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Abstract

The algebraic structure generated by the creation and annihilation operators of a system of
m parafermions and n parabosons, satisfying the mutual parafermion relations, is known to be
the Lie superalgebra osp(2m+ 1|2n). The Fock spaces of such systems are then certain lowest
weight representations of osp(2m + 1|2n). In the current paper, we investigate what happens
when the number of parafermions and parabosons becomes infinite. In order to analyze the
algebraic structure, and the Fock spaces, we first need to develop a new matrix form for the Lie
superalgebra B(n, n) = osp(2n + 1|2n), and construct a new Gelfand-Zetlin basis of the Fock
spaces in the finite rank case. The new structures are appropriate for the situation n → ∞. The
algebra generated by the infinite number of creation and annihilation operators is B(∞,∞),
a well defined infinite rank version of the orthosymplectic Lie superalgebra. The Fock spaces
are lowest weight representations of B(∞,∞), with a basis consisting of particular row-stable
Gelfand-Zetlin patterns.

Running title: Lie superalgebra B(∞,∞) and parastatistics
PACS numbers: 03.65.-w, 03.65.Fd, 02.20.-a, 11.10.-z

1 Introduction

The original motivation for the present paper comes from some classical physical ideas, and more
precisely from some conceptual difficulties of quantum mechanics. Let us sketch some of the
historical background, starting with Wigner’s paper “Do the equations of motion determine the
quantum mechanical commutation relations?” [1]. On the simplest example, the one dimensional
harmonic oscillator, Wigner showed that a more general approach is to start from the equations of
motion, Hamilton’s equations and the Heisenberg equations, instead of assuming that the position
and momentum operators are subject to the canonical commutation relations. Actually he found an
infinite set of solutions of the compatibility conditions of Hamilton’s equations and the Heisenberg
equations. One of these solutions coincides with the canonical commutation relations. Each of
these solutions is now known to correspond to a representation of the Lie superalgebra osp(1|2).

Wigner’s solutions were generalized in 1953 by Green who wrote down the so called parabo-
son relations [2], generalizing the quadratic relations for Bose operators. He also generalized the
ordinary Fermi operators to parafermion operators [2]. Parabosons and parafermions were applied
in particular to quantum field theory [3–5] and to generalizations of quantum statistics [2, 6–14]
(parastatistics).

†E-mail: stoilova@inrne.bas.bg
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We have been interested in parabosons and parafermions primarily because of the underlying
algebraic structures, and the relation between Fock spaces and representations of these algebraic
structures. Let us make this concrete by recalling some of the known algebraic relations. Whereas
fermion operators satisfy quadratic (anti-commutation) relations, parafermion operators satisfy
certain triple relations: a system of m parafermion creation and annihilation operators f±

j (j =
1, . . . ,m) is determined by

[[f ξ
j , f

η
k ], f

ϵ
l ] = |ϵ− η|δklf ξ

j − |ϵ− ξ|δjlfη
k , (1.1)

where j, k, l ∈ {1, 2, . . . ,m} and η, ϵ, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the algebraic
expressions ϵ− ξ and ϵ− η). Similarly, a system of n pairs of parabosons b±j satisfies

[{bξj , b
η
k}, b

ϵ
l ] = (ϵ− ξ)δjlb

η
k + (ϵ− η)δklb

ξ
j . (1.2)

These cubic or triple relations involve nested (anti-)commutators, just like the Jacobi identity of
Lie (super)algebras. It was indeed shown later [15, 16] that the parafermionic algebra determined
by (1.1) is the orthogonal Lie algebra so(2m + 1), and that the parabosonic algebra determined
by (1.2) is the orthosymplectic Lie superalgebra osp(1|2n) [17].

Greenberg and Messiah [6] considered combined systems of parafermions and parabosons. Apart
from two trivial combinations, there are two non-trivial relative commutation relations between
parafermions and parabosons, also expressed by means of triple relations. The first of these are the
so-called relative parafermion relations, determined by:

[[f ξ
j , f

η
k ], b

ϵ
l ] = 0, [{bξj , b

η
k}, f

ϵ
l ] = 0,

[[f ξ
j , b

η
k], f

ϵ
l ] = −|ϵ− ξ|δjlbηk, {[f ξ

j , b
η
k], b

ϵ
l} = (ϵ− η)δklf

ξ
j . (1.3)

The parastatistics algebra with relative parafermion relations, determined by (1.1), (1.2) and (1.3),
was identified by Palev [18] and is the orthosymplectic Lie superalgebra osp(2m+1|2n). The second
case, where (1.1) and (1.2) are combined with so-called relative paraboson relations, leads to an
algebra which has received attention in a number of papers [7–9, 19, 20], and is no longer a Lie
superalgebra but a Z2 × Z2-graded algebraic structure [7, 21].

The identification of the underlying algebraic structures is one important aspect. The other
important problem is to identify and describe the paraboson/parafermion Fock spaces as represen-
tations of the algebras involved. It is to this problem that we have contributed a number of solutions
during the last years. These Fock spaces are characterized by a positive integer p, often referred to
as the order of statistics. Although there have been many approaches to parastatistics Fock spaces
(often based on the so-called Green’s ansatz), the construction of a complete orthogonal basis of
the Fock space and explicit actions of the parastatistics operators on these basis vectors has been
completed only fairly recently. The explicit Fock representations for a system of m parafermions
was given in [22], and that for a system of n parabosons in [23]. In both of these cases, the analysis
of the Fock space by means of a Lie subalgebra of type gl of so(2m+1) or osp(1|2n) was essential,
since that subalgebra provided a Gelfand-Zetlin (GZ) basis for the Fock space. In [24], we managed
to extend these results to a combined system of m parafermions and n parabosons, satisfying the
mutual relations (1.3). For this case, the Lie superalgebra gl(m|n) as subalgebra of osp(2m+1|2n)
was essential, providing a GZ basis of the Fock spaces, being certain infinite-dimensional lowest
weight representations of osp(2m+ 1|2n).

If one thinks of quantum fields described by parafermions and parabosons, one should consider
however an infinite number of parabosons and parafermions [25]. Also from the mathematical
point of view, letting m and n go to +∞ raises many interesting questions. For an infinite set of
parafermions only, the underlying algebra becomes the infinite rank Lie algebra so(∞), whereas
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for an infinite set of parabosons the underlying algebra becomes the infinite rank Lie superalgebra
osp(1|∞). Both of these cases have been studied, and for the Fock space it was possible to extend
the GZ-basis of the finite rank algebras to the infinite rank case [26]. For a combined system of an
infinite number of parafermions and an infinite number of parabosons, the problem of identifying
the underlying algebra and the structure of the Fock spaces remained open. This is in fact the
problem being solved in the current paper.

Note that this problem is not a straightforward limit generalization of the solution described
in [24]. Indeed, for the osp(2m+1|2n) solution, the basis of the Fock space consists of GZ-patterns
related to a subalgebra chain of the following type:

osp(2m+ 1|2n) ⊃ gl(m|n) ⊃ gl(m|n− 1) ⊃ gl(m|n− 2) ⊃ · · ·
⊃ gl(m|1) ⊃ gl(m) ⊃ gl(m− 1) ⊃ · · · ⊃ gl(2) ⊃ gl(1). (1.4)

As already discussed in [27], the corresponding GZ-basis patterns could possibly be extended for n
going to ∞, but not for both m and n going to infinity, since the above chain of subalgebras does
not provide proper GZ-basis vectors for gl(∞|∞). Instead, one has to introduce a different GZ-
basis, referred to as the “odd Gelfand-Zetlin basis”, and constructed for covariant representations
of gl(n|n) in [27]. Note that one had to take m = n in order to construct this basis. So in the case
under consideration, the relevant chain of subalgebras is

osp(2n+ 1|2n) ⊃ gl(n|n) ⊃ gl(n|n− 1) ⊃ gl(n− 1|n− 1) ⊃ gl(n− 1|n− 2) ⊃ gl(n− 2|n− 2) ⊃ · · ·
⊃ gl(2|2) ⊃ gl(2|1) ⊃ gl(1|1) ⊃ gl(1). (1.5)

The “odd” GZ-patterns for the Fock spaces, as representations of osp(2n+1|2n), derived from this
chain will have certain stability properties that allow us to let n grow to infinity.

In the present paper, we therefore start from the Lie superalgebra B(n, n) = osp(2n + 1|2n),
for which we provide a new matrix realization in Section 2 (as the common one cannot be extended
to infinite-dimensional matrices). In this new matrix realization, the operators corresponding to
n parafermions and n parabosons are identified, and seen to generate a basis for osp(2n + 1|2n).
The Fock space of order p for such a set of parastatistics operators is identified as a lowest weight
representation V (p, n) of osp(2n+1|2n) in Section 3. The main difference with [24] is that now the
basis vectors of V (p, n) are given in another form, namely as certain odd GZ-patterns of gl(n|n).
Since we are dealing with a new basis, the actions of the parastatistics operators also needs to be
recomputed. This computation is really involved, although it follows the same line of thought as
in [24], namely the matrix elements of the parastatistics operators should be products of gl(n|n)
Clebsch-Gordan coefficients and reduced matrix elements. The reduced matrix elements are basis-
independent, so they must coincide with the ones computed in [24]. But the gl(n|n) Clebsch-Gordan
coefficients depend on the basis, so we had to recompute them in this “odd” GZ-basis. The results of
this computation is given separately in Appendix A. In Section 4, we study the basis vectors of the
Fock space V (p, n) of B(n, n) in further detail. The integer entries in the GZ-patterns of the basis
vectors turn out to have interesting (combinatorial) properties. They have many stability properties
that are preserved under the action of the parastatistics creation and annihilation operators. These
stability properties allow us to define GZ-patterns for the case that n becomes infinite. In Section 5,
the infinite rank Lie superalgebra B(∞,∞) is defined by means of a matrix form, consisting of
certain infinite square matrices with only a finite number of nonzero entries. The identification of
B(∞,∞) as the Lie superalgebra generated by an infinite number of parafermions and parabosons
(subject to particular mutual relations) is then rather straightforward. Then we turn to the Fock
spaces V (p) of such combined systems of parafermions and parabosons. Our analysis shows that a
basis for these Fock spaces is given by infinite but row-stable odd GZ-patterns. The action of the
parastatistics creation and annihilation operators on these basis vectors is given, and the rest of the
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section is devoted to proving that V (p) is indeed an irreducible representation of B(∞,∞) under
the given action. The underlying idea is that the row-stability of the infinite GZ-patterns allow
one to extend operator actions valid for the finite rank case to the case that n becomes infinite.

The current paper forms the closing piece of a number of studies in which Fock represen-
tations were explicitly constructed, chronologically for a set of n parabosons [23], a set of m
parafermions [22], an infinite set of parabosons or parafermions [26], a combined set of m para-
fermions and n parabosons [21,24], and now a combined set of an infinite number of parafermions
and parabosons.

2 The Lie superalgebras B(n|n) ≡ osp(2n+ 1|2n)
In order to extend the results and the notation of the present section to the case of an infinite rank
Lie superalgebra, it will be necessary to work with a different matrix realization (over the complex
numbers) of the Lie superalgebra B(n|n) ≡ osp(2n+1|2n) than the commonly one used in [24,28].
We will give this new matrix realization here for B(n, n), since that is the only case we need, but
it is clear that it could be given for the more general case B(m,n). For the labelling of rows and
columns of matrices (and other objects), it will be convenient to use both negative and positive
integers. In particular, when m and n are non-negative integers, we will use the following notation
for ordered sets:

[−m,n] = {−m, . . . ,−2,−1, 0, 1, 2, . . . , n}, [−m,n]∗ = {−m, . . . ,−2,−1, 1, 2, . . . , n}. (2.1)

Sometimes it will be convenient to write the minus sign of an index as an overlined number. With
this convention, we have e.g.

[2̄, 3]∗ = {2̄, 1̄, 1, 2, 3} = {−2,−1, 1, 2, 3} and [n̄, 1̄] = {n̄, . . . , 2̄, 1̄} = {−n, . . . ,−2,−1}.

We will also use

Z∗ = Z \ {0}, Z+ = {0, 1, 2, . . .}, Z∗
+ = {1, 2, 3, . . .}

and similarly for Z− and Z∗
−.

Let I and J be the (2× 2)-matrices

I :=

(
0 1
1 0

)
, J :=

(
0 1
−1 0

)
, (2.2)

and let B be the (4n+ 1)× (4n+ 1)-matrix, with indices in [−2n, 2n], given by B = I ⊕ · · · ⊕ I ⊕
1⊕ J ⊕ · · · ⊕ J , or, written in block form:

B :=



I 0

0
. . . 0
0 I

1

J 0

0
. . . 0
0 J


. (2.3)

Herein, 0 stands for the zero (2× 2)-matrix, the entry 1 is at position (0, 0), and the empty parts
of the matrix consist of zeros.
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The matrices X of the Lie superalgebra B(n, n) will have the following block form:

X :=



Xn̄,n̄ · · · Xn̄,1̄ Xn̄,0 Xn̄,1 · · · Xn̄,n

...
. . .

...
...

...
. . .

...
X1̄,n̄ · · · X1̄,1̄ X1̄,0 X1̄,1 · · · X1̄,n

X0,n̄ · · · X0,1̄ 0 X0,1 · · · X0,n

X1,n̄ · · · X1,1̄ X1,0 X1,1 · · · X1,n

...
. . .

...
...

...
. . .

...
Xn,n̄ · · · Xn,1̄ Xn,0 Xn,1 · · · Xn,n


. (2.4)

Herein, any matrix of the form Xij with i, j ∈ [n̄, n]∗ is a (2 × 2)-matrix, X0,i is a (1 × 2)-matrix
and Xi,0 a (2× 1)-matrix.

The Lie superalgebra g = B(n, n) = osp(2n+ 1|2n) is Z2-graded, g = g0 ⊕ g1, whose homoge-
neous elements are referred to as even and odd elements, and the degree of a homogeneous element
X is denoted by deg(X). The even matrices X will have zeros in the upper right and bottom left
blocks, i.e. Xij = 0 for all (i, j) ∈ [n̄, 0]× [1, n] and (i, j) ∈ [1, n]× [n̄, 0]. The odd matrices X will
have zeros in the upper left and bottom right blocks, i.e. Xij = 0 for all (i, j) ∈ [n̄, 0] × [n̄, 0] and
(i, j) ∈ [1, n]× [1, n].

The actual definition, derived from [28], is then as follows: B(n, n)0 consists of all even matrices
X of the form (2.4) such that

XTB +BX = 0;

B(n, n)1 consists of all odd matrices X of the form (2.4) such that

XSTB −BX = 0.

Herein XT is the ordinary transpose of X; XST is the supertranspose of X, which is, for an odd

matrix of the form X =

(
0 U

V 0

)
given by XST =

(
0 V T

−UT 0

)
.

Concretely, X belongs to B(n, n) provided the blocks of (2.4) satisfy:

IXī,j̄ +XT
j̄,̄iI = 0, JXi,j +XT

j,iJ = 0, IXī,j −XT
j,̄iJ = 0 (i, j ∈ [1, n]);

X0,j̄ +XT
j̄,0I = 0, X0,j −XT

j,0J = 0 (j ∈ [0, n]).

For homogeneous elements of type (2.4), the Lie superalgebra bracket is

JX,Y K = XY − (−1)deg(X) deg(Y )Y X,

with ordinary matrix multiplication in the right hand side.
Denote, as usual, by eij the matrix with zeros everywhere except a 1 on position (i, j), where

the row and column indices run from −2n to 2n. A basis of the Cartan subalgebra h of B(n, n)
consists of the elements hi = e2i−1,2i−1 − e2i,2i (i ∈ [1, n]) and hi = e2i,2i − e2i+1,2i+1 (i ∈ [n̄, 1̄]).
The corresponding dual basis of h∗ will be denoted by ϵi (i ∈ [n̄, n]∗). The following elements are
even root vectors with roots ϵ−i and −ϵ−i respectively (i ∈ [1, n]):

c+−i ≡ f+
−i =

√
2(e−2i,0 − e0,−2i+1),

c−−i ≡ f−
−i =

√
2(e0,−2i − e−2i+1,0), (2.5)

and odd root vectors with roots ϵi and −ϵi respectively (i ∈ [1, n]) are given by:

c+i ≡ b+i =
√
2(e0,2i + e2i−1,0),

c−i ≡ b−i =
√
2(e0,2i−1 − e2i,0). (2.6)
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The operators c+i are positive root vectors, and the c−i are negative root vectors, their Z2 grading
being

deg(c±i ) = 0 for i ∈ [n̄, 1̄], deg(c±i ) = 1 for i ∈ [1, n].

The remaining root vectors of B(n, n) are given by elements of the form Jcξi , cηj K, where J·, ·K is

the Lie superalgebra bracket (corresponding to a commutator or anti-commutator). The factor
√
2

in (2.5)-(2.6) is introduced because then these operators satisfy the triple relations of parafermion
and paraboson creation and annihilation operators (subject to the relative parafermion relations),
given in the following theorem [18].

Theorem 1 (Palev). As a Lie superalgebra defined by generators and relations, B(n, n) is generated
by the elements c±j (j ∈ [n̄, n]∗) subject to the following relations

[[f ξ
j , f

η
k ], f

ϵ
l ] = |ϵ− η|δklf ξ

j − |ϵ− ξ|δjlfη
k , (j, k, l ∈ [n̄, 1̄]; (2.7)

[{bξj , b
η
k}, b

ϵ
l ] = (ϵ− ξ)δjlb

η
k + (ϵ− η)δklb

ξ
j , (j, k, l ∈ [1, n]); (2.8)

[[f ξ
i , f

η
j ], b

ϵ
k] = 0, [{bξk, b

η
l }, f

ϵ
i ] = 0,

[[f ξ
j , b

η
k], f

ϵ
i ] = −|ϵ− ξ|δjibηk, {[f ξ

j , b
η
k], b

ϵ
l} = (ϵ− η)δklf

ξ
j , (i, j ∈ [n̄, 1̄], k, l ∈ [1, n]). (2.9)

Herein, η, ϵ, ξ ∈ {+,−}, are interpreted as +1 and −1 in the algebraic expressions ϵ− ξ and ϵ− η.

The so-called triple relations (2.7)-(2.9) are important: they combine a system of n pairs of
parafermion operators with a system of n pairs of paraboson operators in a particular way, that
can be extended when n goes to infinity.

Before turning to representations, let us identify a subalgebra of B(n, n) that will play an
important role.

Proposition 2. The 4n2 elements

Jc+i , c−j K (i, j ∈ [n̄, n]∗) (2.10)

are a basis of the subalgebra gl(n|n).

This follows immediately from the fact that the elements

Eij =
1

2
Jc+j , c−k K

satisfy JEij , EklK = δjkEil − (−1)deg(Eij) deg(Ekl)δijEkj . (2.11)

Note also that
[c+i , c

−
i ] = 2hi (i ∈ [n̄, 1̄]), {c+i , c

−
i } = 2hi (i ∈ [1, n]). (2.12)

Hence h = span{hi, i ∈ [n̄, n]∗}, the Cartan subalgebra of B(n, n), is also the Cartan subalgebra
of gl(n|n).

3 Fock representations of B(n, n) in the “odd basis”

The parastatistics Fock space of order p (for the relative parafermion relations), with p a positive
integer, has been constructed before [24] as an infinite-dimensional lowest weight representation
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V (p, n) of the algebra B(n, n). By definition [6, 18] the parastatistics Fock space V (p, n) is the
Hilbert space with vacuum vector |0⟩, defined by means of

⟨0|0⟩ = 1, c−j |0⟩ = 0, (c±j )
† = c∓j , Jc−j , c+k K|0⟩ = pδjk |0⟩ (j, k ∈ [n̄, n]∗) (3.1)

and which is irreducible under the action of the algebra B(n, n) generated by the elements c±j .
By (2.12), one sees that |0⟩ is the lowest weight vector of V (p, n) with weight [−p

2 , . . . ,−
p
2 ;

p
2 , . . . ,

p
2 ]

in the basis {ϵ−n, . . . , ϵ−1; ϵ1, . . . , ϵn}. These representations have been analyzed in [24]. The main
result is the decomposition with respect to the subalgebra chain B(n, n) ⊃ gl(n|n), because then
the Gelfand-Zetlin basis of the gl(n|n) representations can be used to label the vectors of V (p, n).
The main difference here, compared to [24], is that we will need to use a different GZ-basis for the
gl(n|n) representations, one that is appropriate for letting n grow to infinity. But of course, the
branching B(n, n) ⊃ gl(n|n) is the same, and thus we have [24]:

Proposition 3. In the decomposition of V (p, n) with respect to B(n, n) ⊃ gl(n|n), all covariant
representations of gl(n|n) labeled by a partition λ = (λ1, λ2, . . .) appear with multiplicity 1, subject
to λ1 ≤ p and λn+1 ≤ n. In the basis {ϵ−n, . . . , ϵ−1; ϵ1, . . . , ϵn}, the highest weight of the gl(n|n)
covariant representation labeled by λ is given by [29]

[m]2n = [m−n,2n, . . . ,m−2,2n,m−1,2n;m1,2n,m2,2n, . . . ,mn,2n]

= [mn̄,2n, . . . ,m2̄,2n,m1̄,2n;m1,2n,m2,2n, . . . ,mn,2n], (3.2)

where

m−i,2n = λn−i+1, (i ∈ [1, n]) (3.3)

mi,2n = max{0, λ′
i − n}, (i ∈ [1, n]), (3.4)

and λ′ is the partition conjugate to λ (for partitions we follow the standard notations of [30]).

Note that (3.3)-(3.4) implies

mi,2n −mi+1,2n ∈ Z+, (i ∈ [n̄, 2̄] ∪ [1, n− 1]) (3.5)

and
m−1,2n ≥ #{i : mi,2n > 0, i ∈ [1, n]}. (3.6)

An appropriate basis for the vectors of these covariant gl(n|n) modules has been given in [27],
and is referred to as “the odd GZ-basis.” This corresponds to a decomposition according to the
subalgebra chain

gl(n|n) ⊃ gl(n|n−1) ⊃ gl(n−1|n−1) ⊃ gl(n−1|n−2) ⊃ gl(n−2|n−2) ⊃ · · · ⊃ gl(1|1) ⊃ gl(1). (3.7)

A particular feature of this odd GZ-basis, is that it can be extended [27] for n → ∞, which is not
the case for the more conventional GZ-basis of gl(n|n) [31–34]. Combining the results of [27] with
the previous proposition, one has

Proposition 4. For any positive integer p, a basis of the Fock representation V (p, n) of B(n, n)
is given by the set of vectors of the following form:

|p;m)2n ≡ |m)2n =

∣∣∣∣∣ [m]2n

|m)2n−1

)
= (3.8)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mn̄,2n mn−1,2n · · · m2̄,2n m1̄,2n m1,2n m2,2n · · · mn−2,2n mn−1,2n mn,2n

↑ ↑ · · · ↑ ↑
mn̄,2n−1 mn−1,2n−1 · · · m2̄,2n−1 m1̄,2n−1 m1,2n−1 m2,2n−1 · · · mn−2,2n−1 mn−1,2n−1

↓ ↓ · · · ↓ ↓
mn−1,2n−2 · · · m2̄,2n−2 m1̄,2n−2 m1,2n−2 m2,2n−2 · · · mn−2,2n−2 mn−1,2n−2

↑ · · · ↑ ↑
mn−1,2n−3 · · · m2̄,2n−3 m1̄,2n−3 m1,2n−3 m2,2n−3 · · · mn−2,2n−3

. . .
...

...
...

... . .
.

m2̄4 m1̄4 m14 m24

↑ ↑
m2̄3 m1̄3 m13

↓
m1̄2 m12

↑
m1̄1


where all mij ∈ Z+, satisfying mn̄,2n ≤ p and the GZ-conditions

1. mj,2n −mj+1,2n ∈ Z+, j ∈ [n̄, 2̄] ∪ [1, n] and m−1,2n ≥ #{i : mi,2n > 0, i ∈ [1, n]};
2. m−i,2s −m−i,2s−1 ≡ θ−i,2s−1 ∈ {0, 1}, 1 ≤ i ≤ s ≤ n;
3. mi,2s −mi,2s+1 ≡ θi,2s ∈ {0, 1}, 1 ≤ i ≤ s ≤ n− 1;
4. m−1,2s ≥ #{i : mi,2s > 0, i ∈ [1, s]}, s ∈ [1, n];
5. m−1,2s−1 ≥ #{i : mi,2s−1 > 0, i ∈ [1, s− 1]}, s ∈ [2, n];
6. mi,2s −mi,2s−1 ∈ Z+ and mi,2s−1 −mi+1,2s ∈ Z+, 1 ≤ i ≤ s− 1 ≤ n− 1;
7. m−i−1,2s+1 −m−i,2s ∈ Z+ and m−i,2s −m−i,2s+1 ∈ Z+, 1 ≤ i ≤ s ≤ n− 1.

(3.9)

Conditions 2 and 3 are referred to as “θ-conditions”. Conditions 6 and 7 are often referred
to as “betweenness conditions.” Conditions 1, 4 and 5 are related to (3.6) (or (3.4)), and assure
that each row of (3.8) corresponds to the highest weight of a covariant representation of gl(t|t) or
gl(t|t − 1) in the chain (3.7). Note that the arrows in this pattern have no real function, and can
be omitted. We find it useful to include them, just in order to visualize the conditions. When
there is an arrow a → b between labels a and b, it means that either b = a or else b = a + 1 (a
θ-condition). We will also refer to “rows” and “columns” of the GZ-pattern. Rows are counted
from the bottom: row 1 is the bottom row in (3.8), and row 2n is the top row in (3.8). In an
obvious way, columns 1, 2, 3 · · · refer to the columns to the right of the dashed line in (3.8), and
columns −1, −2, −3, · · · (or 1̄, 2̄, 3̄, · · · ) to the columns to the left of this dashed line. For two
consecutive rows in the GZ-pattern (3.8), about half of the labels involve θ-conditions, and the
other half involves betweenness conditions.

The top row of (3.8) corresponds to the highest weight of a gl(n|n) covariant representation,
according to (3.5)-(3.6). The action of a set of gl(n|n) generators Eij on such basis vectors of a
covariant representation has been determined in [27]. For future reference, let us recall the action
of the elements of the Cartan subalgebra of gl(n|n) or B(n, n), which involves now the label p since
the Eii’s have a nonzero action on the vacuum (i.e. the zero GZ-pattern):

E−i,−i|m)2n =

−p

2
+

∑
j∈[−i,i−1]∗

mj,2i−1 −
∑

j∈[−i+1,i−1]∗

mj,2i−2

 |m)2n, i ∈ [1, n]; (3.10)

Eii|m)2n =

p

2
+

∑
j∈[−i,i]∗

mj,2i −
∑

j∈[−i,i−1]∗

mj,2i−1

 |m)2n, i ∈ [1, n]. (3.11)
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Here, we want to go beyond the action of the Eij ’s, and describe the action of the generators c±i of
B(n, n), i.e. the parastatistics operators, on the basis vectors (3.8). For the parastatistics creation
operators, one can check that JEij , c

+
k K = δjkc

+
i , (3.12)

so the set {c+i |i ∈ [n̄, n]∗} forms a standard gl(n|n) tensor of rank [1, 0, . . . , 0] (which is the
highest weight of the standard covariant representation). This means that to every c+i one can
attach a unique GZ-pattern of the form (3.8) with top line 10 . . . 0. Following the gl(n|n) ac-
tions on GZ-patterns (in particular, [27, (3.15)-(3.16)]), it is easy to see that the 2n elements
(c+n , c

+
−n, · · · , c+2 , c

+
−2, c

+
1 , c

+
−1) correspond, in this order, to a GZ-pattern of type (3.8) consisting of

k top rows of the form 10 · · · 0 and 2n− k bottom rows of the form 0 · · · 0 for k = 1, 2, . . . , 2n. For
example, for n = 3:

c+3 :

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

 , c+−3 :

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
1 0 0 0 0

0 0 0 0
0 0 0

0 0
0

 , c+2 :

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
0 0 0

0 0
0

 ,

c+−2 :

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
1 0 0

0 0
0

 , c+1 :

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
1 0 0

1 0
0

 , c+−1 :

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1

 .

(3.13)

It will be useful to express this correspondence by means of a row function:

ρ(i) =

{
2i for i ∈ [1, n]

−2i− 1 for i ∈ [n̄, 1̄]
. (3.14)

Then the pattern corresponding to c+i has rows of the form 10 · · · 0 for each row index j ∈ [ρ(i), 2n]
and zero rows for each row index j ∈ [1, ρ(i)− 1].

The tensor product rule for covariant representations of gl(n|n) is well known [35]. When the
gl(n|n) representation with highest weight [m]2n is denoted by W ([m]2n), it reads

W ([1, 0, . . . , 0])⊗W ([m]2n) =
⊕

k∈[−n,n]∗

W ([m]2n+(k)), (3.15)

where in general [m]2n±(k) is obtained from [m]2n by the replacement of mk,2n by mk,2n ± 1. On the

right hand side of (3.15) the summands for which the conditions (3.5)-(3.6) are not fulfilled are
omitted.

By standard analysis [23,36], the matrix elements of c+i in V (p, n) can be written as follows:

2n(m′|c+i |m)2n =

(
[m]2n+(k)

|m′)2n−1

∣∣∣∣∣ c+i
∣∣∣∣∣ [m]2n

|m)2n−1

)

=

 10 · · · 00
10 · · · 0
· · ·
0

;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
× ([m]2n+(k)||c

+||[m]2n). (3.16)
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The GZ-pattern with 0’s and 1’s is of course the one corresponding to c+i , as described earlier. The
first factor in the right hand side of (3.16) is a gl(n|n) Clebsch-Gordan coefficient (CGC), where all
patterns are of the form (3.8). These CGC’s will be determined and given in Appendix A. From
the computational point of view, this is the main contribution of the current paper. The second
factor in (3.16) is a reduced matrix element for the standard representation. The possible values of
the patterns |m′)2n are determined by the gl(n|n) tensor product rule and the first line of |m′)2n is
of the form [m]2n+(k).

It is important to realize that the reduced matrix elements depend only upon the gl(n|n) highest
weights [m]2n and [m]2n+k (and not on the type of GZ basis that is being used.) These reduced matrix
elements have actually been determined in [24, Proposition 4]:

([m]2n+(k)||c
+||[m]2n) = Gn+k+1(m−n,2n,m−n+1,2n, . . . ,m−1,2n,m1,2n, . . . ,m2n,2n), (k ∈ [−n,−1])

(3.17)

([m]2n+(k)||c
+||[m]2n) = Gn+k(m−n,2n,m−n+1,2n, . . . ,m−1,2n,m1,2n, . . . ,m2n,2n), (k ∈ [1, n]).

(3.18)

For the matrix elements of c−i , we use the Hermiticity requirement (3.1),

2n(m′|c−i |m)2n = 2n(m|c+i |m
′)2n. (3.19)

So in this way we obtain explicit actions of the B(n, n) generators c±i on a basis of V (p, n):

c+i |m)2n =
∑
k,m′

 10 · · · 00
10 · · · 0
· · ·
0

;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
([m]2n+(k)||c

+||[m]2n)

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
, (3.20)

c−i |m)2n =
∑
k,m′

 10 · · · 00
10 · · · 0
· · ·
0

;
[m]2n−(k)

|m′)2n−1

∣∣∣∣∣ [m]2n

|m)2n−1

)
([m]2n||c+||[m]2n−(k))

∣∣∣∣∣ [m]2n−(k)

|m′)2n−1

)
. (3.21)

4 Properties of the Fock representations V (p, n)

Before turning to the case where n goes to infinity, it is useful to collect some properties of the
actions of the parastatistics creation and annihilation operators c±i on basis vectors |m)2n of V (p, n).
For this purpose, let us write (3.20)-(3.21) as

c+i |m)2n =
∑
m′

C+
[
i, |m)2n, |m′)2n

]
|m′)2n, (4.1)

c−i |m)2n =
∑
m′

C− [i, |m)2n, |m′)2n
]
|m′)2n. (4.2)

The coefficients C± [i, |m)2n, |m′)2n
]
are just a shorthand notation for the expressions in (3.20)-

(3.21), and all parts of these expressions (CGC’s and reduced matrix elements) are explicitly known.
One can think of the GZ-vectors of V (p, n) as follows. The vacuum vector |0⟩ is the GZ basis

vector with all zeros: |0⟩ = |p; 0)2n ≡ |0)2n. For example, for n = 3,

|0⟩ =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

 . (4.3)
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The creation operators c+i (i ∈ [n̄, n]∗) have the effect of increasing certain entries in the GZ-pattern,
and the annihilation operators c−i (i ∈ [n̄, n]∗) decrease certain entries in the GZ-pattern (which is
why |0)2n is the vacuum vector).

Let us concentrate on the action of the creation operators. From the properties of the CGC’s
(see Appendix), we have immediately the following:

Proposition 5. Let |m)2n be a basis vector with a valid GZ-pattern (i.e. satisfying (3.9)). Then
the only patterns |m′)2n appearing in the right hand side of

c+i |m)2n =
∑
m′

C+
[
i, |m)2n, |m′)2n

]
|m′)2n (i ∈ [n̄, n]∗)

are valid GZ-patterns |m′)2n such that

[m′]j = [m]j for j ∈ [1, ρ(i)− 1],

[m′]j = [m]j + [0, . . . , 0, 1, 0, . . . , 0] for j ∈ [ρ(i), 2n]. (4.4)

In other words, there are no changes in the entries of rows 1, 2, . . . , ρ(i) − 1. And in rows
ρ(i), . . . , 2n there is a change by one unit for just one particular column index s. The increase can
be in any possible column, as long as the remaining pattern is still valid, i.e. as long as (3.9) is
satisfied. For example, for n = 3 the action of c+i on |0⟩ = |0)6 will give just one vector, namely
the corresponding one appearing in (3.13). Then, e.g., c+−3c

+
−2|0)6 will give a linear combination of

only two vectors, namely∣∣∣∣∣∣∣∣∣∣∣∣

2 0 0 0 0 0
2 0 0 0 0

1 0 0 0
1 0 0

0 0
0

 and

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0
1 1 0 0 0

1 0 0 0
1 0 0

0 0
0

 , (4.5)

because all other ways of adding 1’s to row 5 and 6 (by the action of c+−3) of the pattern

c+−2|0⟩ =
√
p

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
1 0 0

0 0
0

 (4.6)

give rise to nonvalid GZ-patterns. Note that we have implicitly assumed that p ≥ 2, since for p = 1
the first vector in (4.5) is zero.

For each row k of a GZ basis vector |m)2n, let |mk| be the sum of all entries in row k, i.e.

|m2k| =
∑

i∈[−k,k]∗

mi,2k, |m2k+1| =
∑

i∈[−k−1,k]∗

mi,2k+1. (4.7)

We will sometimes refer to |mk| as the weight of row k. By (4.4), one has:

|m1| ≤ |m2| ≤ |m3| ≤ · · · ≤ |m2n−1| ≤ |m2n|. (4.8)
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Consider row s for a general GZ pattern |m)2n:

[. . . ,m2̄,s,m1̄,s;m1,s,m2,s, . . .].

By the betweenness conditions in (3.9), it follows that both parts (. . . ,m2̄,s,m1̄,s) and (m1,s,m2,s, . . .)
are partitions [30], since they consist of non-decreasing non-negative integers. We shall refer to these
partitions as the left and right part of row s. Furthermore, if m1̄,s = 0, it follows from conditions
4 and 5 in (3.9) that the right part of row s must be zero, i.e. in that case row s is of the form

[. . . ,m3̄,s,m2̄,s, 0; 0, 0, . . .] = [ν1, ν2, . . . , 0; 0, 0, . . .], (4.9)

with ν some partition. The following definition will be crucial:

Definition 6. The pattern, or equivalently the associated basis vector, |m)2n is row-stable with
respect to row s if there exists a partition ν such that all rows s, s+ 1, . . . , 2n are of the form

[ν1, ν2, . . . , 0; 0, 0, . . .].

In that case, s is called a stability index of |m)2n.

Note that the length of these rows increases as the row index increases, but the increase is only
by adding extra zeros in the left and right part of the row. For example, (4.6) is row-stable with
respect to row 3, and the patterns in (4.5) are row-stable with respect to row 5.

Consider now the consecutive action of a number of c+i ’s, and suppose n is sufficiently large.
We have

Proposition 7. Let k < n, then all basis vectors appearing in

c+ik · · · c
+
i2
c+i1 |0⟩ (each ir ∈ [n̄, n]∗) (4.10)

are row-stable with respect to some row index s.

Proof. Starting with the zero pattern, the action of each c+ir adds a +1 to the obtained pattern in
some position of row j, for j ∈ [ρ(i), 2n]. This happens in such a way that the left parts of all the
rows are partitions. Suppose we are at the end of the action (4.10), and that at that point there
is some row index s where the partition in the left part is of the form [ν1, ν2, . . . , 0], with |ν| = k.
Then by (4.8) all rows above s have the same weight, and by conditions 3 and 6 of (3.9) this means
that all rows j with j > s are of the form [ν1, ν2, . . . , 0; 0, 0, . . .]. Thus the pattern obtained is
row-stable with respect to row s. Since the length of ν satisfies ℓ(ν) ≤ k < n, there is at least one
row s ≤ 2n such that the left part is of the form [ν1, ν2, . . . , 0], i.e. ending with a 0. (In the “worst
case”, row 2n is of the form [1, 1, . . . , 0; 0, . . . , 0].)

Row-stable patterns are in some sense preserved under the action of c+i ’s.

Proposition 8. Let |m)2n be row-stable with respect to row s, where s < 2n− 1. Then the vectors
|m′)2n appearing in c+i |m)2n are row-stable with respect to row max{s+ 2, ρ(i) + 1}.

Proof. There are two cases to be considered: ρ(i) ≤ s and ρ(i) > s.
1. Consider first the action of c+i with ρ(i) ≤ s. Then 1’s are added in all rows j, j ∈ [ρ(i), 2n],
including row s. There are two subcases to be analyzed: s even and s odd.
1.1. Let s be odd. As a generic example, let row s of |m)2n be given by [3, 2, 1, 0; 0, 0, 0]. After the
action of c+i , row s in the resulting vectors |m′)2n is one of the following:

(1) [4, 2, 1, 0; 0, 0, 0], (2) [3, 3, 1, 0; 0, 0, 0], (3) [3, 2, 2, 0; 0, 0, 0], (4) [3, 2, 1, 1; 0, 0, 0].
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By condition 3 of (3.9), row s+ 1 is respectively of the form

(1) [4, 2, 1, 0; 0, 0, 0, 0], (2) [3, 3, 1, 0; 0, 0, 0, 0], (3) [3, 2, 2, 0; 0, 0, 0, 0], (4) [3, 2, 1, 1; 0, 0, 0, 0].

It is clear that for (1), (2) and (3) the resulting vector is row-stable with respect to row s. For
(4), the conditions (3.9) imply that row s+ 2 must be equal to [3, 2, 1, 1, 0; 0, 0, 0, 0], and then the
vector is row-stable with respect to row s + 2. Clearly, this argument works whenever row s is of
the form [ν1, ν2, . . . , 0; 0, . . . , 0].
1.2. Let s be even. We first work again with a generic example, say row s of |m)2n is given
by [4, 3, 1, 0; 0, 0, 0, 0]. After the action of c+i , row s in the resulting vectors |m′)2n is one of the
following:

(1) [5, 3, 1, 0; 0, 0, 0, 0], (2) [4, 4, 1, 0; 0, 0, 0, 0], (3) [4, 3, 2, 0; 0, 0, 0, 0], (4) [4, 3, 1, 1; 0, 0, 0, 0].

Again by conditions (3.9), row s+ 1 is then respectively

(1) [5, 3, 1, 0, 0; 0, 0, 0, 0], (2) [4, 4, 1, 0, 0; 0, 0, 0, 0], (3) [4, 3, 2, 0, 0; 0, 0, 0, 0], (4) [4, 2, 1, 1, 0; 0, 0, 0, 0].

For (1), (2) and (3) the resulting vector is row-stable with respect to row s. For (4), the resulting
vector is row-stable with respect to row s+1. The argument generalizes when row s is of the form
[ν1, ν2, . . . , 0; 0, . . . , 0].
2. Consider next the action of c+i with ρ(i) > s. It is now a matter of considering the entries in
row ρ(i) of |m)2n. Exactly the same arguments as in cases 1.1 and 1.2 work here (with ρ(i) taking
over the role of s), except that situation (4) of 1.1 does not appear (since ρ(i) > s). Hence in this
case |m′)2n is row-stable with respect to row ρ(i) or ρ(i) + 1.

For the action of the annihilation operators c−i , the analysis is similar, but simpler. Similarly
as in Proposition 5, when

c−i |m)2n =
∑
m′

C− [i, |m)2n, |m′)2n
]
|m′)2n (i ∈ [n̄, n]∗),

then the only patterns |m′)2n appearing in the right hand side of the above expression§ are valid
GZ-patterns |m′)2n such that

[m′]j = [m]j for j ∈ [1, ρ(i)− 1],

[m′]j = [m]j + [0, . . . , 0,−1, 0, . . . , 0] for j ∈ [ρ(i), 2n]. (4.11)

Suppose now that |m)2n has stability index s. Then, in particular,

|m1| ≤ |m2| ≤ · · · ≤ |ms| = |ms+1| = · · · = |m2n−1| = |m2n|. (4.12)

If one acts on |m)2n by c−i with ρ(i) > s, then |ms| would remain unchanged, whereas all |mj | with
j ∈ [ρ(i), 2n] are decreased by 1. That would violate (4.8). Hence the action of c−i with ρ(i) > s
on a vector |m)2n with stability index s is zero.

If one acts on |m)2n by c−i with ρ(i) ≤ s, then the combinatorics of the conditions (3.9) imply
that in the resulting vectors all partitions must be the same in (the left parts of) rows s, s+1, . . . , 2n.
Hence the action of c−i with ρ(i) ≤ s on a vector |m)2n with stability index s can only yield vectors
|m′)2n which have s as stability index. Concluding:

§To clarify the meaning, a basis vector is said to appear in an expression (where the expression is written as a
linear combination of basis vectors) if its coefficient is nonzero in this linear combination.
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Proposition 9. Let |m)2n be row-stable with respect to row s. Then the vectors |m′)2n appearing
in c−i |m)2n are row-stable with respect to row s.

Note that Proposition 7, where a string of creation operators was used, can be extended for a
string of creation and/or annihilation operators. Consider

cηkik · · · cη2i2 c
η1
i1
|0⟩, (ηr ∈ {+1,−1}, ir ∈ [n̄, n]∗), (4.13)

with 0 ≤ |η| ≡ η1 + η2 + · · · + ηk < n. Then all basis vectors appearing in (4.13) are row-stable
with respect to some row s. Note that in this case, the partition appearing in the stable row,

[ν1, ν2, . . . , 0; 0, . . . , 0],

has |ν| = |η|.
To complete this section, we will also establish a stability property of the coefficients in (4.1)-

(4.2). Suppose that the top row of |m)2n has the zero partition as second part, i.e. it is of the
form

[m]2n = [ν1, ν2, . . . ; 0, . . . , 0]

with ν a partition. Define a map ϕ2n,+2 from the set of GZ-patterns |m)2n with zero second part
to the set of GZ-patterns |m)2n+2 with stability index 2n by:

|m)2n+2 = ϕ2n,+2

(
|m)2n

)
, (4.14)

with [m]2n+1 = [ν1, ν2, . . . , 0, 0; 0, . . . , 0], [m]2n+2 = [ν1, ν2, . . . , 0, 0; 0, . . . , 0, 0].

In other words, the top row of |m)2n is just repeated twice, with the extra addition of zeros in
order to have sufficient entries for the pattern |m)2n+2. Clearly, the action of ϕ2n,+2 can also be
extended by linearity, on a linear combination of vectors |m)2n with zero second part.

Proposition 10. Let |m)2n be row-stable with respect to row 2n, and |m)2n+2 = ϕ2n,+2

(
|m)2n

)
Then for all i with ρ(i) ≤ 2n (or equivalently, i ∈ [−n, n]∗):

c+i |m)2n+2 = ϕ2n,+2

(
c+i |m)2n

)
.

In other words, if

c+i |m)2n =
∑
m′

C+
[
i, |m)2n, |m′)2n

]
|m′)2n (4.15)

then
c+i |m)2n+2 =

∑
m′

C+
[
i, |m)2n, |m′)2n

]
ϕ2n,+2

(
|m′)2n

)
;

or otherwise said:
C+

[
i, |m)2n+2, |m′)2n+2

]
= C+

[
i, |m)2n, |m′)2n

]
.

Proof. First of all, all vectors |m′)2n in (4.15) are such that the 2nd part of row 2n consists of zeros,
so ϕ2n,+2

(
|m′)2n

)
is well defined. Consider now C+[i, |m)2n+2, |m′)2n+2], of the form 10 · · · 00

10 · · · 0
· · ·
0

;
[m]2n+2

|m)2n+1

∣∣∣∣∣ [m]2n+2
+(k)

|m′)2n+1

)
([m]2n+2

+(k) ||c
+||[m]2n+2) (4.16)

for some row index k with k ∈ [−n− 1,−2]. It is now a matter of inspecting the CGC and reduced
matrix element in this case. For the reduced matrix element, [m]2n+2 is of the form

[ν1, ν2, . . . , 0, 0; 0, . . . , 0, 0]
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and [m]2n+2
+(k) is of the same form, with one of the parts of ν increased by 1. From the explicit form

of these reduced matrix elements [24, (3.24)-(3.25)], it is not difficult to see that

([m]2n+2
+(k) ||c

+||[m]2n+2) = ([m]2n+(k)||c
+||[m]2n).

Following the notation of the Appendix, the CGC of gl(n+1|n+1) can be written as a product of
two isoscalar factors times a CGC for gl(n|n):

10 · · · 00
10 · · · 0
· · ·
0

;
[m]2n+2

|m)2n+1

∣∣∣∣∣ [m]2n+2
+(k)

|m′)2n+1

)
=

(
10̇

10̇

∣∣∣∣ [m]2n+2

[m]2n+1

∣∣∣∣ [m]2n+2
+(k)

[m′]2n+1

)
×

×
(

10̇

10̇

∣∣∣∣ [m]2n+1

[m]2n

∣∣∣∣ [m′]2n+1

[m′]2n

) 10 · · · 00
· · ·
0

;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k+1)

|m′)2n−1

)
. (4.17)

By construction, up to additional 0’s at the end of both parts, [m]2n+2
+(k) , [m

′]2n+1 and [m′]2n =

[m]2n+(k+1) are identical, all of the form

[µ1, µ2, . . . , 0; 0, . . . , 0]

where µ is a partition obtained from ν by increasing one part by 1. But for such special values,
the isoscalar factors (given in the Appendix) simplify:(

10̇

10̇

∣∣∣∣ [ν1, ν2, . . . , 0; 0 . . . , 0]2n+2

[ν1, ν2, . . . , 0; 0 . . . , 0]
2n+1

∣∣∣∣ [µ1, µ2, . . . , 0; 0 . . . , 0]
2n+2

[µ1, µ2, . . . , 0; 0 . . . , 0]
2n+1

)
= 1

by (A.13), and(
10̇

10̇

∣∣∣∣ [ν1, ν2, . . . , 0; 0 . . . , 0]2n+1

[ν1, ν2, . . . , 0; 0 . . . , 0]
2n

∣∣∣∣ [µ1, µ2, . . . , 0; 0 . . . , 0]
2n+1

[µ1, µ2, . . . , 0; 0 . . . , 0]
2n

)
= 1

by (A.19). Thus we obtain the result.

Note that Proposition 10 is also valid if one replaces c+i by c−i .

5 The Lie superalgebra B(∞,∞) and its Fock representations V (p)

We are now in a position that we can extend both the parastatistics algebra B(n, n) and its Fock
representations V (p, n) to the infinite rank case B(∞,∞). As usual for infinite rank Lie algebras
or Lie superalgebras, the matrix form will consist of certain infinite matrices with a finite number
of non-zero elements [37–39].

Consider the set of all squared infinite matrices of the form

X :=



. . .
...

...
...

...
... . .

.

· · · X2̄,2̄ X2̄,1̄ X2̄,0 X2̄,1 X2̄,2 · · ·
· · · X1̄,2̄ X1̄,1̄ X1̄,0 X1̄,1 X1̄,2 · · ·
· · · X0,2̄ X0,1̄ 0 X0,1 X0,2 · · ·
· · · X1,2̄ X1,1̄ X1,0 X1,1 X1,2 · · ·
· · · X2,2̄ X2,1̄ X2,0 X2,1 X2,2 · · ·

. .
.

. . .
...

...
...

...
. . .


. (5.1)
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where the above indices take values in the set Z. Herein, any matrix of the form Xij with i, j ∈ Z∗

is a (2× 2)-matrix, X0,i is a (1× 2)-matrix and Xi,0 a (2× 1)-matrix. The infinite-dimensional Lie
superalgebra B(∞,∞) can be defined as the set of all squared infinite matrices of the form (5.1)
such that each matrix has only a finite number of nonzero entries, and such that the (non-zero)
blocks satisfy

IXī,j̄ +XT
j̄,̄iI = 0, JXi,j +XT

j,iJ = 0, IXī,j −XT
j,̄iJ = 0 (i, j ∈ Z∗

+);

X0,j̄ +XT
j̄,0I = 0, X0,j −XT

j,0J = 0 (j ∈ Z+).

Such an element X is even if Xij = 0 for all (i, j) ∈ Z− × Z∗
+ and (i, j) ∈ Z∗

+ × Z−, and X is odd
if Xij = 0 for all (i, j) ∈ Z− × Z− and (i, j) ∈ Z∗

+ × Z∗
+. For homogeneous elements X and Y , the

Lie superalgebra bracket is defined as usual,

JX,Y K = XY − (−1)deg(X) deg(Y )Y X,

and extended by linearity.
We can again consider the matrices eij consisting of zeros everywhere except a 1 on position

(i, j), where the row and column indices belong to Z. A basis of a Cartan subalgebra h of B(∞,∞)
consists of the elements hi = e2i−1,2i−1 − e2i,2i (i ∈ Z∗

+) and hi = e2i,2i − e2i+1,2i+1 (i ∈ Z∗
−). The

corresponding dual basis of h∗ is denoted by ϵi (i ∈ Z∗). As in the finite rank case, we can identify
the following even root vectors with roots ϵ−i and −ϵ−i respectively (i ∈ Z∗

+):

c+−i ≡ f+
−i =

√
2(e−2i,0 − e0,−2i+1),

c−−i ≡ f−
−i =

√
2(e0,−2i − e−2i+1,0), (5.2)

and odd root vectors with roots ϵi and −ϵi respectively (i ∈ Z∗
+):

c+i ≡ b+i =
√
2(e0,2i + e2i−1,0),

c−i ≡ b−i =
√
2(e0,2i−1 − e2i,0). (5.3)

The operators c+i can be chosen as positive root vectors, and the c−i as negative root vectors.
Just as in the finite rank case, the operators introduced here satisfy the triple relations of

parastatistics. So we are dealing with an infinite number of parafermions and an infinite number of
parabosons, satisfying the mutual relative parafermion relations. This is a straightforward extension
of (2.7)-(2.9), and these three sets of relations can be combined in a somewhat complicated form:

JJcξj , cηkK, cϵl K = −2δjlδϵ,−ξϵ
⟨l⟩(−1)⟨k⟩⟨l⟩cηk + 2ϵ⟨l⟩δklδϵ,−ηc

ξ
j , (5.4)

ξ, η, ϵ = ± or ± 1; j, k, l ∈ Z∗,

and we used the abbreviation ⟨i⟩ = deg(c±i ).
It is not difficult to see that Theorem 1 extends to the infinite rank case:

Theorem 11. As a Lie superalgebra defined by generators and relations, B(∞,∞) is generated by
the elements c±i (i ∈ Z∗) subject to the relations (5.4).

The parastatistics Fock space of order p, with p a positive integer, can be defined as before,
and will correspond to a lowest weight representation V (p) of the algebra B(∞,∞). V (p) is the
Hilbert space generated by a vacuum vector |0⟩ and the parastatistics creation and annihilation
operators, i.e. subject to

⟨0|0⟩ = 1, c−j |0⟩ = 0, (c±j )
† = c∓j , Jc−j , c+k K|0⟩ = pδjk |0⟩ (j, k ∈ Z∗) (5.5)
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and which is irreducible under the action of the algebra B(∞,∞). Clearly |0⟩ is a lowest weight
vector of V (p) with weight [. . . ,−p

2 ,−
p
2 ;

p
2 ,

p
2 , . . .] in the basis {. . . , ϵ−2, ϵ−1, ϵ1, ϵ2, . . .}.

In the following, we shall first describe the set of basis vectors of V (p), then give the action
of the operators c±i on these basis vectors, and finally prove that under this action one is indeed
dealing with an irreducible representation of the Lie superalgebra B(∞,∞).

The basic idea is that the GZ-patterns (3.8) consisting of 2n rows in the finite rank case can be
extended to GZ-patterns with an infinite number of rows. But not all infinite GZ-patterns are valid,
only the ones that are “row-stable” will correspond to vectors of V (p). (Note that in a previous
paper [27], we were also dealing with “stable” GZ-patterns of gl(∞|∞) in an odd basis. The ones
appearing in that earlier paper could be called “column-stable”, and are not the ones appearing
here.)

Before giving a definition of infinite row-stable GZ-patterns, let us give an example. Consider
the pattern with an infinite number of rows:

|m)∞ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
. . . . .

.
. .
.

4 3 1 0 0 0 0 0
4 3 1 0 0 0 0

4 3 1 0 0 0
4 3 1 0 0

3 3 1 0
3 2 1

2 2
1


. (5.6)

The definition of stability is essentially the same as in the finite case: the pattern |m)∞ is row-stable
with respect to row s if there exists a partition ν such that all rows s, s + 1, s + 2, . . . are of the
form

[ν1, ν2, . . . , 0; 0, 0, . . .].

In that case, s is called a stability index of |m)∞. In the above example, the smallest stability
index is 7.

The following proposition describes the basis of V (p).

Proposition 12. A basis of V (p) is given by all infinite row-stable GZ-patterns |m)∞ of the
following form:

|p;m)∞ ≡ |m)∞ = (5.7)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
...

...
...

...
... · · ·

... . .
.

mn̄,2n · · · m2̄,2n m1̄,2n m1,2n m2,2n · · · mn−1,2n mn,2n

↑ · · · ↑ ↑
mn,2n−1 · · · m2̄,2n−1 m1̄,2n−1 m1,2n−1 m2,2n−1 · · · mn−1,2n−1

. . .
...

...
...

... . .
.

m2̄4 m1̄4 m14 m24

↑ ↑
m2̄3 m1̄3 m13

↓
m1̄2 m12

↑
m1̄1



=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
[m]2n

[m]2n−1

...
[m]4

[m]3

[m]2

[m]1
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where for each |m)∞ there should exist a row index s (depending on |m)∞) such that row s is of
the form

[m]s = [ν1, ν2, . . . , 0; 0, 0, . . .]

with ν a partition, all rows above s are of the same form (up to extra zeros), and ν1 ≤ p. Further-
more all mij ∈ Z+ and the usual GZ-conditions should be satisfied:

1. m−i,2r −m−i,2r−1 ≡ θ−i,2r−1 ∈ {0, 1}, 1 ≤ i ≤ r;
2. mi,2r −mi,2r+1 ≡ θi,2r ∈ {0, 1}, 1 ≤ i ≤ r;
3. m−1,2r ≥ #{i : mi,2r > 0, i ∈ [1, r]}, r ∈ Z∗

+;
4. m−1,2r+1 ≥ #{i : mi,2r+1 > 0, i ∈ [1, r]}, r ∈ Z∗

+;
5. mi,2r+2 −mi,2r+1 ∈ Z+ and mi,2r+1 −mi+1,2r+2 ∈ Z+, 1 ≤ i ≤ r;
6. m−i−1,2r+1 −m−i,2r ∈ Z+ and m−i,2r −m−i,2r+1 ∈ Z+, 1 ≤ i ≤ r.

(5.8)

In order to define the action of the generators c±i on such vectors |m)∞, the map ϕ2n,+2 should
be extended in an obvious way. Let |m)2n be a finite GZ-pattern of type (3.8) with 2n rows, such
that row 2n is of the form

[ν1, ν2, . . . ; 0, 0, . . . , 0].

Then ϕ2n,∞
(
|m)2n

)
is the infinite GZ-pattern of type (5.7) consisting of the rows of |m)2n to which

an infinite number of rows [ν1, ν2, . . . ; 0, 0, . . . , 0] are added at the top (all identical, up to additional
zeros). Conversely, if an infinite GZ-pattern |m)∞ is given, which is stable with respect to row 2s,
then one can restrict the infinite pattern to a finite GZ-pattern, and

|m)2s = ϕ−1
2s,∞ (|m)∞) .

Both maps can be extended by linearity. Now we can define the action of c±i on vectors |m)∞ of
type (5.7).

Definition 13. Given a vector |m)∞ of V (p) with stability index 2s, and a generator c±i . Let 2n
be such that 2n > max{2s, ρ(i)}. Then

c±i |m)∞ = ϕ2n,∞
(
c±i |m)2n

)
, where |m)2n = ϕ−1

2n,∞ (|m)∞) . (5.9)

Note that by Proposition 10, the value chosen for 2n does not play a role, as long as 2n >
max{2s, ρ(i)}. Indeed, replacing 2n by 2n + 2 would give the same action in (5.9). Eq. (5.9)
really says the following: in order to act with c±i on an infinite pattern, first truncate this pattern
appropriately, then act with c±i on the truncated pattern, and finally extend all finite patterns thus
obtained again to infinite patterns.

Theorem 14. The vector space V (p), with basis vectors given by (5.7), on which the action of the
B(∞,∞) generators c±i (i ∈ Z∗) is defined by (5.9), is an irreducible unitary Fock representation
of B(∞,∞).

The proof uses stability, and the fact that a finite set of generators c±i (i ∈ [n̄, n]∗) satisfies the
defining triple relations when acting on a truncation of stable GZ-patterns.

Proof. Since B(∞,∞) is generated by the elements c±i (i ∈ Z∗), V (p) is a representation if we show
that the action of the defining triple relation (5.4) on any vector |m)∞ of V (p) is valid. Let |m)∞

be a vector of V (p), with stability index 2s. For any ξ, η, ϵ ∈ {−1,+1} and any j, k, l ∈ Z∗, let

Aξ,η,ϵ
j,k,l = JJcξj , cηkK, cϵl K + 2δjlδϵ,−ξϵ

⟨l⟩(−1)⟨k⟩⟨l⟩cηk − 2ϵ⟨l⟩δklδϵ,−ηc
ξ
j . (5.10)
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We need to show that Aξ,η,ϵ
j,k,l |m)∞ = 0. In the given situation, let n be such that

2n ≥ max(2s, ρ(j), ρ(k), ρ(l)}+ 6.

The additional 6 is chosen because the action of Aξ,η,ϵ
j,k,l involves 3 actions of c±i , and by Proposition 8

every such action could increase the stability index in the resulting vector by 2. The vector |m)2n =
ϕ−1
2n,∞ (|m)∞) is a basis vector of the corresponding B(n, n) Fock representation V (p, n), and by

construction of n and the fact that V (p, n) is a representation, the following holds:

Aξ,η,ϵ
j,k,l |m)2n = 0. (5.11)

Think of the left hand side of (5.11) as a linear combination of GZ-vectors with 2n rows. By
construction and by Propositions 8 and 9, all these vectors are stable with respect to row 2n.
Hence one can apply ϕ−1

2n,∞, leading to

Aξ,η,ϵ
j,k,l |m)∞ = 0. (5.12)

So we are dealing with a representation. The inner product on V (p) is defined by ∞(m′|m)∞ =
δm,m′ . With this, the representation V (p) is unitary, since the matrix elements of c−i and c+i are
related by

∞(m′|c+i |m)∞ = ∞(m|c−i |m
′)∞, (5.13)

by a straightforward extension of (3.19) and using the same stability argument as above.
The basis vector |0⟩ = |0)∞ (a zero GZ-pattern) clearly satisfies

⟨0|0⟩ = 1, c−j |0⟩ = 0, Jc−j , c+k K|0⟩ = pδjk |0⟩ (j, k ∈ Z∗) (5.14)

so we are dealing with a Fock representation.
V (p) is generated by |0⟩ and the action of the c±i ’s. Indeed, let |m)∞ be any vector of V (p),

stable with respect to row 2s. Let |m)2s = ϕ2s,∞ (|m)∞), then |m)2s is an element of the Fock
space V (p, s) of B(s, s), since m−s,2s ≤ p. Therefore, there must exist a polynomial expression A,
say of degree k, of products of the generators c±i (i ∈ [s̄, s]) such that

|m)2s = A|0)2s.

In order to apply ϕ2s,∞, we must be sure that the actions of ϕ2s,∞ and A in V (p, s) commute. Since
each c±i appearing in A could increase the stability index by 2, let 2n = 2s+2k. Obviously, also in
V (p, n) one hase

|m)2n = A|0)2n.

Now one can apply ϕ−1
2n,∞, yielding |m)∞ = A|0⟩. But then also irreducibility in V (p) follows, since

∞(m|A|0)∞ = 1 implies ∞(0|A†|m)∞ = 1, in other words, one can “return to the vacuum vector
0⟩” from any vector |m)∞.

6 Conclusion

For many years, the description of parastatistics Fock spaces with an infinite number of parafermions
and parabosons was one of our ultimate goals. In the past, we had already managed to extend
our results on Fock spaces for a finite number of parabosons to the case of an infinite number of
parabosons [26]. At the same time, we could extend our construction of Fock spaces for a finite
number of parafermions to that of an infinite number [26]. In both cases, the extension to an
algebra with an infinite number of creation and annihilation operators as generators turned out
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to be rather natural. Also the construction of Fock spaces for the infinite rank case went without
much difficulties.

Hence, after completing the description of Fock spaces for a combined system of m parafermions
and n parabosons in [24], our hope was that the limit process to a combined infinite set would also
be quite natural. Unfortunately, this was not the case. The Gelfand-Zetlin (GZ) basis of these Fock
spaces had no natural limit for m and n going to infinity, essentially because the two triangular GZ
patterns (related to those of gl(m) and gl(n)) cannot grow at the same time. So we had to rethink
the situation.

The solution has been presented in this paper. The main ingredient is a new GZ basis for
the Fock spaces of the finite case, but this time for a combined system of n parafermions and n
parabosons. This GZ basis is referred to as the odd basis, a terminology introduced for gl(n|n)
in [27]. The peculiar feature of this new basis is that the patterns consist of two opposite but
entangled triangular GZ arrays. In this new basis it becomes again quite natural to investigate
what happens when n grows to infinity, because the new GZ patterns have the right combinatorial
properties. This led us to the introduction of infinite row-stable GZ-patterns, of which we showed
that they constitute a basis for the Fock spaces of a combined system of an infinite number of
parafermions and parabosons. In doing so, we also introduced an interesting new matrix form of
the orthosymplectic Lie superalgebra B(n, n), which generalizes naturally to the infinite rank Lie
superalgebra B(∞,∞).

A Appendix

The purpose of this appendix is to give the Clebsch-Gordan coefficients of gl(n|n) corresponding
to the tensor product W ([1, 0, . . . , 0]) ⊗ W ([m]2n) of the 2n-dimensional standard representation
W ([1, 0, . . . , 0]) of gl(n|n) with any gl(n|n) covariant representation W ([m]2n). Such CGC’s have
been computed in [31], however in the standard GZ-basis. Here we need these CGC’s in the “odd
GZ-basis”, and that implies new calculations, which are quite involved.

We will briefly describe the technique used to compute these new CGC’s. As explained in the
main text, the following tensor product is valid:

W ([1, 0, . . . , 0])⊗W ([m]2n) =
⊕

k∈[−n,n]∗

W ([m]2n+(k)). (A.1)

One can thus formally write down two orthonormal bases in the space (A.1):

|1j)⊗

∣∣∣∣∣ [m]2n

|m)2n−1

)
∈ W ([1, 0, . . . , 0])⊗W ([m]2n) (A.2)

and ∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
∈ W ([m]2n+(k)), (k ∈ [−n, n]∗), (A.3)

where the GZ-patterns appearing here satisfy the conditions (3.9), and |1j) (j ∈ [1, 2n]) is a GZ-
pattern consisting of only zeros in rows 1, 2, . . . , j − 1 (as usual, counted from the bottom), and
rows of the form 10 · · · 0 in rows j, j + 1, . . . 2n. A zero row will be denoted by 0 · · · 0 = 0̇, and a
row of the form 10 · · · 0 by 10̇. The coefficients relating the two bases are the CGC’s:

Then in general∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
=
∑ 10 · · · 00

10 · · · 0
· · ·
0

;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
|1j)⊗

∣∣∣∣∣ [m]2n

|m)2n−1

)
, (A.4)
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where the sum is over all possible values of j and all allowed values of the GZ-labels in the pattern
|m)2n−1. It will be useful to denote this CGC also as 10 · · · 00

10 · · · 0
· · ·
0

;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
≡

(
|1j) ;

[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
.

Using the actions of (3.10)-(3.11) on both sides of (A.4), it is clear that GZ-patterns of

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)

and

∣∣∣∣∣ [m]2n

|m)2n−1

)
are related in the following way:

• there is no change in rows 1, 2, . . . , j − 1, i.e. [m′]i = [m]i for i ∈ [1, j − 1];

• in rows j, j + 1, . . . 2n there is a change by one unit for just one label, i.e. for i ∈ [j, 2n], [m′]i

is obtained from [m]i by m′
s,i = ms,i + 1 for one particular index s.

Let us briefly describe the procedure that we followed in order to compute the CGC’s for
the tensor product (A.1). First of all, recall that the representations of a Lie superalgebra like
gl(n|n) are also Z2 graded, and we choose the highest weight vectors w1 ∈ W ([1, 0, . . . , 0]) and
w2 ∈ W ([m]2n) to be even. Then it is clear that the highest weight vector w ∈ W ([m]2n+(−n)) in the

right hand side of (A.1) is simply w = w1 ⊗ w2. Using the known action of the gl(n|n) “lowering”
generators Eij on w from [27], one can construct the other weight vectors of W ([m]2n+(−n)). Acting

by these generators also on vectors of the left hand side of (A.1), one can identify vectors on the
left and right, and deduce the CGC’s of the form (A.4) with k = −n. It is important to use the
following rule in the actions on tensor products:

Eij(v1 ⊗ v2) = (Eijv1)⊗ v2 + (−1)deg(Eij) deg(v1)v1 ⊗ (Eijv2). (A.5)

Having worked in this way through W ([m]2n+(−n)), one should next identify the highest weight vector

of the second representation in the right hand side of (A.1), i.e. w′ ∈ W ([m]2n+(−n+1)). Since the

weight µ of w′ is known, one can construct the most general vector of W ([1, 0, . . . , 0])⊗W ([m]2n)
with the same weight µ, and express that it is orthogonal to each vector of weight µ belonging
to W ([m]2n+(−n)). This vector is unique, up to a phase (which is chosen appropriately). Then one

can proceed to the other vectors of W ([m]2n+(−n+1)), and get all CGC’s of the form (A.4) with
k = −n+ 1. Continuing in this way, explicit expression of the CGC’s can be computed.

For the final formulas of these CGC’s, it is useful to split them up in isoscalar factors and a
CGC of a lower rank Lie superalgebra. This is done as follows: 10 · · · 00

10 · · · 0
· · ·
0

;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)

=

(
10̇

ϵ0̇

∣∣∣∣ [m]2n

[m]2n−1

∣∣∣∣ [m]2n+(k)

[m′]2n−1

)
×

 10 · · · 00
10 · · · 0
· · ·
0

;
[m]2n−1

|m)2n−2

∣∣∣∣∣ [m
′]2n−1
+(k)

|m′)2n−2

)
. (A.6)

In the right hand side, the first factor is an isoscalar factor [36], and the second factor is a CGC
of gl(n|n − 1). The middle pattern in the gl(n|n − 1) CGC is that of the gl(n|n) CGC with
the first row deleted. The pattern in the isoscalar factor consists of the first two rows of the
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pattern in the left hand side, so ϵ is 0 or 1. If ϵ = 0, then [m′]2n−1 = [m]2n−1. If ϵ = 1 then
[m′]2n−1 = [m−n,2n−1, . . . ,ms,2n−1 + 1, . . . ,mn−1,n−1] = [m]2n−1

+s for some s-value.
We present now the results of our computation.

Theorem: The Clebsch-Gordan coefficients corresponding to the tensor product

W ([1, 0, . . . , 0])⊗W ([m]2n)

of the standard (2n)-dimensional gl(n|n) representation W ([1, 0, . . . , 0]) with an irreducible gl(n|n)
covariant tensor module W ([m]2n) are products of isoscalar factors:
for j = 1, 2, . . . , 2n− 1:(

|1j) ;
[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m′)2n−1

)
=

(
10̇

10̇

∣∣∣∣ [m]2n

[m]2n−1

∣∣∣∣ [m]2n+(k)

[m′]2n−1

)
× . . .

×
(

10̇

10̇

∣∣∣∣ [m]j+1

[m]j

∣∣∣∣ [m′]j+1

[m′]j

)(
10̇

00̇

∣∣∣∣ [m]j

[m]j−1

∣∣∣∣ [m′]j

[m]j−1

)
× 1; (A.7)

for j = 2n: (
|12n) ;

[m]2n

|m)2n−1

∣∣∣∣∣ [m]2n+(k)

|m)2n−1

)
= (−1)

∑n
i=1

∑−1
j=−i θj,2i−1+

∑n−1
i=1

∑i
j=1 θj,2i

×
(

10̇

00̇

∣∣∣∣ [m]2n

[m]2n−1

∣∣∣∣ [m]2n+(k)

[m]2n−1

)
. (A.8)

In the right hand side of (A.7)-(A.8),(
10̇

ϵ0̇

∣∣∣∣ [m]t

[m]t−1

∣∣∣∣ [m]t+(k)

[m′]t−1

)
(ϵ ∈ {0, 1})

is a gl(t|t) ⊃ gl(t|t − 1) (1 ≤ t ≤ n) or a gl(t|t − 1) ⊃ gl(t − 1|t − 1) (2 ≤ t ≤ n) isoscalar factor
following the chain of subalgebras

gl(n|n) ⊃ gl(n|n−1) ⊃ gl(n−1|n−1) ⊃ gl(n−1|n−2) ⊃ gl(n−2|n−2) ⊃ · · · ⊃ gl(1|1) ⊃ gl(1|0) ≡ gl(1).
(A.9)

For the gl(t|t) ⊃ gl(t|t − 1) isoscalar factors there are six different expressions, depending on the
position of the pattern changes in the right hand side. For all these expressions, it is common to
use other labels than the mij ’s:

li,2k−φ = mi,2k−φ−i (−k ≤ i ≤ −1); ls,2k−φ = −ms,2k−φ+s (1 ≤ s ≤ k−φ), φ = 0, 1; k = 1, . . . , n.
(A.10)

Furthermore,
∏b

i=a(̸=k) means the product over all i-values running from a to b, but excluding
i = k.
These six expressions are given by (A.11)-(A.16):(

10̇

00̇

∣∣∣∣ [m]2t

[m]2t−1

∣∣∣∣ [m]2t+(k)

[m]2t−1

)
= (−1)t+k(1− θk,2t−1)(−1)

∑−1
i=kθi,2t−1

×

 −1∏
i=−t(̸=k)

(
lk,2t − li,2t + 1

lk,2t − li,2t−1

) ∏t−1
s=1(lk,2t − ls,2t−1)∏t
s=1(lk,2t − ls,2t + 1)

1/2

(1 ≤ t ≤ n; −t ≤ k ≤ −1); (A.11)
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(
10̇

00̇

∣∣∣∣ [m]2t

[m]2t−1

∣∣∣∣ [m]2t+(k)

[m]2t−1

)
=

( −1∏
i=−t

(
li,2t − lk,2t

li,2t−1 − lk,2t + 1

) ∏t−1
s=1(ls,2t−1 − lk,2t + 1)∏t
s=1(̸=k)(ls,2t − lk,2t)

)1/2

(2 ≤ t ≤ n; 1 ≤ k ≤ t) (A.12)

= (−1)θ11
(

l−1,2 − l1,2
l−1,1 − l1,2 + 1

)1/2

(t = k = 1);

(
10̇

10̇

∣∣∣∣ [m]2t

[m]2t−1

∣∣∣∣ [m]2t+(k)

[m]2t−1
+(q)

)
= (−1)k+q(−1)

∑max(k−1,q−1)
i=min(k+1,q+1)

θi,2t−1(δkq + (1− δkq)θq,2t−1(1− θk,2t−1))

×

 −1∏
i=−t(̸=k,q)

(li,2t−1 − lk,2t−1 − 1− δkq + 2θi,2t−1)(li,2t−1 − lq,2t−1)

(li,2t − lk,2t)(li,2t − lq,2t)

θq,2t−1/2

× 1

(lk,2t − lq,2t)1−δkq

(
t∏

s=1

(
lq,2t − ls,2t

lk,2t − ls,2t + 1

) t−1∏
s=1

(
lk,2t − ls,2t−1

lq,2t−1 − ls,2t−1

))θq,2t−1/2

(−t ≤ k, q ≤ −1);

(A.13)

(
10̇

10̇

∣∣∣∣ [m]2t

[m]2t−1

∣∣∣∣ [m]2t+(k)

[m]2t−1
+(q)

)
= (−1)k+t+1(−1)

∑k−1
i=−tθi,2t−1(1− θk,2t−1)

(
1

lk,2t − lq,2t−1

)1/2

×

 −1∏
i=−t(̸=k)

(
(li,2t−1 − lk,2t−1 − 1 + 2θi,2t−1)(li,2t−1 − lq,2t−1 + 1)

(li,2t − lk,2t)(li,2t − lq,2t−1)

)1/2

×

 t∏
s=1

(
|ls,2t − lq,2t−1|

(lk,2t − ls,2t + 1)

) t−1∏
s=1(̸=q)

(
lk,2t − ls,2t−1

|ls,2t−1 − lq,2t−1 + 1|

)1/2

(−t ≤ k ≤ −1, 1 ≤ q ≤ t− 1); (A.14)

(
10̇

10̇

∣∣∣∣ [m]2t

[m]2t−1

∣∣∣∣ [m]2t+(k)

[m]2t−1
+(q)

)
= (−1)q+t+1(−1)

∑−1
i=q+1θi,2t−1θq,2t−1

(
1

lq,2t − lk,2t + 1

)1/2

×

 −1∏
i=−t

(
li,2t − lk,2t

li,2t−1 − lk,2t + 1

) −1∏
i=−t(̸=q)

∣∣∣ lq,2t−1 − li,2t−1

lq,2t − li,2t

∣∣∣ t∏
s=1(̸=k)

∣∣∣ lq,2t − ls,2t
ls,2t − lk,2t

∣∣∣ t−1∏
s=1

∣∣∣ ls,2t−1 − lk,2t + 1

lq,2t − ls,2t−1 − 1

∣∣∣
1/2

(1 ≤ k ≤ t, −t ≤ q ≤ −1); (A.15)

(
10̇

10̇

∣∣∣∣ [m]2t

[m]2t−1

∣∣∣∣ [m]2t+(k)

[m]2t−1
+(q)

)
= S(k, q)(−1)

∑−1
i=−tθi,2t−1

( −1∏
i=−t

(
(li,2t − lk,2t)(li,2t−1 − lq,2t−1 + 1)

(li,2t−1 − lk,2t + 1)(li,2t − lq,2t−1)

))1/2

×

 t∏
s=1(̸=k)

∣∣∣ ls,2t − lq,2t−1

ls,2t − lk,2t

∣∣∣ t−1∏
s=1(̸=q)

∣∣∣ ls,2t−1 − lk,2t + 1

ls,2t−1 − lq,2t−1 + 1

∣∣∣
1/2

(1 ≤ k ≤ t, 1 ≤ q ≤ t− 1).

(A.16)
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Also for the gl(t|t−1) ⊃ gl(t−1|t−1) isoscalar factors there are six different expressions, depending
on the position of the pattern changes in the right hand side. These six expressions are given
by (A.17)-(A.22):

(
10̇

0̇

∣∣∣∣ [m]2t−1

[m]2t−2

∣∣∣∣ [m]2t−1
+(k)

[m]2t−2

)

= (−1)t+k

( ∏−1
s=−t+1(lk,2t−1 − ls,2t−2)∏−1
s=−t( ̸=k)(lk,2t−1 − ls,2t−1)

t−1∏
i=1

(
lk,2t−1 − li,2t−1

lk,2t−1 − li,2t−2

))1/2

(−t ≤ k ≤ −1); (A.17)

(
10̇

0̇

∣∣∣∣ [m]2t−1

[m]2t−2

∣∣∣∣ [m]2t−1
+(k)

[m]2t−2

)
= θk,2t−2(−1)k(−1)

∑t−1
i=k+1 θi,2t−2

×

∏−1
s=−t+1(ls,2t−2 − lk,2t−1 + 1)∏−1
s=−t(ls,2t−1 − lk,2t−1 + 1)

t−1∏
i=1(̸=k)

(
li,2t−1 − lk,2t−1 + 1

li,2t−2 − lk,2t−1 + 1

)1/2

(1 ≤ k ≤ t− 1); (A.18)

(
100̇

10̇

∣∣∣∣ [m]2t−1

[m]2t−2

∣∣∣∣ [m]2t−1
+(k)

[m]2t−2
+(q)

)

= (−1)k+qS(−k,−q)

 −1∏
i=−t(̸=k)

(
lq,2t−2 − li,2t−1 + 1

lk,2t−1 − li,2t−1

) −1∏
i=−t+1(̸=q)

(
lk,2t−1 − li,2t−2

lq,2t−2 − li,2t−2 + 1

)1/2

×

(
t−1∏
s=1

(lk,2t−1 − ls,2t−1)(lq,2t−2 − ls,2t−2 + 1)

(lk,2t−1 − ls,2t−2)(lq,2t−2 − ls,2t−1 + 1)

)1/2

(−t ≤ k ≤ −1, −t+ 1 ≤ q ≤ −1); (A.19)

(
100̇

10̇

∣∣∣∣ [m]2t−1

[m]2t−2

∣∣∣∣ [m]2t−1
+(k)

[m]2t−2
+(q)

)
= (−1)k+t(−1)

∑q−1
i=1 θi,2t−2(1− θq,2t−2)

(
1

lk,2t−1 − lq,2t−2 + 1

)1/2

×

 −1∏
i=−t(̸=k)

(
li,2t−1 − lq,2t−2

lk,2t−1 − li,2t−1

) −1∏
i=−t+1

(
lk,2t−1 − li,2t−2

li,2t−2 − lq,2t−2

)1/2

×

 t−1∏
s=1(̸=q)

(
(lk,2t−1 − ls,2t−1)(ls,2t−2 − lq,2t−2)

(lk,2t−1 − ls,2t−2)(ls,2t−1 − lq,2t−2)

)1/2

(−t ≤ k ≤ −1, 1 ≤ q ≤ t− 1); (A.20)

(
100̇

10̇

∣∣∣∣ [m]2t−1

[m]2t−2

∣∣∣∣ [m]2t−1
+(k)

[m]2t−2
+(q)

)
= (−1)k+q+t(−1)

∑t−1
i=k+1θi,2t−2θk,2t−2

(
1

lq,2t−2 − lk,2t−1 + 1

)1/2

×

 −1∏
i=−t

(
|li,2t−1 − lq,2t−2 − 1|
li,2t−1 − lk,2t−1 + 1

) −1∏
i=−t+1(̸=q)

(
li,2t−2 − lk,2t−1 + 1

|li,2t−2 − lq,2t−2 − 1|

)1/2

×

 t−1∏
s=1(̸=k)

(
(lq,2t−2 − ls,2t−2 + 1)(ls,2t−1 − lk,2t−1 + 1)

(lq,2t−2 − ls,2t−1 + 1)(ls,2t−2 − lk,2t−1 + 1)

)1/2

(1 ≤ k ≤ t− 1, −t+ 1 ≤ q ≤ −1);

(A.21)
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(
100̇

10̇

∣∣∣∣ [m]2t−1

[m]2t−2

∣∣∣∣ [m]2t−1
+(k)

[m]2t−2
+(q)

)
= (−1)k−1(−1)

∑t−1
i=1θi,2t−2(δkq + (1− δkq)θk,2t−2(1− θq,2t−2))

× 1

(lk,2t−1 − lq,2t−1)1−δkq

( −1∏
i=−t

(
li,2t−1 − lq,2t−2

li,2t−1 − lk,2t−1 + 1

) −1∏
i=−t+1

(
li,2t−2 − lk,2t−1 + 1

li,2t−2 − lq,2t−2

))(1−θq,2t−2)/2

×

 t−1∏
s=1(̸=k,q)

(ls,2t−2 − lq,2t−2 + 1− δkq + 2θs,2t−2)(ls,2t−2 − lq,2t−2)

(ls,2t−1 − lk,2t−1)(ls,2t−1 − lq,2t−2)

(1−θq,2t−2)/2

(1 ≤ k, q ≤ t− 1);

(A.22)

In all of the formulas above, 0̇ stands for an appropriate sequence of zeros in the pattern, and we
use

S(k, q) =

{
1 for k ≤ q

−1 for k > q.
. (A.23)
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