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1. Introduction

Lie superalgebras, originating from physics [3], are ZZ2-graded algebras (ZZ2 =

ZZ/2ZZ) with a bracket operation which is “supersymmetric” (equation 2.1b

in this paper) and which satisfies the “super Jacobi identity” (equation 2.1c).

A classification of the finite dimensional simple Lie superalgebras over CI was

given over a decade ago by Kac [8, 9, 10, 13]. A subclass of these, closely
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analogous to the finite dimensional Lie algebras over CI , is the class of so-

called basic classical Lie superalgebras [9].

The problem of classifying the finite dimensional simple modules of the

basic classical Lie superalgebras has also been considered by Kac [9, 11]. He

showed that, as in the case of finite dimensional simple modules of the semi-

simple Lie algebras, they are characterised up to equivalence by a highest

weight Λ. The weight structure of a simple module V (Λ) with highest weight

Λ of such a Lie superalgebra G is determined by its character chV (Λ). For a

subclass of these simple modules, known as “typical” modules, Kac was able

to derive a character formula closely analogous to the Weyl character formula

for simple modules of simple Lie algebras. The problem of obtaining character

formulae for the remaining “atypical” modules has been the subject of intense

investigation but is still not solved other than in various special cases. In

this paper, we solve this problem for the singly atypical modules of the Lie

superalgebra G = sl(m/n), where sl(m/n) (m,n ∈ NI ) is the special linear Lie

superalgebra analogous to the special linear Lie algebra sl(m).

We consider the indecomposable G modules V (Λ), introduced by Kac [11],

which we refer to as Kac-modules. V (Λ) is well-defined for every integral

dominant weight Λ and has the important property that every finite dimen-

sional simple G module V (Λ) is isomorphic to a quotient module of the form

V (Λ)/M(Λ), where M(Λ) is the unique maximal submodule of V (Λ). The

character of V (Λ) is easy to determine, and has been given by Kac (equation

3.17 in this paper):

chV (Λ) =

∏

β∈∆+
1

(eβ/2 + e−β/2)

∏

α∈∆+
0

(eα/2 − e−α/2)

∑

w∈W

ε(w)ew(Λ+ρ), (1.1)

where ∆+
0 (∆+

1 ) is the set of even (resp. odd) positive roots of G, W is the

Weyl group (defined to be the Weyl group of the even subalgebra of G), ε(w)

is the signature of w ∈ W , and ρ = ρ0 − ρ1 where ρ0 (resp. ρ1) is half the

sum of all even (resp. odd) positive roots of G. The integral dominant weight

Λ and the module V (Λ) are called typical if 〈Λ + ρ | β〉 6= 0 for all β ∈ ∆+
1 ,

where 〈 | 〉 is a non-degenerate bilinear form [11, 12]. In this case, Kac showed

that M(Λ) = {0}, and so (1.1) gives the character of the simple G module

V (Λ) = V (Λ) [11].
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If 〈Λ+ρ | β〉 = 0 for some β ∈ ∆+
1 , thenM(Λ) 6= {0} and so V (Λ) 6= V (Λ).

In this case Λ, V (Λ) and V (Λ) are called atypical; in particular if there is a

unique γ ∈ ∆+
1 such that 〈Λ + ρ | γ〉 = 0, then Λ, V (Λ) and V (Λ) are said to

be singly atypical of type γ, and γ is called the corresponding atypical root.

In this paper we give a unique characterisation of M(Λ) for the singly atypical

case (Theorem 4.3): we show that M(Λ) is itself a simple (singly atypical) G

module. Using this theorem, we are then able to derive a character formula for

V (Λ), first for the case where the atypical root is the unique odd simple root

αm of G (Theorem 5.3). We then proceed to prove various properties relating

a weight Λ, singly atypical of type γ, to a weight that is singly atypical of type

αm. Using these properties, we then derive a character formula for all singly

atypical simple modules of sl(m/n) in Section 7 (Theorem 7.2). Finally, we

make some comments relating to multiply atypical modules.

We conclude this introduction by mentioning that characters of some atyp-

ical sl(m/n) modules have been obtained by Berele and Regev [1] and Serge’ev

[15]. Using Schur’s method, they show that the tensor product V ⊗N , where

V is the natural (m + n)-dimensional module of sl(m/n), is completely re-

ducible. The irreducible components are the (simple) covariant tensor mod-

ules, the characters of which can be expressed in terms of Schur functions

[1, 15]. These covariant tensor modules can be typical, singly atypical or even

multiply atypical, but they do not by any means exhaust any of these cate-

gories of modules. Various formulae and conjectures have been published in

order to accommodate the characters of all atypical simple sl(m/n) modules

[2, 5], but counterexamples to all formulae proposed so far have been found

[17]. Realizing the failure of all these proposals, a new conjecture has been

given in Ref. 17, to which no counterexamples are known. This is described

briefly in Section 8.

2. The Lie superalgebra sl(m/n)

A complex Lie superalgebra G is a ZZ2-graded linear vector space, G = G0̄⊕G1̄

over CI with a bracket [ , ] such that ∀a ∈ Gα, ∀b ∈ Gβ and ∀α, β ∈ ZZ2 [9, 13]

[a, b] ∈ Gα+β , (2.1a)

[a, b] = −(−1)αβ [b, a], (2.1b)

[a, [b, c]] = [[a, b], c] + (−1)αβ [b, [a, c]]. (2.1c)

Note that the even part G0̄ is a complex Lie algebra, and that the odd part

G1̄ is a G0̄ module under the adjoint action. The simplest example of a Lie
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superalgebra is given by gl(m/n) withm,n ∈ NI . Its natural matrix realisation

takes the form:

gl(m/n) =
{

x =
(

A B
C D

)

|A ∈ Mm×m, B ∈ Mm×n,

C ∈ Mn×m, D ∈ Mn×n

}

,
(2.2)

where Mp×q is the space of all p× q complex matrices. The “even” subspace

gl(m/n)0̄ has B = 0 and C = 0; the “odd” subspace gl(m/n)1̄ has A = 0 and

D = 0. In the case of G = gl(m/n), the bracket is determined in the natural

matrix representation by

[a, b] = ab− (−1)αβba, ∀a ∈ Gα and ∀b ∈ Gβ . (2.3)

We denote by gl(m/n)+1 the space of matrices (00
B
0 ) and by gl(m/n)−1 the

space of matrices ( 0C
0
0). Then G = gl(m/n) has a ZZ-grading which is consis-

tent with the ZZ2-grading [13]:

G = G−1 ⊕G0 ⊕G+1, G0̄ = G0 and G1̄ = G−1 ⊕G+1. (2.4)

Note that gl(m/n)0̄ = gl(m)⊕ gl(n). With the definition of supertrace [9] as

str(x) = tr(A)− tr(D) one can define the subalgebra sl(m/n):

sl(m/n) = {x ∈ gl(m/n) | str(x) = 0}. (2.5)

If m 6= n then sl(m/n) is a simple Lie superalgebra [9, 13]. If m = n it

contains a one-dimensional ideal CI I2m and then sl(m/m)/CI I2m is simple. In

what follows we put G = sl(m/n). Note that sl(m/n)0̄ = sl(m) ⊕ CI ⊕ sl(n)

is a reductive Lie algebra, the simple modules of which are well known.

A Cartan subalgebra H of G has dimension m+ n− 1 and is spanned by

hi = Eii − Ei+1,i+1 (1 ≤ i ≤ m− 1 or m+ 1 ≤ i ≤ m+ n− 1),

hm = Emm + Em+1,m+1,
(2.6)

where Eij is the matrix with entry 1 at position (i, j) and 0 elsewhere. The

dual space H∗ is described in the basis of forms ǫi (i = 1, 2, . . . ,m) and δj
(j = 1, 2, . . . , n), where ǫi: x → Aii and δj : x → Djj for x = (AC

B
D ), and

∑m
i=1 ǫi +

∑n
j=1 δj = 0. The roots and corresponding root vectors of sl(m/n)

are given by [9]

ǫi − ǫj ↔ Eij (1 ≤ i, j ≤ m) (even),

δi − δj ↔ Em+i,m+j (1 ≤ i, j ≤ n) (even),

ǫi − δj ↔ Ei,m+j (1 ≤ i ≤ m, 1 ≤ j ≤ n) (odd),

δi − ǫj ↔ Em+i,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) (odd).

(2.7)
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Denote by ∆ the set of all roots, by ∆0 the set of even roots, by ∆1 the set of

odd roots, and by e(α) the root vector (2.7) corresponding to the root α ∈ ∆.

G has the root space decomposition

G = H ⊕





⊕

α∈∆

CI e(α)



 . (2.8)

A set of simple roots of ∆ may be chosen as follows:

αi = ǫi − ǫi+1 (1 ≤ i ≤ m− 1), αm = ǫm + δ1,

αm+j = δj − δj+1 (1 ≤ j ≤ n− 1);
(2.9)

this choice is often referred to as the “distinguished basis”, for which there is

only one odd simple root αm [11]. With this distinguished choice, the elements

of H∗ are partially ordered by

λ, µ ∈ H∗ : λ ≥ µ ⇔ λ− µ =
m+n−1

∑

i=1

kiαi with ki ≥ 0. (2.10)

This partial ordering ≥ can be extended to a total ordering � compatible with

≥, i.e.

λ ≥ µ ⇒ λ � µ; (2.11)

the most natural example of such a total ordering is lexicographical ordering

with respect to the simple roots. The even and odd positive roots of sl(m/n)

are given by
∆+
0 = {ǫi − ǫj (i < j); δi − δj (i < j)},

∆+
1 = {ǫi − δj}.

(2.12)

It will be convenient to denote the mn odd positive roots by

βij = ǫi − δj 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.13)

The invariant non-degenerate inner product on G is given by 〈x|y〉 =

str(xy). The restriction of this to H is also non-degenerate and the pairing of

H and H∗ then defines a non-degenerate inner product 〈 | 〉 on H∗, explicitly

determined by

〈ǫi|ǫj〉 = δij , 〈ǫi|δj〉 = 0, 〈δi|δj〉 = −δij , (2.14)

where δij is the Kronecker-δ. An element Λ ∈ H∗ with Λ =
∑

i λiǫi +
∑

j µjδj can be written in terms of its components in the ǫδ-basis as Λ =
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(λ1λ2 . . . λm|µ1µ2 . . . µn) with
∑

i λi +
∑

j µj = 0, or in terms of its Dynkin

labels Λ = [a1, . . . , am−1; am; am+1, . . . , am+n−1] where ai = Λ(hi) and hi is

given in (2.6). We call ai with i 6= m an even Dynkin label and am the odd

Dynkin label.

The Weyl group W of G is defined to be the Weyl group of G0̄ [9]. Hence

W = Sm × Sn, the direct product of the Weyl groups of sl(m) and sl(n). For

w = σ×τ ∈ W = Sm×Sn, the signature ε(w) is the product of the signatures

of σ and τ . We denote by w0 the Coxeter element of W , i.e. w0 = ωm × ωn,

where ωm (resp. ωn) is the element of maximal length in Sm (resp. Sn). The

dot action is defined as usual:

w · Λ = w(Λ + ρ)− ρ, where ρ = ρ0 − ρ1 (2.15)

with

ρ0 =
1

2

∑

α∈∆+
0

α and ρ1 =
1

2

∑

β∈∆+
1

β. (2.16)

Explicitly,

ρ0 =
1

2

m
∑

i=1

(m− 2i+ 1)ǫi +
1

2

n
∑

j=1

(n− 2j + 1)δj

ρ1 =
n

2

m
∑

i=1

ǫi −
m

2

n
∑

j=1

δj .

(2.17)

Note that ∆+
1 , given in the distinguished basis by (2.12), is W -invariant. It

follows from (2.16) that wρ1 = ρ1 for all w ∈ W (a property which can also

be seen from the explicit form (2.17) for ρ1), and hence

w · Λ = w(Λ + ρ)− ρ = w(Λ + ρ0)− ρ0. (2.18)

We set
N±
0 = span{e(α)|α ∈ ∆±

0 },

N±
1 = span{e(β)|β ∈ ∆±

1 },

N± = N±
0 ⊕N±

1 .

(2.19)

Note that N±
1 = G±1 and, besides the decomposition (2.4), one has

G0̄ = N−
0 ⊕H ⊕N+

0 ,

G = N− ⊕H ⊕N+.
(2.20)

Let U(G) be the universal enveloping algebra of G, and U(G′) the enveloping

algebra of any one of the subalgebrasG′ = H,G0, N
±, N±

0 , N±
1 . The Poincaré-

Birkhoff-Witt theorem for Lie algebras can be extended to the case of Lie

superalgebras [9, 13]:
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Theorem 2.1. Let x1, . . . , xM be a basis of G0̄ and y1, . . . , yN be a basis of

G1̄. Then the elements of the form

(x1)
k1 . . . (xM )kM yi1 . . . yis , where ki ≥ 0 and 1 ≤ i1 < . . . < is ≤ N, (2.21)

form a basis of U(G).

A similar theorem is true for each U(G′) with G′ one of the subalgebras

given previously. Therefore U(G′) is H-diagonalisable and we can denote by

U(G′)η the subspace of all elements of U(G′) of weight η with respect to H.

Denote by σ the involutive antiautomorphism of G defined by the relations

[11]
σ(h) = h, ∀h ∈ H,

σ(e(α)) = e(−α), ∀α ∈ ∆,
(2.22)

where e(α) is the root vector corresponding to α. This antiautomorphism can

be extended to U(G) by σ(xy) = σ(y)σ(x), for x, y ∈ U(G).

3. The Kac-module

Let V = V0̄ ⊕ V1̄ be a ZZ2-graded linear vector space over CI , and denote by

gl(V ) the space of endomorphisms of V . Then gl(V ) is naturally ZZ2-graded:

gl(V ) = gl(V )0̄ ⊕ gl(V )1̄. A representation φ is a linear mapping from G to

gl(V ) such that ∀α, β ∈ {0̄, 1̄}:

φ: x → φ(x) with φ(x) ∈ gl(V )α for x ∈ Gα,

φ([x, y]) = φ(x)φ(y)− (−1)αβφ(y)φ(x) ∀x ∈ Gα and ∀y ∈ Gβ .
(3.1)

Then V is a G module with xv = φ(x)v for x ∈ G and v ∈ V .

Definition 3.1. V is called a highest weight module for G (resp. for G0̄) with

highest weight Λ ∈ H∗ if there exists a non-zero vector vΛ ∈ V such that

N+vΛ = 0 (resp. N+
0 vΛ = 0),

hvΛ = Λ(h)vΛ ∀h ∈ H,

U(G)vΛ = V (resp. U(G0̄)vΛ = V ).

(3.2)

Then vΛ is called a G (resp. G0̄) highest weight vector.

Highest weight modules are H-diagonalizable,

V =
⊕

λ≤Λ

Vλ, with Vλ = {v ∈ V | hv = λ(h)v, ∀h ∈ H}, (3.3)

and so are all submodules or subquotients of highest weight modules.
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Definition 3.2. Let V be a G highest weight module with highest weight

vector vΛ. We call v ∈ V a generating vector if and only if V = U(G)v or,

equivalently, if and only if vΛ ∈ U(G)v.

Definition 3.3. Let V be a G module. A vector v ∈ V is called a weakly

primitive vector if there exists a G module U ⊂ V such that v /∈ U and

N+v ⊆ U .

If U = {0} in Definition 3.3, the vector v is primitive :

Definition 3.4. Let V be a G module (resp. a G0̄ module). A vector v ∈ V

is called a G primitive vector (resp. a G0̄ primitive vector) if N+v = 0 (resp.

N+
0 v = 0).

A weight Λ ∈ H∗ is called dominant if ai = Λ(hi) ≥ 0 for all i 6= m,

integral if ai ∈ ZZ for all i 6= m, and integral dominant if ai ∈ NI for all

i 6= m. From the theory of reductive Lie algebras it follows that for every

integral dominant weight Λ there exists a unique (up to isomorphism) finite

dimensional simple G0̄ module V0(Λ) with highest weight Λ. Let vΛ be a

highest weight vector for V0(Λ). The G0 module V0(Λ) can be extended to

a G0 ⊕ G+1 module by putting G+1V0(Λ) = 0. In this paper we shall make

extensive use of the following G module, first defined by Kac [11]:

Definition 3.5. For an integral dominant Λ ∈ H∗, the Kac-module V (Λ) is

the induced module

V (Λ) = IndGG0⊕G+1
V0(Λ) = U(G)⊗G0⊕G+1

V0(Λ).

From Theorem 2.1 we see that U(G) = U(G−1)⊗U(G0)⊗U(G+1). There-

fore Definition 3.5 implies that

V (Λ) ∼= U(G−1)⊗ V0(Λ). (3.4)

Since [G−1, G−1] = 0, U(G−1) is isomorphic to ∧(G−1), the exterior algebra

over G−1. The dimension of G−1 is mn, thus dim(∧(G−1)) = 2mn, and hence

V (Λ) is a finite dimensional G-module of dimension 2mndim(V0(Λ)). It follows

from the definition that V (Λ) is a G highest weight module. Unfortunately

V (Λ) is not always a simple G module. Since V (Λ) is a G highest weight

module, it contains a unique maximal submodule M(Λ):

M(Λ) = {v ∈ V (Λ) | vΛ /∈ U(G)v}, (3.5)
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such that the quotient module

V (Λ) = V (Λ)/M(Λ) (3.6)

is a finite dimensional simple G module with highest weight Λ. Kac proved

the following theorem [11]:

Theorem 3.6 [Kac]. Every finite dimensional simple Gmodule is isomorphic

to a module of type (3.6), where Λ is integral dominant. Moreover, every

finite dimensional simple G module is uniquely characterized by its integral

dominant highest weight Λ.

Let T+ and T− be the following elements in U(G):

T± =
∏

β∈∆+
1

e(±β), (3.7)

where the β’s in the product (3.7) (and in all subsequent products of e(β)’s)

appear in the chosen lexicographical ordering (note that a different ordering

can only lead to a sign change). One can verify that

[e(α), T±] = 0, ∀α ∈ ∆0. (3.8)

In V (Λ), let

vΛ−
= T−vΛ, where Λ− = Λ− 2ρ1. (3.9)

Note that (2.17) implies that Λ− is also integral dominant; in fact if ai are

the Dynkin labels of Λ, then [a1, . . . , am−1; am + m − n; am+1, . . . , am+n−1]

are the Dynkin labels of Λ−. Since G0̄ ⊂ G, V (Λ) is also a G0̄ module. It

follows from (3.8) that the G0̄ module V (Λ) contains T−V0(Λ) as a simple

G0̄ submodule, with highest weight vector vΛ−
. This submodule contains a

unique (up to scalar multiplication) lowest weight vector v− of weight w0Λ−.

From (3.4) it follows that v− is the unique (again, up to scalar multiplication)

vector of V (Λ) annihilated by N−.

Lemma 3.7. V (Λ) is an indecomposable G module, indeed every non-zero G

submodule Y of the G module V (Λ) contains the G0̄ module T−V0(Λ) as a

subspace.

This follows from the fact that every submodule of V (Λ) contains the

vector v− that is annihilated by N−.

The following lemma appears in the work of Gould [4]:
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Lemma 3.8. Let X(Λ) = U(G)vΛ−
. Then X(Λ) is a simple G submodule of

V (Λ), and every non-zero submodule of V (Λ) contains X(Λ).

Indeed, X(Λ) is by definition a submodule of V (Λ). Using Lemma 3.7,

every non-zero submodule Y of V (Λ) contains vΛ−
, and hence contains X(Λ).

This also implies that X(Λ) has no proper submodules, so X(Λ) is simple.

Lemma 3.9. V (Λ) is a simple G module if and only if T+T−vΛ 6= 0.

Proof. The elements in U(G)vΛ−
of weight Λ must be multiples of T+vΛ−

. If

T+T−vΛ = 0, then it follows that vΛ /∈ X(Λ), so X(Λ) is then a proper non-

zero submodule of V (Λ), so V (Λ) is not simple. Conversely, if V (Λ) were not

simple, then vΛ /∈ M(Λ). But according to Lemma 3.7 T−vΛ ∈ M(Λ), hence

T+T−vΛ ∈ M(Λ), and since T+T−vΛ is of weight Λ we conclude T+T−vΛ ∝ vΛ.

Thus T+T−vΛ = 0.

Lemma 3.10. Let Q(Λ) be the expression

Q(Λ) =
∏

β∈∆+
1

〈Λ + ρ | β〉. (3.10)

Then

T+T−vΛ = ±Q(Λ)vΛ. (3.11)

For a proof, see Kac [11, 12]; whether the sign in (3.11) is + or − depends

upon the ordering of the e(β)’s in (3.7) and is unimportant here.

Definition 3.11. Let Λ be an integral dominant weight. We call Λ (resp.

V (Λ), resp. V (Λ)) a typical weight (resp. a typical Kac-module, resp. a

typical simple module) if and only if 〈Λ + ρ | β〉 6= 0 for all β ∈ ∆+
1 . If there

exists a β ∈ ∆+
1 such that 〈Λ + ρ | β〉 = 0 then Λ, V (Λ) and V (Λ) are called

atypical, and β is called an atypical root for Λ. If there exists just one atypical

root β for Λ, we call Λ, V (Λ) and V (Λ) singly atypical of type β.

The following theorem now follows from Lemmas 3.9 and 3.10 [11, 12]:

Theorem 3.12. The Kac-module V (Λ) is a simple G module if and only if

Λ is typical.

The character chV of a G module V with weight space decomposition (3.3)

is defined as

chV =
∑

λ∈H∗

dim(Vλ)e
λ, (3.12)
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where eλ is the formal exponential. The action of the Weyl group W on such

formal exponentials is defined by w(eλ) = ewλ. Let

L0 =
∏

α∈∆+
0

(

eα/2 − e−α/2
)

and L1 =
∏

β∈∆+
1

(

eβ/2 + e−β/2
)

. (3.13)

From (3.4) it follows that the Kac-module has character

chV (Λ) =
∏

β∈∆+
1

(

1 + e−β
)

chV0(Λ), (3.14)

where chV0(Λ) is given by Weyl’s character formula [18]:

chV0(Λ) = L−1
0

∑

w∈W

ε(w)ew(Λ+ρ0). (3.15)

Using the Weyl invariance of ρ1, we have
∏

β∈∆+
1

(

1 + e−β
)

= L1e
−ρ1 = L1e

−wρ1 , ∀w ∈ W, (3.16)

and hence we obtain Kac’s character formula [11, 12]:

chV (Λ) =
L1

L0

∑

w∈W

ε(w)ew(Λ+ρ). (3.17)

Due to the Weyl invariance of ∆+
1 and of L1, (3.17) can be rewritten in the

form

chV (Λ) = L−1
0

∑

w∈W

ε(w)w











eΛ+ρ0
∏

β∈∆+
1

(

1 + e−β
)











. (3.18)

Using Theorem 3.12, (3.18) gives the character of all typical simple modules

of G. The problem of finding the characters of atypical simple G modules is

unsolved so far. In this paper we shall deduce a character formula for singly

atypical simple G modules.

Finally, let λ ∈ H∗ be integral. We define the “formal characters”:

χK(λ) = L−1
0

∑

w∈W

ε(w)w











eλ+ρ0
∏

β∈∆+
1

(

1 + e−β
)











; (3.19)

χW (λ) = L−1
0

∑

w∈W

ε(w)ew(λ+ρ0). (3.20)

If λ is integral dominant the expressions (3.19) and (3.20) coincide with Kac’s

character chV (λ) and Weyl’s character chV0(λ) respectively. It is easy to verify

that the formal characters satisfy the following properties:

χK(λ) = e−ρ1L1 χW (λ); (3.21)

χW (w · λ) = ε(w)χW (λ), and χK(w · λ) = ε(w)χK(λ), ∀w ∈ W. (3.22)
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4. The maximal submodule of the Kac-module

Let Λ ∈ H∗ be an integral dominant weight. In this section, we shall consider

the even Dynkin labels ai = Λ(hi) (i 6= m) of Λ as fixed integers, and the odd

Dynkin label am as a complex variable. Let V0(Λ) be the (finite dimensional)

simple G0̄ module with highest weight Λ and highest weight vector vΛ. V0(Λ)

has the following weight space decomposition:

V0(Λ) =
⊕

λ

V0(Λ)λ. (4.1)

Let P0(Λ) be the set of weights λ for which V0(Λ)λ 6= {0}, and denote by

m0(Λ, λ) the dimension of V0(Λ)λ. The following lemma is a well known

property of simple modules of semi-simple Lie algebras, and it is applicable

here in the case of G0̄ = sl(m)⊕ CI ⊕ sl(n).

Lemma 4.1. For λ ∈ P0(Λ) there exists a set of elements gi(λ) ∈ U(N−
0 )λ−Λ,

(i = 1, 2, . . . ,m0(Λ, λ)), such that {gi(λ)vΛ} forms a basis for V0(Λ)λ, and

moreover, such that

σ(gi(λ))gj(λ)vΛ = δijvΛ, (4.2)

where σ is the antiautomorphism (2.22), and δij is the usual Kronecker symbol.

Proof. From the results concerning the symmetric bilinear contravariant form

associated with σ (see [7]), it follows that there exists a set of monomials

zi(λ) ∈ U(N−
0 )λ−Λ (i = 1, . . . ,m0(Λ, λ)) (i.e. every zi(λ) is of the form

∏

α∈∆+
0
(e(−α))kα with

∑

α kαα = Λ− λ) such that zi(λ)vΛ forms a basis for

V0(Λ)λ and such that the matrix Z of elements Zij in σ(zi(λ))zj(λ)vΛ = ZijvΛ
is non-singular [the elements Zij depend only upon the even Dynkin labels, and

hence are numbers independent of am]. From the properties of σ and the real

basis (2.7), it follows that Z is a real symmetric matrix. Diagonalising Z then

also gives rise to a new basis g′i(λ)vΛ with every g′i(λ) a linear combination of

the zj(λ), and such that the matrix Z ′ of coefficients Z ′
ij in σ(g′i(λ))g

′
j(λ)vΛ =

Z ′
ijvΛ is diagonal with real non-zero entries. Rescaling the g′i(λ) gives gi(λ).

Consider the weight space decomposition (3.3) for the Kac-module V (Λ),

V (Λ) =
⊕

µ
V (Λ)µ, (4.3)

and let P (Λ) be the set of all weights µ such that V (Λ)µ 6= {0}. Let k be a

sequence of numbers kβ (β ∈ ∆+
1 ) such that every kβ ∈ {0, 1}. For µ ∈ P (Λ),
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consider all partitions (k, λ) of µ of the form

µ = λ−
∑

β∈∆+
1

kββ (4.4)

with λ ∈ P0(Λ). Then it follows from (3.4) that the dimension of V (Λ)µ,

m(Λ, µ), is given by

m(Λ, µ) =
∑

(k,λ)

m0(Λ, λ), (4.5)

where the summation in (4.5) is over all partitions (k, λ) of µ of the form (4.4).

Moreover, it is easy to give a basis for V (Λ)µ, namely

∏

β∈∆+
1

e(−β)kβgi(λ)vΛ, with (k, λ) a partition of type (4.4)

and i = 1, 2, . . . ,m0(Λ, λ).

(4.6)

We let

xk,i =
∏

β∈∆+
1

e(−β)kβgi(λ) ∈ U(N−
1 )U(N−

0 ). (4.7)

For convenience, we have dropped the dependence of xk,i upon Λ and λ in

the notation. Denote by k̃ the sequence complementary to k, consisting of

numbers k̃β = 1− kβ . Associated with xk,i, we define

x̃k,i = σ(gi(λ))
∏

β∈∆+
1

e(−β)k̃β . (4.8)

Using e(β)2 = 0 for β ∈ ∆1, (3.8), and (4.2), one obtains the following prop-

erties:

x̃k′,i′xk,ivΛ = δk′kδi′ivΛ−
, (4.9a)

σ(xk,i)σ(x̃k′,i′)vΛ−
= ±δkk′δii′Q(Λ)vΛ, (4.9b)

where a ±-sign appears because in general a reordering of the e(+β)’s is nec-

essary to recover T+ in (4.9b). Note that Q(Λ) is considered as a polynomial

of degree mn in the odd Dynkin label am.

Finally, let A be the matrix of size m(Λ, µ)×m(Λ, µ) defined by

σ(xk,i)xk′,i′vΛ = Aki,k′i′vΛ. (4.10)

This matrix is the Kac-module analogue of the Shapovalov matrix [14] for

Verma modules of complex semi-simple Lie algebras [14, 7]. From Definition
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3.2 and (4.10) it follows that the rank of A is equal to the number of linearly

independent generating vectors vµ in V (Λ)µ. Hence, using (3.5) and (3.6):

rank(A) = dim(V (Λ)µ). (4.11)

Similarly, let B be the m(Λ, µ)×m(Λ, µ) matrix defined by

x̃k,iσ(x̃k′,i′)vΛ−
= Bki,k′i′vΛ−

. (4.12)

Since U(H)vΛ−
= CI vΛ−

, N+
0 vΛ−

= 0 and N−
1 vΛ−

= 0 (see equations (3.8)–

(3.9)), X(Λ) = U(G)vΛ−
= U(N+

1 )U(N−
0 )vΛ−

. But U(N−
0 )vΛ−

= V0(Λ−) is

isomorphic to V0(Λ) as an sl(m)⊕ sl(n) module. Therefore X(Λ)µ is spanned

by the vectors of type σ(x̃k′,i′)vΛ−
. Hence any maximal subset of linearly

independent vectors of the set {σ(x̃k′,i′)vΛ−
} of m(Λ, µ) elements forms a

basis for X(Λ)µ=
(

U(G)vΛ−

)

µ
. It follows from (4.12) and the structure of the

Kac-module that the rank of B is equal to the maximal number of linearly

independent vectors of weight µ in V (Λ)µ that belong to U(G)vΛ−
=X(Λ).

Thus

rank(B) = dim(X(Λ)µ). (4.13)

Now we can prove the main result of this section:

Lemma 4.2. Let A and B be defined as in (4.10) and (4.12). Then

det(A)det(B) = ±(Q(Λ))m(Λ,µ), (4.14)

where Q(Λ) is given in (3.10).

Proof. The vector σ(x̃k′,i′)vΛ−
is of weight µ in V (Λ), so it can be expressed

as a linear combination of the basis vectors (4.6) of V (Λ)µ. Thus

σ(x̃k′,i′)vΛ−
=

∑

k′′i′′
Ck′′i′′,k′i′xk′′,i′′vΛ, (4.15)

where Ck′′i′′,k′i′ is the matrix of coefficients of the linear combinations. Acting

on (4.15) with σ(xk,i) and using (4.9b) yields:

±δkk′δii′Q(Λ)vΛ =
∑

k′′i′′
Aki,k′′i′′Ck′′i′′,k′i′vΛ. (4.16)

Thus AC is a diagonal matrix, and in particular,

det(A)det(C) = ±(Q(Λ))m(Λ,µ). (4.17)
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Acting on (4.15) with x̃k,i, and using (4.9a), yields

Bki,k′i′vΛ−
=

∑

k′′i′′
Ck′′i′′,k′i′δkk′′δii′′vΛ−

, (4.18)

hence B = C, and in particular

det(B) = det(C). (4.19)

The lemma now follows from (4.17) and (4.19).

Theorem 4.3. If Λ is singly atypical then M(Λ) = X(Λ).

Proof. Let Λ be singly atypical of type β. Then the polynomial Q(Λ) in (4.14)

has a zero of multiplicity m(Λ, µ) for am = Λ(hm). Now we use the following

property: let M(t) be a N × N -matrix over CI [t] (i.e. the entries of M(t) are

polynomials in the variable t); if t = t0 is a zero of multiplicity k of det(M(t)),

then rank(M(t0)) ≥ N − k (this property can be proved using elementary

matrix operations). Applying this to A and B in (4.14), for am = Λ(hm),

leads to

rank(A) + rank(B) ≥ 2m(Λ, µ)−m(Λ, µ) = m(Λ, µ), (4.20)

or, using (4.11) and (4.13),

dimV (Λ)µ + dimX(Λ)µ ≥ m(Λ, µ). (4.21)

But since V (Λ) ∼= V (Λ)/M(Λ) and X(Λ) ⊆ M(Λ),

dimV (Λ)µ + dimX(Λ)µ ≤ dimV (Λ)µ = m(Λ, µ). (4.22)

Hence

dimV (Λ)µ + dimX(Λ)µ = dimV (Λ)µ, ∀µ ∈ P (Λ). (4.23)

This shows that X(Λ) is the maximal submodule of V (Λ).

5. Singly atypical modules of type αm

In this section we shall consider the special case of a singly atypical Λ of type

αm, where αm is the unique odd simple root given in (2.9). In this case it

turns out to be rather easy to determine the highest weight of X(Λ).
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Lemma 5.1. Let Λ be atypical of type αm. Then v = e(−αm)vΛ is a G

primitive vector in V (Λ).

Proof. For α ∈ ∆+
0 , we have e(α)v = [e(α), e(−αm)]vΛ+ e(−αm)e(α)vΛ. But

[e(α), e(−αm)] = 0 for all α ∈ ∆+
0 , and N+vΛ = 0, hence

e(α)v = 0, ∀α ∈ ∆+
0 . (5.1)

Then, using e(+αm)vΛ = 0, one finds

e(+αm)v = [e(+αm), e(−αm)]vΛ = hmvΛ = Λ(hm)vλ

= 〈Λ | αm〉vΛ = 〈Λ + ρ | αm〉vΛ = 0,
(5.2)

since 〈ρ | αm〉 = 0 and Λ is atypical of type αm. Then (5.1) and (5.2) imply

e(αi)v = 0, i = 1, 2, . . . ,m+ n− 1, (5.3)

where αi are the simple roots introduced in (2.9). Since N+ is generated by

the m+ n− 1 elements e(αi), it follows that N
+v = 0.

In the case of Lemma 5.1, U(G)v is a proper submodule of V (Λ), hence

Lemma 3.8 implies X(Λ) ⊆ U(G)v ⊆ M(Λ). But Λ is singly atypical of type

αm, so by Theorem 4.3:

M(Λ) = X(Λ) = U(G)v, (5.4)

where v = e(−αm)vΛ is a vector of weight Λ− αm. Since U(G)v is a highest

weight module with highest weight vector v, and since X(Λ) is simple (see

Lemma 3.8), we have the following

Corollary 5.2. Let Λ be singly atypical of type αm. Then X(Λ) = U(G)vΛ−

is the maximal proper submodule of V (Λ), and X(Λ) is isomorphic to the

simple G module V (Λ− αm). Consequently,

chV (Λ) = chV (Λ) + chV (Λ− αm). (5.5)

Note that if Λ is dominant and singly atypical of type αm, then Λ−αm is

also dominant and singly atypical of type αm. Now we can prove a character

formula for this particular case.

Theorem 5.3. Let Λ be singly atypical of type αm. Then

chV (Λ) = L−1
0

∑

w∈W

ε(w)w

{

eΛ+ρ0
∏

β∈∆+
1

β 6=αm

(1 + e−β)

}

. (5.6)
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Proof. Using (5.5) as a recursion relation, we find

chV (Λ) = chV (Λ)− chV (Λ− αm)

= chV (Λ)−
(

chV (Λ− αm)− chV (Λ− 2αm)
)

= chV (Λ)− chV (Λ− αm) +
(

chV (Λ− 2αm)− chV (Λ− 3αm)
)

= . . .

= chV (Λ)− chV (Λ− αm) + chV (Λ− 2αm)− chV (Λ− 3αm) + . . . (5.7)

which becomes a formal infinite series expression since (5.5) can be applied for

every Λ − kαm (k ∈ NI ). Then we can substitute (3.18) for the characters of

the Kac-modules appearing in (5.7), and sum over the formal series:

chV (Λ) = L−1
0

∑

w∈W

ε(w)w
{

eρ0
(

eΛ − eΛ−αm + eΛ−2αm − eΛ−3αm + . . .
)

×
∏

β∈∆+
1

(1 + e−β)
}

= L−1
0

∑

w∈W

ε(w)w
{

eΛ+ρ0
(

1 + e−αm

)−1 ∏

β∈∆+
1

(1 + e−β)
}

. (5.8)

This proves the theorem.

Let λ be an integral weight, and γ ∈ ∆+
1 . We define the formal character

χγ(λ) = L−1
0

∑

w∈W

ε(w)w

{

eλ+ρ0
∏

β∈∆+
1

β 6=γ

(1 + e−β)

}

. (5.9)

Theorem 5.3 shows that if Λ is singly atypical of type αm, then chV (Λ) =
χαm

(Λ). We shall show in Section 7 that if Λ is singly atypical of type γ, then

chV (Λ) = χγ(Λ). Note that the formal character (5.9) satisfies the property:

χ
w(γ)(w · λ) = ε(w)χγ(λ), ∀w ∈ W. (5.10)

Finally, one sees from (3.19) that

χK(λ) = χγ(λ) + χγ(λ− γ), ∀γ ∈ ∆+
1 . (5.11)

Remark 5.4. Let Λ be integral dominant. In Section 3 we have seen that

V (Λ) has a unique (up to scalar multiplication) vector of weight w0(Λ−) =

w0(Λ− 2ρ1) that is annihilated by N−; w0(Λ−) is the lowest weight of V (Λ),

and it also characterises the Kac-module uniquely. Then χK(Λ) = chV (Λ)

contains a unique lowest term ew0(Λ−), where the terms eλ are partially ordered

according to eλ ≥ eµ ⇔ λ ≥ µ. It follows from (5.9) that ew0(Λ−) is a term

of χγ(Λ − γ) and not of χγ(Λ); in particular it is the unique lowest term

appearing in χγ(Λ− γ).
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6. The atypicality matrix

The atypicality of an integral dominant weight Λ is determined by the value

of the mn numbers 〈Λ + ρ | β〉 with β ∈ ∆+
1 . In this section we shall study

some of the properties of a matrix consisting of these mn numbers [17], and

in particular we prove some crucial lemmas concerning a singly atypical Λ.

Definition 6.1. Let Λ ∈ H∗. The atypicality matrix A(Λ) is the m × n

complex matrix with entries A(Λ)ij = 〈Λ + ρ | βij〉, where i = 1, . . . ,m and

j = 1, . . . , n, and βij is defined in (2.13).

In terms of the ǫδ-components of Λ, one has:

A(Λ)ij = λi + µj +m− i− j + 1. (6.1)

The properties of this matrix have been studied in another paper [17], and can

be summarized as follows:

a) Let w = σ × τ ∈ W = Sm × Sn, then

A(w · Λ)ij = A(Λ)σ−1(i),τ−1(j), (6.2a)

where w · Λ is determined by (2.15) or (2.18).

b) Let ai be the Dynkin labels of Λ, then

A(Λ)ij − A(Λ)i+1,j = ai + 1, (1 ≤ i < m)

A(Λ)m1 = am,

A(Λ)ij − A(Λ)i,j+1 = am+j + 1. (1 ≤ j < n)

(6.2b)

c) Any atypicality matrix A(Λ) satisfies:

A(Λ)ij + A(Λ)kl = A(Λ)il + A(Λ)kj ; (6.2c)

vice versa, any m× n matrix satisfying (6.2c) for all pairs (i, j) and (k, l)

with 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n is the atypicality matrix of a unique

element Λ ∈ H∗.

d) Λ is dominant if and only if

A(Λ)ij − A(Λ)i+1,j − 1 ≥ 0 (1 ≤ i < m, 1 ≤ j ≤ n) and

A(Λ)ij − A(Λ)i,j+1 − 1 ≥ 0 (1 ≤ i ≤ m, 1 ≤ j < n).
(6.2d)

Moreover, Λ is integral dominant if the expressions on the l.h.s. of (6.2d)

are all integers.

18



Lemma 6.2. Let λ be any integral element of H∗. Then the following state-

ments are equivalent:

(1) χW (λ) = 0;

(2) χK(λ) = 0;

(3) ∃w ∈ W with ε(w) = −1 such that w · λ = λ;

(4) ∀w ∈ W,w · λ is not dominant;

(5) A(λ) has two equal columns or two equal rows.

Proof. The equivalence of (1), (3) and (4) is a classical property of the Weyl

group of a semi-simple Lie algebra [6]. From (3.21) it follows that (2) is

equivalent to (1). Finally, if A(λ) has two equal rows or columns, then (6.2a)

implies that there exists a w ∈ W with ε(w) = −1 such that A(w · λ) = A(λ)

and hence w ·λ = λ, so that (5)⇒(3). Conversely, if A(λ) has no equal rows or

columns, (6.2a) together with (6.2b) implies that there exists a w ∈ W such

that in the matrix A(w · λ) the elements in every row are strictly decreasing

from left to right and the elements in every column are strictly decreasing from

top to bottom; then (6.2d) is satisfied for A(w · Λ) and implies that w · λ is

dominant, contradicting (4).

Definition 6.3. An integral element λ ∈ H∗ is said to be vanishing if one of

the statements (1)–(5) of Lemma 6.2 are satisfied. Otherwise, λ is said to be

non-vanishing.

In the rest of this section, Λ is an integral dominant weight. Note that if Λ

is integral and atypical, then (6.2b) implies that all entries in the atypicality

matrix A(Λ) are integers.

Lemma 6.4. Let Λ be singly atypical of type γ = βij . Then

{−A(Λ)il | 1 ≤ l ≤ n} ∩ {A(Λ)kj | 1 ≤ k ≤ m} = {0}. (6.3)

Proof. Since A(Λ)ij = 0, (6.2c) implies

A(Λ)kl = A(Λ)il + A(Λ)kj .

But Λ is singly atypical, so A(Λ)kl 6= 0 for (k, l) 6= (i, j). This implies (6.3).

Definition 6.5. Let Λ be singly atypical of type γ = βij . Let

r(Λ) = {−A(Λ)il | 1 ≤ l ≤ n} ∪ {A(Λ)kj | 1 ≤ k ≤ m}. (6.4)
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Let s(Λ) be the maximal subset of r(Λ) consisting of consecutive integers

{−q, . . . , p} with q, p ∈ NI and such that 0 ∈ s(Λ). Let {(it, jt), −q ≤ t ≤ p}

be the sequence of matrix-positions defined by (i0, j0) = (i, j) and

(a) for t ≥ 0 (it+1, jt+1) = (it, jt + 1) if −(t + 1) belongs to the ith row of

A(Λ), and (it+1, jt+1) = (it − 1, jt) if t + 1 belongs to the jth column of

A(Λ);

(b) for t ≤ 0, (it−1, jt−1) = (it, jt − 1) if −(t − 1) belongs to the ith row of

A(Λ), and (it−1, jt−1) = (it + 1, jt) if t − 1 belongs to the jth column of

A(Λ).

This sequence of matrix-positions is well defined thanks to Lemma 6.4. It

is useful to introduce a notation for the subsequences:

S+(Λ) = {(i0, j0), . . . , (ip, jp)}

S−(Λ) = {(i−q, j−q), . . . , (i0, j0)}
(6.5)

Also, we let

S̃±(Λ) = {βkl | (k, l) ∈ S±(Λ)}. (6.6)

Example. Let G = sl(6/8) and

Λ = (7, 7, 5, 4, 4, 1 | 0,−2,−2,−4,−4,−4,−4,−7)

in the ǫδ-basis or Λ = [02103; 1; 2020003] in Dynkin labels. Then Λ is singly

atypical of type β3,5 and the atypicality matrix A(Λ) is given in (6.7), where it

is bordered at the top with the negatives of the third row and at the left with

the fifth column. The numbers actually belonging to s(Λ) are in italic, and

these determine the sequences S+(Λ) and S−(Λ), also represented in (6.7) by

+ and − signs, respectively, in the table of matrix-positions.

A(Λ) =

















−8 −5 −4 −1 0 1 2 6

4 12 9 8 5 4 3 2 −2
3 11 8 7 4 3 2 1 −3
0 8 5 4 1 0 −1 −2 −6

−2 6 3 2 −1 −2 −3 −4 −8
−3 5 2 1 −2 −3 −4 −5 −9
−7 1 −2 −3 −6 −7 −8 −9 −13

















+
+

− ± + +
−

− − −

(6.7)

Explicitly,

S−(Λ) = {(5, 2), (5, 3), (5, 4), (4, 4), (3, 4), (3, 5)}

and

S+(Λ) = {(3, 5), (3, 6), (3, 7), (2, 7), (1, 7)}.
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Lemma 6.6. Let Λ be singly atypical of type γ = βij . Then there exists a

unique sequence of distinct elements β−q < β−q+1 < · · · < β0 = γ from ∆+
1

such that the sequence of weights ν−q−1, ν−q, . . . , ν0 = Λ, where νt−1 = νt−βt,

satisfies

〈νt + ρ | βt〉 = 0, −q ≤ t ≤ 0; (6.8a)

νt is vanishing for − q ≤ t < 0; (6.8b)

q(Λ) = ν−q−1 is integral dominant and singly atypical

of type β−q; (6.8c)

∃w ∈ W such that νt = w · (Λ + tγ) with βt+1 = w(γ)

and ε(w) = (−1)t+1, −q − 1 ≤ t < 0; (6.8d)

βt = βit,jt , where (it, jt) is given in Definition 6.5. (6.8e)

Proof. From the inner product (2.14) one deduces

〈βab | βkl〉 = δak − δbl. (6.9)

Using Definition 6.1 this implies that A(Λ − βab) is obtained from A(Λ) by

decreasing the elements in row a by one unit and simultaneously increasing

the elements in column b by one unit. Hence the matrices A0 = A(Λ), A−1 =

A(Λ−βi0,j0), A−2 = A(Λ−βi0,j0 −βi−1,j−1
), . . ., where (it, jt) is the sequence

of Definition 6.5, satisfy

At has two zeroes, at positions (it+1, jt+1) and

(it, jt) for − q ≤ t ≤ −1; (6.10a)

A−q−1 has one zero at position (i−q, j−q); (6.10b)

At is obtained from A(Λ + tγ) by − t− 1 transpositions

of rows and columns. (6.10c)

Thus the existence and the uniqueness of the sequence β0, β−1, . . . , β−q, and

(6.8e), follow from the properties of the sequence S−(Λ), which also implies

that β0 > · · · > β−q. Then (6.8a) is a consequence of (6.10a). Moreover, from

(6.10a) it follows that At = A(νt) (−q ≤ t ≤ −1) has two equal rows or two

equal columns, and then Lemma 6.2 implies (6.8b). The matrix A−q−1 has

one zero at position (i−q, j−q), and by construction the elements in every row

are strictly decreasing from left to right and the elements in every column are

strictly decreasing from top to bottom; thus (6.2d) implies that q(Λ) = ν−q−1

is dominant, proving (6.8c). Finally, (6.10c) and (6.2a) imply (6.8d).
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Lemma 6.7. Let Λ be singly atypical of type γ = βij . Then there exists

a unique sequence of distinct elements β0 = γ < β1 < · · · < βp from ∆+
1

such that the sequence of weights ν0 = Λ, ν1, . . . , νp+1, where νt+1 = νt + βt,

satisfies

〈νt + ρ | βt〉 = 0, 0 ≤ t ≤ p; (6.11a)

νt is vanishing for 0 < t ≤ p; (6.11b)

p(Λ) = νp+1 is integral dominant and singly atypical

of type βp; (6.11c)

∃w ∈ W such that νt = w · (Λ + tγ) with βt−1 = w(γ)

and ε(w) = (−1)t−1, 0 < t ≤ p+ 1; (6.11d)

βt = βit,jt , where (it, jt) is given in Definition 6.5. (6.11e)

The proof of Lemma 6.7 is similar to the proof of Lemma 6.6, using S+(Λ)

instead of S−(Λ).

7. The character formula

Using the lemmas of Section 6, we are now able to prove a character formula

for V (Λ), where Λ is a singly atypical integral dominant weight.

Lemma 7.1. Let Λ be singly atypical of type γ with S−(Λ) given by (6.5).

Let γ′ = βi−q,j−q
and q(Λ) = Λ−

∑

β∈S̃−(Λ)
β be the dominant weight defined

in Lemma 6.6, which is singly atypical of type γ′. Then, using the notation

(5.9):
χγ(Λ− γ) = χγ′(q(Λ)). (7.1)

Proof. As in the proof of Theorem 5.3, we can expand χγ(Λ − γ) in a series

of χK(λ)-terms:
χγ(Λ− γ) = χK(Λ− γ)− χK(Λ− 2γ) + χK(Λ− 3γ)− · · ·

+ (−1)qχK(Λ− (q + 1)γ) + · · ·
(7.2)

But for −q ≤ t ≤ −1, (6.8b) and (6.8d) imply that Λ + tγ is vanishing, hence
χK(Λ + tγ) = 0. Then (7.2) becomes:

χγ(Λ− γ) = (−1)q (χK(Λ− (q + 1)γ)− χK(Λ− (q + 2)γ) + · · ·)

= (−1)qχγ(Λ− (q + 1)γ). (7.3)

According to (6.8d), there exists a w ∈ W such that w(Λ − (q + 1)γ + ρ) =

q(Λ) + ρ with γ′ = w(γ) and ε(w) = (−1)q. Using (5.10) this implies that

χγ′(q(Λ)) = (−1)qχγ(Λ− (q + 1)γ). (7.4)

Then the lemma follows from (7.3) and (7.4).
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Theorem 7.2. Let Λ be singly atypical of type γ. Then

chV (Λ) = χγ(Λ). (7.5)

Proof. In the case that γ = αm, the statement follows from Theorem 5.3.

Suppose now that γ > αm. Let Λ0 = Λ and γ0 = γ, and using the notation of

Lemma 7.1 we define a sequence of dominant weights and elements of ∆+
1 by

Λk+1 = q(Λk), γk+1 = γ′k, (k ≥ 0). (7.6)

Clearly, every γk+1 ≤ γk, with equality if and only if #S−(Λk) = 1, i.e. if and

only if Λk − γk is dominant. So γk+1 = γk can happen only a finite number

of times if γk > αm. Therefore, there exists an s such that γs−1 > γs = αm,

αm being the smallest element of ∆+
1 according to the partial ordering (2.10).

Since every Λk is dominant, we find, using (3.18)–(3.19) and (5.11):

chV (Λk) = χγk(Λk) + χγk(Λk − γk). (7.7)

Using Lemma 7.1, this becomes:

chV (Λk) = χγk(Λk) + χγk+1
(Λk+1). (7.8)

On the other hand, since every Λk is singly atypical, Theorem 4.3 implies:

chV (Λk) = chV (Λk) + chX(Λk), (7.9)

where both V (Λk) and X(Λk) are simple G modules. Applying (7.8) and (7.9)

for k = s− 1 and using Theorem 5.3, leads to

chV (Λs−1) = χγs−1
(Λs−1) + chV (Λs), (7.10a)

chV (Λs−1) = chV (Λs−1) + chX(Λs−1). (7.10b)

From Remark 5.4, (7.7) and (7.10a), we see that V (Λs) has w0(Λs−1−2ρ1) as

lowest weight. Since a simple G module is characterised by its lowest weight, it

follows from Lemma 3.7 and Lemma 3.8 that V (Λs) is isomorphic to X(Λs−1),

and (7.10) implies:

chV (Λs−1) = χγs−1
(Λs−1). (7.11)

By iteration one finds, for all k with 0 ≤ k ≤ s:

chV (Λk) = χγk(Λk). (7.12)

The theorem follows by putting k = 0 in (7.12).
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Corollary 7.3. Let Λ be singly atypical. Then the lowest weight of V (Λ) is

given by

w0

(

Λ−
∑

β /∈S̃+(Λ)

β
)

= w0

(

Λ− +
∑

β∈S̃+(Λ)

β
)

. (7.13)

Proof. For given singly atypical Λ, let

Ω = p(Λ) = Λ +
∑

β∈S̃+(Λ)

β. (7.14)

Then it is a combinatorial exercise to see that S−(Ω) = S+(Λ), hence

Λ = q(Ω) = Ω−
∑

β∈S̃−(Ω)

β. (7.15)

From the proof of Theorem 7.2 it follows that Λ is the highest weight of X(Ω),

or X(Ω) ∼= V (Λ). But w0(Ω−) is the lowest weight of V (Ω) (see Section 3),

and therefore also of X(Ω). So the lowest weight of V (Λ) is given by

w0(Ω−) = w0(Ω− 2ρ1) = w0

(

Λ− 2ρ1 +
∑

β∈S̃+(Λ)

β
)

= w0

(

Λ−
∑

β /∈S̃+(Λ)

β
)

, (7.16)

since 2ρ1 =
∑

β∈∆+
1
β.

8. Some remarks

1. In order to accommodate the characters of all simple modules of G =

sl(m/n), Bernstein and Leites proposed the following formula [2]:

χL(λ) = L−1
0

∑

w∈W

ε(w)w

{

eλ+ρ0
∏

β∈∆+
1

〈λ+ρ|β〉6=0

(1 + e−β)

}

. (8.1)

Although for any integral dominant Λ, chV (Λ) = χL(Λ) if Λ is typical,

as proved by Kac (Theorem 3.12 and equation (3.18) in this paper), and

chV (Λ) = χL(Λ) if Λ is singly atypical, as proved here in Theorem 7.2, it is

certainly not true in general that chV (Λ) = χL(Λ). A simple counterexample

is the identity module V (0) which has character chV (0) = 1, and χL(0) 6= 1

if m > 1 and n > 1.

2. In Kac’s classification of classical simple Lie superalgebras over CI [9], the

Type I Lie superalgebras are A(m,n) and C(n), where A(m,n) = sl(m+1/n+
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1) if m 6= n and A(m,m) = sl(m+1/m+1)/CI I2m, and C(n) = osp(2, 2n−2).

It is not too difficult to verify that many lemmas given here for sl(m/n) are

also valid for osp(2, 2n − 2): the proofs in Section 4 can almost literally be

transferred to the case of osp(2, 2n − 2); the notions in Sections 5–7 need

to be slightly changed. This leads us to a proof of a character formula for

singly atypical modules of C(n) [16]. But C(n) has only typical or singly

atypical modules. We conclude that, for all integral dominant Λ for C(n),

chV (Λ) = χL(Λ), given by (8.1) but with all symbols defined for C(n).

3. Let us return to the case G = sl(m/n). We say that an integral domi-

nant weight Λ is atypical of degree d if there are d distinct elements β in ∆+
1

for which Λ is atypical. We shall try to give the reader an idea of the com-

plications which arise in identifying the maximal submodule M(Λ) if d > 1

by concentrating on the case of d = 2. For d = 1, Theorem 4.3 shows that

V (Λ) always contains 2 composition factors. For d = 2, for example, we have

calculated the composition factors of some Kac-modules in sl(2/3), and their

number varies : V ([0; 0; 0, 0]) has 3 composition factors, V ([1; 0; 1, 0]) has 5

composition factors, and V ([2; 0; 2, 0]) has 4 composition factors.

We also have at least one example of a doubly atypical Kac-module that

contains weakly primitive vectors (see Definition 3.3), a situation that cannot

occur for typical or singly atypical Kac-modules. The example is the following:

G = sl(2/2) and Λ = [1; 0; 1] (so V (Λ) is the adjoint module). Using the

notation of Section 3, X(Λ) = U(G)vΛ−
is a simple submodule of V (Λ). Using

the basis Eij described in Section 2, let v be the following vector of V (Λ):

v = (E31E32E41E43 + E31E32E42E21E43

+ E32E41E42E21 + E31E41E42)vΛ.
(8.2)

One can check that v /∈ X(Λ). However E14v 6= 0 is proportional to the

highest weight vector of X(Λ); in fact {0} 6= N+v ⊆ X(Λ), showing that v is

a weakly primitive vector in V (Λ).

4. Despite the difficulties for multiply atypical modules, we have recently

given a conjecture [17] for the character of all simple G modules with integral

dominant highest weight Λ, and we shall briefly describe this conjecture here.

Formula (8.1) can be re-expressed as an infinite alternating sum of χK(µ)-

terms, just as in (7.2). Indeed, if Λ is atypical of degree d with respect to

β1, . . . , βd, then one defines the cone CΛ with vertex at Λ as the set of lattice
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points

CΛ = {Λ−
d
∑

i=1

kiβi | ki ∈ NI (i = 1, . . . , d)}. (8.3)

The expansion becomes

χL(Λ) =
∑

µ∈CΛ

(−1)|Λ−µ|χK(µ), (8.4)

where (−1)|Λ−µ| = (−1)k1+···+kd for µ = Λ −
∑d

i=1 kiβi. The new formula is

of type (8.4) with a restriction on the summation such that all terms χK(µ)

for which µ is a weight beyond certain truncation planes in the weight space

are excluded. These truncation planes are uniquely determined, for each Λ,

as symmetry planes pij under the dot action of elements wij (1 ≤ i < j ≤ d)

of the Weyl group W , where wij is the unique element such that wij(βi) = βj
and such that wij = 1 when restricted to the subspace of H∗ orthogonal to βi
and βj . The hyperplane pij divides the weight space H∗ into two. We denote

by H∗
ij the open half-space of H∗ containing Λ. The truncated cone is defined

to be

C
+
Λ = CΛ

⋂

(

⋂

critical(i,j)

H∗
ij

)

, (8.5)

where the intersection is taken only with those H∗
ij for which (i, j) is critical,

and the new formula becomes

χT (Λ) =
∑

µ∈C+
Λ

(−1)|Λ−µ|χK(µ). (8.6)

The notion of criticality is defined elsewhere [17], and we shall content ourselves

by describing it merely for doubly atypical weights. Let Λ be doubly atypical

of type β1 and β2, with β1 > β2. Then (1, 2) is critical if and only if the

weights in the finite set H∗
12 ∩ {Λ − tβ1| t = 1, 2, 3, . . .} are all vanishing, or

equivalently, those in H∗
12 ∩ {Λ + tβ2| t = 1, 2, 3, . . .} are all vanishing. If Λ is

not critical, no truncations occur and our conjectured character formula (8.6)

coincides with (8.1). For more details concerning this conjecture and some

arguments in its favour, we refer to [17].
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