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Abstract

Using the equivalence of the defining relations of the orthosymplectic Lie superalgebra
osp(1|2n) to the defining triple relations of n pairs of parabose operators b±

i
we construct

a class of unitary irreducible (infinite-dimensional) lowest weight representations V (p) of
osp(1|2n). We introduce an orthogonal basis of V (p) in terms of Gelfand-Zetlin patterns,
where the subalgebra u(n) of osp(1|2n) plays a crucial role and we present explicit actions
of the osp(1|2n) generators.

Following some physical ideas we construct a class of infinite dimensional unitary irreducible
representations of the Lie superalgebra (LS) osp(1|2n) [1] in an explicit form. In 1953 Green [2]
introduced the so called parabose operators (PBOs) b±j (j = 1, 2, . . .) satisfying

[{bξ
j , b

η
k}, bǫ

l ] = (ǫ − ξ)δjlb
η
k + (ǫ − η)δklb

ξ
j , (1)

j, k, l ∈ {1, 2, . . .} and η, ǫ, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the algebraic expres-
sions ǫ − ξ and ǫ − η) as a generalization of the ordinary Bose operators. The Fock space V (p)
of n pairs of PBOs is a Hilbert space with a vacuum |0〉, defined by means of (j, k = 1, 2, . . . , n)

〈0|0〉 = 1, b−j |0〉 = 0, (b±j )† = b∓j , {b−j , b+
k }|0〉 = p δjk |0〉, (2)

and by irreducibility under the action of the algebra spanned by the elements b+
j , b−j (j =

1, . . . , n), subject to (1). The parameter p is referred to as the order of the paraboson system.
However the structure of the parabose Fock space is not known, also a proper basis has not
been introduced. We solve these problems using the relation between n pairs of PBOs and the
defining relations of the LS osp(1|2n), discovered by Ganchev and Palev [3]. The orthosymplectic
superalgebra osp(1|2n) [1] consists of matrices of the form





0 a a1

at
1 b c

−at d −bt



 , (3)

where a and a1 are (1 × n)-matrices, b is any (n × n)-matrix, and c and d are symmetric
(n × n)-matrices. The even elements have a = a1 = 0 and the odd elements are those with
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b = c = d = 0. Denote the row and column indices running from 0 to 2n and by eij the matrix
with zeros everywhere except a 1 on position (i, j). Then as a basis in the Cartan subalgebra h

of osp(1|2n) consider
hj = ejj − en+j,n+j (j = 1, . . . , n). (4)

In terms of the dual basis δj of h∗, the root vectors and corresponding roots of osp(1|2n) are
given by:

e0,k − en+k,0 ↔ −δk, e0,n+k + ek,0 ↔ δk, k = 1, . . . , n, odd,

ej,n+k + ek,n+j ↔ δj + δk, en+j,k + en+k,j ↔ −δj − δk, j ≤ k = 1, . . . , n, even,

ej,k − en+k,n+j ↔ δj − δk, j 6= k = 1, . . . , n, even.

Introduce the following multiples of the odd root vectors

b+
k =

√
2(e0,n+k + ek,0), b−k =

√
2(e0,k − en+k,0) (k = 1, . . . , n). (5)

Then the following holds [3]

Theorem 1 (Ganchev and Palev). As a Lie superalgebra defined by generators and relations,
osp(1|2n) is generated by 2n odd elements b±k subject to the parabose relations (1).

From (4) and (5) it follows that {b−j , b+
j } = 2hj , j = 1, . . . , n and using (2) we have:

Corollary 2. The parabose Fock space V (p) is the unitary irreducible representation of osp(1|2n)
with lowest weight (p

2 , p
2 , . . . , p

2).

We can construct the representation V (p) [4] using an induced module construction with an
appropriate chain of subalgebras.

Proposition 3. A basis for the even subalgebra sp(2n) of osp(1|2n) is given by the 2n2 + n
elements {b±j , b±k }, 1 ≤ j ≤ k ≤ n, {b+

j , b−k }, 1 ≤ j, k ≤ n. The n2 elements {b+
j , b−k }, j, k =

1, . . . , n are a basis for the sp(2n) subalgebra u(n).

The subalgebra u(n) can be extended to a parabolic subalgebra P = span{{b+
j , b−k }, b−j , {b−j , b−k },

j, k = 1, . . . , n} [4] of osp(1|2n). Recall that {b−j , b+
k }|0〉 = p δjk |0〉, with {b−j , b+

j } = 2hj . Then
the space spanned by |0〉 is a trivial one-dimensional u(n) module C|0〉 of weight (p

2 , . . . , p
2). Since

b−j |0〉 = 0, the module C|0〉 can be extended to a one-dimensional P module. Now we define the

induced osp(1|2n) module V (p) with lowest weight (p
2 , . . . , p

2): V (p) = Ind
osp(1|2n)
P C|0〉.

By the Poincaré-Birkhoff-Witt theorem [1, 4], it is easy to give a basis for V (p):

(b+
1 )k1 · · · (b+

n )kn({b+
1 , b+

2 })k12({b+
1 , b+

3 })k13 · · · ({b+
n−1, b

+
n })kn−1,n |0〉,

where k1, . . . , kn, k12, k13, . . . , kn−1,n ∈ Z+. However in general V (p) is not a simple module and
let M(p) be the maximal nontrivial submodule of V (p). Then the simple module (irreducible
module), corresponding to the paraboson Fock space, is V (p) = V (p)/M(p). The purpose is
now to determine the vectors belonging to M(p) and also to find explicit matrix elements of the
osp(1|2n) generators b±j in an appropriate basis of V (p).

From the basis in V (p), it is easy to write down the character of V (p):

char V (p) =
(x1 · · ·xn)p/2

∏n
i=1(1 − xi)

∏

1≤j<k≤n(1 − xjxk)
. (6)

Such expressions have an interesting expansion in terms of Schur functions.
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Proposition 4 (Cauchy, Littlewood). Let x1, . . . , xn be a set of n variables. Then [5]

1
∏n

i=1(1 − xi)
∏

1≤j<k≤n(1 − xjxk)
=
∑

λ

sλ(x1, . . . , xn) =
∑

λ

sλ(x). (7)

Herein the sum is over all partitions λ and sλ(x) is the Schur symmetric function [6].

The characters of finite dimensional u(n) representations are given by such Schur functions
sλ(x). For such finite dimensional u(n) representations labelled by a partition λ, there is a
known basis: the Gelfand-Zetlin basis (GZ) [7]. We shall use the u(n) GZ basis vectors as our
new basis for V (p). Thus the new basis of V (p) consists of vectors of the form

|m) ≡ |m)n ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1
... . .

.

m11











=

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

, (8)

where the top line of the pattern, also denoted by the n-tuple [m]n, is any partition λ (consisting
of non increasing nonnegative numbers) with ℓ(λ) ≤ n. The label p itself is dropped in the
notation of |m). The remaining n− 1 lines of the pattern will sometimes be denoted by |m)n−1.
So all mij in the above GZ-pattern are nonnegative integers, satisfying the betweenness conditions
mi,j+1 ≥ mij ≥ mi+1,j+1, 1 ≤ i ≤ j ≤ n − 1. Note that, since the weight of |0〉 is (p

2 , . . . , p
2), the

weight of the above vector is determined by

hk|m) =





p

2
+

k
∑

j=1

mjk −
k−1
∑

j=1

mj,k−1



 |m). (9)

The triple relations (1), imply that (b+
1 , b+

2 , . . . , b+
n ) is a standard u(n) tensor of rank (1, 0, . . . , 0).

Therefore we can attach a unique GZ-pattern with top line 10 · · · 0 to every b+
j , corresponding

to the weight +δj . Explicitly:

b+
j ∼

10 · · · 000
10 · · · 00
· · ·
0 · · · 0
· · ·
0

, (10)

where the pattern consists of j − 1 zero rows at the bottom, and the first n − j + 1 rows are of
the form 10 · · · 0. The tensor product rule in u(n) reads ([m]n)⊗ (10 · · · 0) = ([m]n+1)⊕ ([m]n+2)⊕
· · ·⊕ ([m]n+n) where ([m]n) = (m1n, m2n, . . . , mnn) and a subscript ±k indicates an increment of
the kth label by ±1: ([m]n±k) = (m1n, . . . , mkn ± 1, . . . , mnn). A general matrix element of b+

j

can now be written as follows:

(m′|b+
j |m) =

(

[m]n+k

|m′)n−1

∣

∣

∣

∣

∣

b+
j

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

=

(

[m]n

|m)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

([m]n+k||b+||[m]n).

The first factor in the right hand side is a u(n) Clebsch-Gordan coefficient [8], the second
factor is a reduced matrix element. By the tensor product rule, the first line of |m′) has to be
[m′]n = [m]n+k for some k-value.

The special u(n) CGCs appearing here are well known, and have fairly simple expressions.
They can be found, e.g. in [8, 9]. The actual problem is now converted into finding expressions
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for the reduced matrix elements, i.e. for the functions Fk([m]n), for arbitrary n-tuples of non
increasing nonnegative integers [m]n = (m1n, m2n, . . . , mnn):

Fk([m]n) = Fk(m1n, m2n, . . . , mnn) = ([m]n+k||b+||[m]n). (11)

So one can write:

b+
j |m) =

∑

k,m′

(

[m]n

|m)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

Fk([m]n)

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

, (12)

b−j |m) =
∑

k,m′

(

[m]n−k

|m′)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

Fk([m]n−k)

∣

∣

∣

∣

∣

[m]n−k

|m′)n−1

)

. (13)

For j = n, the CGCs in (12)-(13) take a simple form [8], and we have

b+
n |m) =

n
∑

i=1

(

∏n−1
k=1(mk,n−1 − min − k + i − 1)
∏n

k 6=i=1(mkn − min − k + i)

)1/2

Fi(m1n, m2n, . . . , mnn) |m)+in; (14)

b−n |m) =
n
∑

i=1

(

∏n−1
k=1(mk,n−1 − min − k + i)

∏n
k 6=i=1(mkn − min − k + i + 1)

)1/2

Fi(m1n, . . . , min − 1, . . . , mnn) |m)−in.

(15)

In order to determine the n unknown functions Fk, one can start from the following action:

{b−n , b+
n }|m) = 2hn|m) = (p + 2(

n
∑

j=1

mjn −
n−1
∑

j=1

mj,n−1))|m). (16)

Expressing the left hand side by means of (14)-(15), one finds a system of coupled recurrence
relations for the functions Fk. Taking the appropriate boundary conditions into account, we
have been able to solve this system of relations [9].

Proposition 5. The reduced matrix elements Fk appearing in the actions of b±j on vectors |m)

of V (p) are given by:

Fk(m1n, m2n, . . . , mnn) = (−1)mk+1,n+···+mnn(mkn + n + 1 − k + Emkn
(p − n))1/2

×
n
∏

j 6=k=1

(

mjn − mkn − j + k

mjn − mkn − j + k −Omjn−mkn

)1/2

, (17)

where E and O are the even and odd functions defined by Ej = 1 if j is even and 0 otherwise,
Oj = 1 if j is odd and 0 otherwise.

The proof consists of verifying that all triple relations (1) hold when acting on any vector
|m). Each such verification leads to an algebraic identity in n variables m1n, . . . , mnn. In these
computations, there are some intermediate verifications: e.g. the action {b+

j , b−k }|m) should leave

the top row of the GZ-pattern |m) invariant (since {b+
j , b−k } belongs to u(n)). Furthermore, it

must yield (up to a factor 2) the known action of the standard u(n) matrix elements Ejk in the
classical GZ-basis. Consider now the factor (mkn + n + 1 − k + Emkn

(p − n)) in the expression
of Fk([m]n). This is the only factor in the right hand side of (17) that may become zero. If this
factor is zero or negative, the assigned vector |m′) belongs to M(p). Recall that the integers
mjn satisfy m1n ≥ m2n ≥ · · · ≥ mnn ≥ 0. If mkn = 0 (its smallest possible value), then this
factor in Fk takes the value (p− k +1). So the p-values 1, 2, . . . , n− 1 play a special role leading
to the following result [9]:
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Theorem 6. The osp(1|2n) representation V (p) with lowest weight (p
2 , . . . , p

2) is a unirrep if
and only if p ∈ {1, 2, . . . , n − 1} or p > n − 1. For p > n − 1, V (p) = V (p) and char V (p) =

(x1···xn)p/2

∏

i(1−xi)
∏

j<k(1−xjxk) = (x1 · · ·xn)p/2
∑

λ sλ(x). For p ∈ {1, 2, . . . , n − 1}, V (p) = V (p)/M(p)

with M(p) 6= 0. The structure of V (p) is determined by char V (p) = (x1 · · ·xn)p/2
∑

λ, ℓ(λ)≤p sλ(x)
where ℓ(λ) is the length of the partition λ.

The explicit action of the osp(1|2n) generators in V (p) is given by (12)-(13), and the basis
is orthogonal and normalized. For p ∈ {1, 2, . . . , n − 1} this action remains valid, provided one
keeps in mind that all vectors with mp+1,n 6= 0 must vanish.

Note that the first line of Theorem 6 can also be deduced from [10, 11], where all unirreps
of osp(1|2n) are classified.
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