u(2) branching is
represented by the generating function

(1 + u321v42A33)

(1− u2v11A11)(1− u11v2A11)(1− u22v22A22)(1− u211v31A22)(1− u222v33A33)
,

a result which was obtained recently by King and Welsh [14]. This confirms earlier observations
concerning inner products of Schur functions [19, 20]. The generating function Hλ′1=λ′2

(J,A1, A2) =
N/D, with

N = 1 − A+ 2A22 + 3JA22 + 3J2A22 −A33 − 3JA33 − 4J2A33 − 3J3A33 +A44

+ 3JA44 − 2J2A44 + 3J3A44 + J4A44 − 3JA55 − 4J2A55 − 3J3A55 − J4A55

+ 3J2A66 + 3J3A66 + 2J4A66 − J4A77 + J4A88

and
D = (1−A11)2 (1− JA11)3 (1− J2A11) (1−A22)4,

describes the further branching of a two-rowed u(6) representation to so(3). Note that we cannot
use this generating function to describe the angular momentum decomposition of the gl(1|6) rep-
resentation Vλ, for which λ is a partition with two columns of equal length in the Young diagram.
Indeed, solving such a problem would require the angular momentum decomposition of all u(6) rep-
resentations characterized by a partition ν ′, such that λ− ν is a horizontal r-strip, with r = 0, 1, 2.
For r = 1, the partition ν ′ does not consist of two rows of equal length (in fact, ν ′1 = ν ′2 + 1), thus
the generating function Hλ′1=λ′2

(J,A1, A2) is of no use for u(6) representations characterized by this
particular partition ν ′.

The representation Vλ with `(λ′) = 3

Computationally, this case can only be worked out when λ′1 = λ′2 = λ′3. A three-rowed u(6)
representation where all rows are of equal length decomposes to u(3)⊕ u(2) in accordance with the
generating function of the form N/D, with

N = 1 − u111v21A111 − u321v33A222 + u222v42A222 + u321v42A222 + 2u432v54A333

+ u531v54A333 − u432v63A333 − v75u543A444 + u642v66A444 − 2u642v75A444

− u753v87A555 − u852v87A555 + u753v96A555 + u963v10,8A666 − u10,7,4v12,9A777

and

D = (1− u111v21A111)(1− u21v21A111)(1− u111v3A111)(1− u321v33A222)

× (1− u33v33A222)(1− u411v33A222)(1− u444v66A444)

The same representation of u(6) decomposes to so(3) in accordance with the generating function
Hλ′1=λ′2=λ′3

(J,A1, A2, A3) = N/D, with

N = 1 + 2JA222 + 3J2A222 + J3A222 + 2JA333 − 2J2A333 − 2J3A333 − 2J4A333

+ A444 − 4J2A444 − 4J3A444 + J5A444 − 2JA555 − 2J2A555 − 2J3A555

+ 2J4A555 + J2A666 + 3J3A666 + 2J4A666 + J5A888

and
D = (1−A111)4 (1− JA111)2 (1− J2A111)2 (1−A222)3.

The argumentation given in the previous section implies again that this generating function does not
contain sufficient information for the angular momentum decomposition of the gl(1|6) representation
Vλ, with λ′1 = λ′2 = λ′3.
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8 Conclusions

For a 3D N -particle Wigner harmonic oscillator, operator solutions exist in terms of generators of
the Lie superalgebras osp(1|6N) and gl(1|3N). These operators act in representation spaces of these
Lie superalgebras. Our goal was to find the angular momentum/energy contents of the representa-
tions V (p) of osp(1|6N) and Vλ of gl(1|3N). For N = 1, we have been able to construct generating
functions representing the angular momentum decomposition for all of these representations. For
N = 2, the computer allowed us to construct only partial results. For osp(1|12) we have generating
functions for the representations V (1) and V (2), but for other representations the results proved
computationally too hard. In the gl(1|6) case, we had to restrict ourselves to representations Vλ
for which λ had a maximum of two columns.

By means of the obtained generating functions, we were able to plot the angular momen-
tum/energy contents in so-called (E, j)-diagrams. These are tables showing the multiplicities of all
angular momentum values at each energy level. These tables are a practical tool to compare the
results of the new Wigner solutions to the well-known canonical case.

For the 1-dimensional Wigner harmonic oscillator, investigated by Wigner in [1], the energy
levels in the non-canonical solutions are shifted in height but remain equidistant. The (E, j)-
diagrams in the osp(1|6N) solution show that for all representations V (p) we have a similar behavior
for the angular momentum contents. Apart from the shifted energy levels, the structure of the
(E, j)-diagrams in the non-canonical solutions is the same as that for the representation V (1) of
osp(1|6). The main difference is that the multiplicities of the angular momentum representations
can be higher than 1, a feature not observed in the canonical case.

In the gl(1|3N) solution, the situation is drastically different due to the finite-dimensional nature
of the representations. There is a finite amount of energy levels and the number of so(3)-multiplets,
the angular momentum contents, does not increase when the energy gets higher. On the contrary,
for higher (and lower) energy levels we see less so(3)-multiplets than in the bulk of the energy
spectrum.
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Appendix A. The function H(J,A1, A2)

The generating function H(J,A1, A2) for the angular momentum decomposition of a two-rowed
representation of u(6), has the form N/D, with

N = 1 − A11 + JA2 + 2A21 + 6JA21 + 2A22 + 3JA22 + 3J2A22 + 3A31 − 2JA31

− 6J2A31 − J3A31 + 2A32 − 6JA32 − 8J2A32 − 6J3A32 −A33 − 3JA33

− 4J2A33 − 3J3A33 − 6JA41 − 3A42 − 6JA42 − 6J2A42 + 5J3A42 + 3J4A42

− 2JA43 + 4J2A43 + 8J3A43 + 6J4A43 +A44 + 3JA44 − 2J2A44 + 3J3A44

+ J4A44 −A51 + 3J2A51 + 4JA52 + 6J3A52 + 3A53 + 2JA53 + J2A53

+ 3J3A53 − 4J4A53 − 3J5A53 − 2JA54 − 8J2A54 − 6J4A54 − 2J5A54

− 3JA55 − 4J2A55 − 3J3A55 − J4A55 + 2JA61 +A62 + J2A62 − 2A63

− 10JA63 − 10J2A63 − 3A64 − 11JA64 + 4J2A64 + 5J3A64 + 6J4A64 + 3J5A64

+ J6A64 + 4J2A65 + 6J3A65 + 8J4A65 + 2J5A65 + 3J2A66 + 3J3A66

+ 2J4A66 − J2A71 − 2JA72 − 2J3A72 − 2A73 + JA73 + 8J2A73 + 8J3A73

+ 6J4A73 − 2A74 + 8JA74 + 30J2A74 + 18J3A74 + 8J4A74 − 4J5A74 + 8JA75

+ 15J2A75 + 12J3A75 + 3J4A75 − 7J5A75 − J6A75 − 2J3A76 − 4J4A76

− 4J5A76 − J4A77 + J2A82 + 4JA83 + 4J2A83 + 2J3A83 +A84 + 7JA84

− 3J2A84 − 12J3A84 − 15J4A84 − 8J5A84 + 4JA85 − 8J2A85 − 18J3A85

− 30J4A85 − 8J5A85 + 2J6A85 − 6J2A86 − 8J3A86 − 8J4A86 − J5A86

+ 2J6A86 + 2J3A87 + 2J5A87 + J4A88 − 2J2A93 − 3J3A93 − 3J4A93

− 2JA94 − 8J2A94 − 6J3A94 − 4J4A94 −A95 − 3JA95 − 6J2A95 − 5J3A95

− 4J4A95 + 11J5A95 + 3J6A95 + 10J4A96 + 10J5A96 + 2J6A96 − J4A97

− J6A97 − 2J5A98 + J2A10,4 + 3J3A10,4 + 4J4A10,4 + 3J5A10,4 + 2JA10,5

+ 6J2A10,5 + 8J4A10,5 + 2J5A10,5 + 3JA10,6 + 4J2A10,6 − 3J3A10,6 − J4A10,6

− 2J5A10,6 − 3J6A10,6 − 6J3A10,7 − 4J5A10,7 − 3J4A10,8 + J6A10,8 − J2A11,5

− 3J3A11,5 + 2J4A11,5 − 3J5A11,5 − J6A11,5 − 6J2A11,6 − 8J3A11,6

− 4J4A11,6 + 2J5A11,6 − 3J2A11,7 − 5J3A11,7 + 6J4A11,7 + 6J5A11,7

+ 3J6A11,7 + 6J5A11,8 + 3J3A12,6 + 4J4A12,6 + 3J5A12,6 + J6A12,6

+ 6J3A12,7 + 8J4A12,7 + 6J5A12,7 − 2J6A12,7 + J3A12,8 + 6J4A12,8

+ 2J5A12,8 − 3J6A12,8 − 3J4A13,7 − 3J5A13,7 − 2J6A13,7 − 6J5A13,8

− 2J6A13,8 − J5A13,9 + J6A14,8 − J6A15,9

and
D = (1−A11)2(1−A2)3(1−A22)4(1− JA)2(1− JA11)3(1− J2A11).

We have used the notation Aν
′

to denote A
ν′1
1 A

ν′2
2 for practical reasons.
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