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Abstract

Using the equivalence of the defining relations of the orthosymplectic Lie superalgebra
0sp(1]2n) to the defining triple relations of n pairs of parabose operators b;t we construct
a class of unitary irreducible (infinite-dimensional) lowest weight representations V(p) of
osp(1]2n). We introduce an orthogonal basis of V(p) in terms of Gelfand-Zetlin patterns,
where the subalgebra u(n) of osp(1|2n) plays a crucial role and we present explicit actions
of the osp(1|2n) generators.

Following some physical ideas we construct a class of infinite dimensional unitary irreducible
representations of the Lie superalgebra (LS) osp(1]2n) [1] in an explicit form. In 1953 Green [2]
introduced the so called parabose operators (PBOs) b;: (j =1,2,...) satisfying

[{b§7 bz}v ble] = (6 - 5)5jlbz + (6 - n)éklbﬁ, (1)

gk, € {1,2,...} and n,¢,& € {+,—} (to be interpreted as +1 and —1 in the algebraic expres-
sions € — & and € — 1) as a generalization of the ordinary Bose operators. The Fock space V (p)
of n pairs of PBOs is a Hilbert space with a vacuum |0), defined by means of (j,k =1,2,...,n)

0[0) =1, b;j0)y=0, (b)) =bF, {b;,b7}0)=pdl0), (2)
and by irreducibility under the action of the algebra spanned by the elements b;r, b; (j =
1,...,n), subject to (1). The parameter p is referred to as the order of the paraboson system.
However the structure of the parabose Fock space is not known, also a proper basis has not
been introduced. We solve these problems using the relation between n pairs of PBOs and the
defining relations of the LS o0sp(1|2n), discovered by Ganchev and Palev [3]. The orthosymplectic
superalgebra osp(1]|2n) [1] consists of matrices of the form

0 a al
d b oe |, (3)
—at d bt

where a and a; are (1 X m)-matrices, b is any (n X n)-matrix, and ¢ and d are symmetric
(n x n)-matrices. The even elements have a = a; = 0 and the odd elements are those with
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b= c=d = 0. Denote the row and column indices running from 0 to 2n and by e;; the matrix
with zeros everywhere except a 1 on position (7, 7). Then as a basis in the Cartan subalgebra b
of osp(1]2n) consider

hy =i —enpints (G =1o..n) @)
In terms of the dual basis d; of h*, the root vectors and corresponding roots of osp(1|2n) are
given by:

€0,k — En+k,0 _5k7 €0,n+k + €k0 < 5]67 k= 17 -y 1 Odd7
€in+k + €kntj 5] + 5]67 Entj.k + €ntk,j _5j - 5k7 j < k= 17 ..., N, even,
€jk — €ntkntj < 0j — 0k, JFk=1,...,n, even.

Introduce the following multiples of the odd root vectors
by = V2(eomik+exo)s by = V2(eor —entro)  (k=1,...,n). (5)
Then the following holds [3]

Theorem 1 (Ganchev and Palev). As a Lie superalgebra defined by generators and relations,
osp(1]2n) is generated by 2n odd elements b% subject to the parabose relations (1).

From (4) and (5) it follows that {b, b;“} = 2h;,j =1,...,n and using (2) we have:

Corollary 2. The parabose Fock space V (p) is the unitary irreducible representation of osp(1|2n)
with lowest weight (5,5,...,5).

We can construct the representation V' (p) [4] using an induced module construction with an
appropriate chain of subalgebras.

Proposition 3. A basis for the even subalgebra sp(2n) of osp(1|2n) is given by the 2n? +n
elements {bji,bf},l < j<k<n, {bj,b,;},l < j,k < n. The n? elements {bj,b,:},j,k =
1,...,n are a basis for the sp(2n) subalgebra u(n).

The subalgebra u(n) can be extended to a parabolic subalgebra P = span{{b;r, by, 1,05, {b; . b, },
Jok=1,...,n} [4] of osp(1]2n). Recall that {bj_,bg}|0> = pd;0), with {b;,bj} = 2h;. Then
the space spanned by |0) is a trivial one-dimensional u(n) module C|0) of weight (£,...,%). Since
b; |0) = 0, the module C|0) can be extended to a one-dimensional P module. Now we define the
induced osp(1|2n) module V(p) with lowest weight (5,...,5): V(p) = Ind;fp(1|2n)((3|0>.
By the Poincaré-Birkhoff-Witt theorem [1, 4], it is easy to give a basis for V(p):
()t - () ({bF, 03 1) 12 ({6, b )™ -+~ ({b_y, b P =22(0),

n—1"%n

where k1,...,k,, k12, k13,. .., kn_1,n € Z4. However in general V(p) is not a simple module and
let M(p) be the maximal nontrivial submodule of V(p). Then the simple module (irreducible
module), corresponding to the paraboson Fock space, is V(p) = V(p)/M(p). The purpose is
now to determine the vectors belonging to M (p) and also to find explicit matrix elements of the
0sp(1|2n) generators b;-—L in an appropriate basis of V (p).

From the basis in V(p), it is easy to write down the character of V (p):

(21 - -xn)P/Q
H?:1(1 — ;) H1§j<k§n(1 - wjxk).

Such expressions have an interesting expansion in terms of Schur functions.

char V(p) =



Proposition 4 (Cauchy, Littlewood). Let x1,...,z, be a set of n variables. Then [5]

1
[T (U= 2) Tl jepan(l —2jmr) 2 sl oen) = ZA: sx(x)- (7)

i=1 A
Herein the sum is over all partitions A and sy(z) is the Schur symmetric function [6].

The characters of finite dimensional u(n) representations are given by such Schur functions
sx(z). For such finite dimensional u(n) representations labelled by a partition A, there is a
known basis: the Gelfand-Zetlin basis (GZ) [7]. We shall use the u(n) GZ basis vectors as our
new basis for V(p). Thus the new basis of V(p) consists of vectors of the form

Mmin sttt Mp—1n Mpn
min-1 -+ - Mp-1n-1 [m]n

) =m)" = | ) - ‘ e ) , 0
mii

where the top line of the pattern, also denoted by the n-tuple [m|™, is any partition A (consisting
of non increasing nonnegative numbers) with ¢(\) < n. The label p itself is dropped in the
notation of |m). The remaining n — 1 lines of the pattern will sometimes be denoted by |m)"~L.
So all m;; in the above GZ-pattern are nonnegative integers, satisfying the betweenness conditions
M jy1 > Myj > Mig1+1,1 <1 < j < n— 1. Note that, since the weight of |0) is (§,...,5), the
weight of the above vector is determined by

k k-1
p
him) = 5+ 3 mgk = 3 _mike | Im). (9)
j=1 j=1

The triple relations (1), imply that (b1, b5, ..., b)) is a standard u(n) tensor of rank (1,0,...,0).
Therefore we can attach a unique GZ-pattern with top line 10---0 to every bj, corresponding
to the weight +4;. Explicitly:

10---000
10---00

n

by ~ 0---0 ’ (10)
0

where the pattern consists of j — 1 zero rows at the bottom, and the first n — j + 1 rows are of
the form 10--- 0. The tensor product rule in u(n) reads ([m]") ® (10---0) = ([m]},) ® ([m]7,) &

-~ ® ([m]",,) where ([m]") = (m1n, m2p, ..., My,) and a subscript £k indicates an increment of
the kth label by +1: ([m]%},) = (mip, ..., Mg, £1,...,my,). A general matrix element of bj
can now be written as follows:

et — (] P 100 [ Y
(m ‘bj Im) = m/)n1 bj )1 - )1 ; 0 jm/)n—1 ([m] e[0T ][ [m]™).

The first factor in the right hand side is a u(n) Clebsch-Gordan coefficient [8], the second
factor is a reduced matrix element. By the tensor product rule, the first line of |m’) has to be
[m']" = [m]},, for some k-value.

The special u(n) CGCs appearing here are well known, and have fairly simple expressions.

They can be found, e.g. in [8, 9]. The actual problem is now converted into finding expressions



for the reduced matrix elements, i.e. for the functions Fj([m]"), for arbitrary n-tuples of non
increasing nonnegative integers [m|™ = (mipn, Man, . . ., Mpp):

Fi([m]") = Fi(man, mon, ..., man) = ([m]3 |07 [[[m]"). (11)

So one can write:

sy = (" 10:520" [ 05 Y e | P (12)
Flm) = ;oL L ([m M
J Py |m)n—1 0 ‘m,)n_l |m,) 1
) = S0 (7 0520 [ ey | (13
Sm) = P kALY — n-1 |-
J & |m/)n—1 0 |m)n—1 k ‘m/) 1
For j = n, the CGCs in (12)-(13) take a simple form [8], and we have
n nfl( ]C+ . 1) 1/2
btim) = k:% Mkn1 = Mhin = ! _ Fi(min, Mon, ..., Mpn) |M)Lin; 14
n’ ) ; ( Hk;ﬁizl(mkn — My — k +2> ( 1 2 ) | )-‘r ( )

" " (m — My, — k +1) 12
b= Z k=1 \"""kn—1 mn E in— 1,... —in-
) i=1 (IIZ#izl(mkn —mip —k+i+1) (s Min =y D) 10)-in

(15)

In order to determine the n unknown functions Fj, one can start from the following action:
n n—1
{by, b7} m) = 2hn|m) = (p+20Y  mjn — Y mjn-1))|m). (16)
j=1 j=1

Expressing the left hand side by means of (14)-(15), one finds a system of coupled recurrence
relations for the functions Fj. Taking the appropriate boundary conditions into account, we
have been able to solve this system of relations [9].

Proposition 5. The reduced matrixz elements Fy, appearing in the actions of b;c on vectors |m)
of V(p) are given by:
Fio(Min, Man, -« oy Mipy) = (= 1)ttt Fman (0 tn 41 — ke 4 &y, (p — )2

= m'n_mkn_j+k 1/2
X H (m ! ) : (17)

k=1 gn — Min — ] +k— Omjnfm;m

where € and O are the even and odd functions defined by £ = 1 if j is even and 0 otherwise,
O; =1 1fj is odd and 0 otherwise.

The proof consists of verifying that all triple relations (1) hold when acting on any vector
|m). Each such verification leads to an algebraic identity in n variables mqy,, ..., My,. In these
computations, there are some intermediate verifications: e.g. the action {b;r, b, }|m) should leave
the top row of the GZ-pattern |m) invariant (since {b;“, b, } belongs to u(n)). Furthermore, it
must yield (up to a factor 2) the known action of the standard u(n) matrix elements Ej; in the
classical GZ-basis. Consider now the factor (my, + n+1—k+ &y, (p —n)) in the expression
of Fy([m]™). This is the only factor in the right hand side of (17) that may become zero. If this
factor is zero or negative, the assigned vector |m’) belongs to M(p). Recall that the integers
mjy, satisfy mi, > mop > -+ > mpy > 0. If my,, = 0 (its smallest possible value), then this
factor in F}, takes the value (p —k+1). So the p-values 1,2,...,n — 1 play a special role leading
to the following result [9]:



Theorem 6. The osp(1]2n) representation V(p) with lowest weight (5,...,5) is a unirrep if
and only if p € {1,2,....n—1} orp >n—1. Forp >n—1, V(p) = V(p) and charV(p) =

@120 )P/ 2 —
T T sy = (@1 on)?? Tysa(@). Forp € {120~ 1}, V(p) = V(p)/M(p)

with M (p) # 0. The structure of V (p) is determined by char V(p) = (x1 - - - z,,)P/? 2o, e <p SA(T)
where ((X\) is the length of the partition \.

The explicit action of the osp(1|2n) generators in V(p) is given by (12)-(13), and the basis
is orthogonal and normalized. For p € {1,2,...,n — 1} this action remains valid, provided one
keeps in mind that all vectors with my11, # 0 must vanish.

Note that the first line of Theorem 6 can also be deduced from [10, 11], where all unirreps
of 0sp(1|2n) are classified.
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