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Abstract. This paper describes a quantum system consisting of a one-
dimensional chain ofM identical harmonic oscillators coupled by means
of springs. We approach this as a Wigner Quantum System, not imposing
the canonical commutation relations, but using instead weaker relations fol-
lowing from the compatibility of Hamilton’s equations and the Heisenberg
equations. We show that a class of solutions can be obtained using genera-
tors of the Lie superalgebragl(1|M), and study the properties and spectra of
the physical operators in a class of unitary representations ofgl(1|M).

1 Introduction and description of the problem

Consider a quantum system consisting of a linear chain ofM identical har-
monic oscillators (with massm and natural frequencyω) coupled by some
nearest neighbour interaction, the coupling being represented by springs
obeying Hooke’s law. The Hamiltonian of such a system is given by:

Ĥ =
M

∑
k=1

( p̂2
k

2m
+

mω2

2
q̂2

k +
cm
2

(q̂k − q̂k+1)
2
)

. (1)

The position and momentum operator for thekth oscillator are given by ˆqk

and p̂k; more precisely ˆqk measures the displacement of thekth mass point
with respect to its equilibrium position. The last term in (1) represents the
nearest neighbour coupling by means of “springs”, with coupling strength c
(c > 0). We shall also assume periodic boundary conditions, i.e.

q̂M+1 ≡ q̂1. (2)

Such quantum systems are relevant in quantum information theory, in quan-
tum optics (photonic crystals), or for describing phonons in a crystal [1, 2].
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In the standard approach for the quantum system governed by (1), one
assumes the canonical commutation relations (CCR’s)

[q̂k, q̂l] = 0, [ p̂k, p̂l] = 0, [q̂k, p̂l] = ih̄δkl. (3)

Here, we start from a more general quantization procedure. This is
based upon the compatibility of Hamilton’s equations with the Heisenberg
equations. Such systems are called Wigner Quantum Systems (WQS’s) [3].
For the Hamiltonian (1), the equivalence of Hamilton’s equations˙̂qk = ∂ Ĥ

∂ p̂k
,

˙̂pk = − ∂ Ĥ
∂ q̂k

and the Heisenberg equations˙̂pk = i
h̄ [Ĥ, p̂k], ˙̂qk = i

h̄ [Ĥ, q̂k] leads
to the following compatibility conditions:

[Ĥ, q̂k] = − ih̄
m

p̂k, (4)

[Ĥ, p̂k] = −ih̄cmq̂k−1 + ih̄m(ω2 +2c) q̂k − ih̄cmq̂k+1, (5)

wherek = 1,2, . . . ,M, and – extending (2) – ˆq0 stands for ˆqM, or more gen-
erally

q̂k = q̂ k modM, p̂k = p̂ k modM (6)

wheneverk is out of the range{1,2, . . . ,M}. The task is to find operator so-
lutions for q̂k and p̂k such that the compatibility conditions (4)-(5), together
with (1), are satisfied. Furthermore, since ˆqk and p̂k correspond to physical
observables, the operators should be Hermitian:

q̂†
k = q̂k, p̂†

k = p̂k (k = 1,2, . . . ,M). (7)

Using finite Fourier transforms of ˆqk and p̂k,

Q̂r =
1√
M

M

∑
k=1

e−
2πirk

M q̂k, P̂r =
1√
M

M

∑
k=1

e
2πirk

M p̂k, (8)

with Q̂†
r = Q̂M−r andP̂†

r = P̂M−r (using the same convention as in (6)), the
Hamiltonian becomes, just as in the canonical case [1, 2]

Ĥ =
M

∑
r=1

( 1
2m

P̂rP̂
†
r +

mω2
r

2
Q̂rQ̂

†
r

)

, (9)

where, forr = 1,2, . . . ,M, the quantitiesωr are positive numbers with

ω2
r = ω2 +2c−2ccos(

2πr
M

) = ω2 +4csin2(
πr
M

), (10)
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and clearlyωM−r = ωr.

As a final step it is convenient to introduce linear combinations of the
unknown operatorŝQr andP̂r, saya+

r anda−r (r = 1,2, . . . ,M), by

a−r =

√

mωr

2h̄
Q̂r +

i√
2mωrh̄

P̂†
r , a+

r =

√

mωr

2h̄
Q̂†

r −
i√

2mωrh̄
P̂r, (11)

with (a±r )† = a∓r . It is important to remember that, since the CCR’s do not
hold, the operatorsa±r do not satisfy the usual boson relations. Now the
Hamiltonian (9) becomes:

Ĥ =
M

∑
r=1

h̄ωr

2
{a−r ,a+

r } =
M

∑
r=1

h̄ωr

2
(a−r a+

r +a+
r a−r ), (12)

and the conditions (4)-(5) are equivalent to:

[Ĥ,a±r ] = ±h̄ωra
±
r , (r = 1,2. . . ,M). (13)

Thus in the approach of (1) as a Wigner Quantum System, the problem is
reduced to finding 2M operatorsa±r (r = 1, . . . ,M), acting in some Hilbert
space, such that(a±r )† = a∓r and

[
M

∑
j=1

ω j(a
−
j a+

j +a+
j a−j ),a±r ] = ±2ωra

±
r , (r = 1,2. . . ,M). (14)

2 Lie superalgebraic solution of the problem

The main result is that the algebraic relations (14) have a solution in terms
of generators of the Lie superalgebragl(1|M). For this Lie superalgebra,
consider the standard basis elementse jk, with j,k = 0,1, . . . ,M (ek0 ande0k,
k = 1, . . . ,M, being theodd elements having degree deg(ek0) = deg(e0k) = 1)
and Lie superalgebra bracket

[[ei j,ekl]] = δ jkeil − (−1)deg(ei j)deg(ekl)δilek j. (15)

Then the compatibility conditions (14) have a solution for the operatorsa±k
in terms ofgl(1|M) generators:

a−k =

√

2βk

ωk
ek0, a+

k =

√

2βk

ωk
e0k, (k = 1, . . . ,M). (16)



4

Herein, we have introduced new constantsβk in terms of the quantitiesωr:

βk = −ωk +
1

M−1

M

∑
j=1

ω j, (17)

with βM−k = βk and

β ≡
M

∑
j=1

β j =
M

∑
j=1

ω j. (18)

In order to satisfy the Hermiticity conditions(a±r )† = a∓r , being equiva-
lent with the star condition(e0k)

† = ek0 for the Lie superalgebra elements
(corresponding to the “compact form”u(1|M) of gl(1|M), for which finite-
dimensional unitary representations exist), all constantsβk in (16) should be
positive. This is true only if the coupling constantc is in a certain interval
]0,c0[, wherec0 is a critical value depending uponM. It can be shown that
c ≤ ω2

2(M−2) is a sufficient condition for allβk > 0 [4].

3 A class of gl(1|M) representations as state spaces

We consider a class of unitary representationsW (p) of gl(1|M) as state
spaces of the system. These are finite-dimensional representations, labelled
by a numberp, with eitherp ∈ {0,1,2, . . . ,M −1} [atypical case] or elsep
real with p > M−1 [typical case]. The basis vectors ofW (p) are given by:

w(θ) ≡ w(θ1,θ2, . . . ,θM), θi ∈ {0,1}, and|θ | = θ1 + · · ·+θM ≤ p.
(19)

Clearly, forp > M−1, the dimension ofW (p) is given by 2M.

The action of thegl(1|M) generators on the basis vectors ofW (p) is
now given by:

e00w(θ) = (p−|θ |) w(θ);

ekkw(θ) = θk w(θ);

ek0w(θ) = (1−θk)(−1)θ1+···+θk−1
√

p−|θ | w(θ1, . . . ,θk +1, . . . ,θM);

e0kw(θ) = θk(−1)θ1+···+θk−1
√

p−|θ |+1 w(θ1, . . . ,θk −1, . . . ,θM),

where 1≤ k ≤ M. The representationW (p) is unitary for the star condition
e†

jk = ek j with respect to the inner product〈w(θ)|w(θ ′)〉 = δθ ,θ ′ .

The main purpose is now the study of the spectrum of the physical
operatorsĤ, q̂r and p̂r, for which we shall present the results only in the
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typical case (p > M −1). Under the solution (16), the Hamiltonian̂H takes
the form

Ĥ = h̄(β e00+
M

∑
k=1

βk ekk). (20)

It follows that the vectorsw(θ) are eigenvectors for̂H, Ĥ w(θ) = h̄Eθ w(θ),
with eigenvalues

Eθ = β (p−|θ |)+
M

∑
k=1

θkβk = β (p− M−2
M−1

|θ |)−
M

∑
k=1

θkωk. (21)

In this expression,θ = (θ1, . . . ,θM), with eachθk ∈{0,1}, and|θ |= ∑M
k=1 θk.

Some analysis, using the symmetries ofβk, shows that (for 0< c < c0) the
multiplicity of Eθ is given by 2∑

M
k=1(θk−θM−k)

2/2. Whereas there areM + 1
(equidistant) energy levels forc = 0, the number of energy levels for 0< c <
c0 is 2·3(M−1)/2 (M odd) or 4·3(M−2)/2 (M even).

The determination of the spectrum of position and momentum oper-
ators inW (p) requires an extensive analysis. The result is as follows: the

operator ˆqr has 2M distinct eigenvalues given by±xK = ±
√

h̄
mM (p−K)γ,

where 0≤ K ≤ M −1 andγ = ∑M
k=1 βk/ω2

k . The multiplicity of the eigen-
value±xK is

(M−1
K

)

.

The eigenvectors of the position operator ˆqr enable us to determine
position probability distributions for the stationary statesw(θ) and to de-
scribe the probability distributions of the other oscillator positions when one
oscillator is in a fixed (eigenvalue) position [4].
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