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Abstract

Although most of the symmetry groups or “invariance groups” associated with two term
transformations between (basic) hypergeometric series have been studied and identified, this
is not the case for the most general transformation formulae in the theory of basic hyper-
geometric series, namely Bailey’s transformations for 10φ9-series. First, we show that the
invariance group for both Bailey’s two term transformations for terminating 10φ9-series and
Bailey’s four term transformations for non-terminating 10φ9-series (rewritten as a two term
transformation of a so called Φ-series) is isomorphic to the Weyl group of type E6. We
continue our recent research concerning the group structure underlying three term transfor-
mations [10] and demonstrate that the group associated with a three term transformation
between these Φ-series, each admitting Bailey’s two term transformation, is the Weyl group
of type E7. We do this by giving a description of the root system of type E7 that allows
to find a transformation between equivalent three term identities in an easy way. A com-
putation shows that there are five, essentially different, three term transformations between
these Φ-series; we give an explicit form of each of these five transformations in an elegant
way. To our knowledge only one of these transformations has appeared in the literature.

Keywords: Basic hypergeometric series, Bailey’s transformations, Symmetry group, Root sys-
tems, E6, E7
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1 Introduction

This article deals with transformations between basic hypergeometric series, and we use the
(standard) notation of [3] when working with such series. The q-shifted factorial is

(a; q)0 = 1, and (a; q)n =
n−1
∏

k=0

(1 − a qk), for n = 1, 2, . . . ,∞,

and (a1, . . . , am; q)n = (a1; q)n · · · (am; q)n. To ease notation, from Section 4 onwards, it will
prove convenient to introduce the following shorthand notation, which is inspired by [3, Exercise
2.16]

S(a1, . . . , an) = (a1, . . . , an, q/a1, . . . , q/an; q)∞.

In this article, we only work with very-well-poised basic hypergeometric series of the form

r+1Wr(a1; a4, a5, . . . , ar+1; q, z)

= r+1φr

(

a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

)

=

∞
∑

k=0

(a1, a2, . . . , ar+1; q)k

(q, b1, b2, . . . , br; q)k
zk,

(1)

where, by definition of a very-well-poised series, the following relations between the parameters
hold

qa1 = a2b1 = a3b2 = · · · = ar+1br and a2 = qa
1/2
1 , a3 = −qa

1/2
1 .
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A basic hypergeometric series is balanced if b1 · · · br = qa1 · · · ar+1 and z = q; all encountered
series will be balanced. In general, a hypergeometric series is terminating when one of its
numerator parameters ai equals q−n, where n is a nonnegative integer. If this is not the case, then
the series is non-terminating; we assume that the convergence conditions for non-terminating
series are always satisfied.

A very-well-poised basic hypergeometric series has so called trivial transformations, i.e. one
can freely permute the parameters a4 up to ar+1 without changing the series. Some very-well-
poised basic hypergeometric series, however, also satisfy non-trivial transformations. A well
known example is Bailey’s transformation formula for a terminating balanced very-well-poised

10φ9-series, see e.g. [3, Eq. 2.9.1] or [9, T10901]:

10W9(a; q−n, c, d, e, f, g, h; q, q)

=
(aq, aq/fg, a2q2/cdef, a2q2/cdeg; q)n

(aq/f, aq/g, a2q2/cdefg, a2q2/cde; q)n
10W9(

a2q

cde
; q−n,

aq

de
,
aq

ce
,
aq

cd
, f, g, h; q, q),

(2)

where a3q2 = q−ncdefgh. This last condition expresses the balancing requirement. It is easily
verified that the series on the right hand side of this identity is balanced as well, and hence,
this identity can be iterated. In this case, direct iteration would simply yield the identity
transformation. One can however also include permutations of c up to h and then one gets an
interesting group of parameter transformations denoted by H. This group will be studied here
and identified as the Weyl group of type E6. We point out that q−n may not be included in
the permutations as it plays a special role, ensuring the termination of the series. For similar
examples of such symmetry groups of basic hypergeometric series transformations, see [11].

The arguments of the series on the right hand side of (2) are “linear” combinations of the
arguments of the series on the left hand side, albeit in multiplicative form. Nevertheless, it
is very easy to translate these linear combinations into matrix form. For the transformation
at hand, one would write the following nine-dimensional matrix acting on a nine-dimensional
vector in the following way





























2 0 −1 −1 −1 0 0 0 1
0 1 0 0 0 0 0 0 0
1 0 0 −1 −1 0 0 0 1
1 0 −1 0 −1 0 0 0 1
1 0 −1 −1 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























◦





























a
q−n

c
d
e
f
g
h
q





























=





























a2q/cde
q−n

aq/de
aq/ce
aq/cd

f
g
h
q





























. (3)

One sees that this is ordinary matrix vector multiplication with addition replaced by multipli-
cation and multiplication by exponentiation. Since we act on vectors from the left, composition
of group transforms will be done right to left; in this way composition of group transforms
corresponds to ordinary matrix multiplication.

In [10] we started our study of “invariance groups of three term transformations”, and there
it is clearly explained what we mean by this concept. For now, it suffices to say that for a certain
linear combination, denoted by Φ, of two 10W9-series there exists a known identity containing
three of these Φ-series [4, Eq. 6.5]. It is important to remark that this Φ-series satisfies a two
term identity that is structurally identical to (2), implying that the invariance group for Φ is H
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as well. The arguments of each of the Φ-series in the three term identity are regarded as group
element transforms of the “original” arguments, and these are added to the group H to form
a bigger group G, which will be identified as the Weyl group of type E7. In [4], a particular
three term transformation between Φ-series is given. It also follows from the analysis in [4] that
there exists a three term transformation for any set of three Φ-series from a set of 56 Φ-series.
This set of 56 Φ-series is constructed in [4] as a set of solutions of a complicated second order
difference equation. Although the construction in [4] is ingenious, it is not clear why the number
of solutions is 56. Here, we show that this is related to the 56 = |E7|/|E6| cosets of E6 in E7.
Between any three of the 56 cosets there exists a three term transformation. We show that there
are five essentially different three term transformations, and we give these five transformations
explicitly.

For completeness, we also introduce the notation for q-integrals [3]:

∫ b

a
f(t), dq(t) ≡

∫ b

0
f(t) dq(t) −

∫ a

0
f(t) dq(t),

where
∫ a

0
f(t) dq(t) = a(1 − q)

∞
∑

n=0

f(aqn)qn.

The structure of this article is as follows. In Section 2, we study the relevant two term
transformations, showing, by given an explicit description, that the invariance group of these
transformations is the Weyl group of type E6. In the next Section, we study the group structure
of a three term transformation connecting three Φ-series. This is an entirely different concept
from that of an invariance group of a two term transformation; in a previous article studying
(different) three term transformations [10], it is clearly explained what is meant by this concept.
We will show that of the 27720 three term transformations, there are only five that are essentially
different from each other, meaning that these five cannot be obtained from each other using
substitutions. All five can however be derived from one by using an elimination procedure. In
Section 4, we give these five identities, paying special attention to get the coefficients in these
identities as simple as possible.

Finally, we remark that although in principal the order of the numerator parameters in a very-
well-poised basic hypergeometric series is immaterial (but for the first parameter), throughout
this article, we consider the parameters to be fixed in the order given.

2 Bailey’s Two Term Transformations

Transformation for terminating series. We repeat Bailey’s transformation for terminat-
ing balanced very-well-poised 10φ9-series:

10W9(a; q−n, c, d, e, f, g, h; q, q)

=
(aq, aq/fg, a2q2/cdef, a2q2/cdeg; q)n

(aq/f, aq/g, a2q2/cdefg, a2q2/cde; q)n
10W9(

a2q

cde
; q−n,

aq

de
,
aq

ce
,
aq

cd
, f, g, h; q, q),

(4)

where n is a nonnegative integer and the parameters satisfy the following restriction a3q2 =
q−ncdefgh. Besides this transformation, also permutations of the parameters c, d, e, f , g
and h are allowed; or more correctly, permutations of the third up to the eighth argument
of the 10W9-series are allowed. We now introduce a rescaling of the 10W9-series for which the
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transformation (4) can be written more naturally. Using the restriction between the parameters,
one rewrites part of the factor in (4) as follows:

(aq/fg; q)n

(a2q2/cdefg; q)n
=

(q2a2/cdeh; q)n

(aq/h; q)n

(

cde

aq

)n

.

This allows one to rewrite (4) as:

w(a; q−n; c, d, e, f, g, h) = w(
a2q

cde
; q−n;

aq

de
,
aq

ce
,
aq

cd
, f, g, h), (5)

with

w(a; q−n; c, d, e, f, g, h)

≡ (aq/c, aq/d, aq/e, aq/f, aq/g, aq/h; q)n

(aq; q)nan 10W9(a; q−n, c, d, e, f, g, h; q, q).
(6)

In the notation of (6), we have used two semicolons to indicate that the first and second argument
play a special role, while the function w is symmetric in its last six arguments.
Transformation for non-terminating series. Bailey’s four term transformation formula
is also known, see e.g. [3, Eq. 2.12.9]. The equation given there however is written in a rather
non-symmetric way; to devise a more symmetric form of this identity, we start with the more
compact way of writing this transformation formula using q-integrals [3, Eq. 2.12.10]:

∫ b

a

(qt/a, qt/b, t/
√

a,−t/
√

a, qt/c, qt/d, qt/e, qt/f, qt/g, qt/h; q)∞
(t, bt/a, qt/

√
a,−qt/

√
a, ct/a, dt/a, et/a, ft/a, gt/a, ht/a; q)∞

dqt

=
a

λ

(b/a, aq/b, λc/a, λd/a, λe/a, bf/λ, bg/λ, bh/λ; q)∞
(b/λ, λq/b, c, d, e, bf/a, bg/a, bh/a; q)∞

×
∫ b

λ

(qt/λ, qt/b, t/
√

λ,−t/
√

λ, aqt/cλ, aqt/dλ, aqt/eλ, qt/f, qt/g, qt/h; q)∞

(t, bt/λ, qt/
√

λ,−qt/
√

λ, ct/a, dt/a, et/a, ft/λ, gt/λ, ht/λ; q)∞
dqt,

(7)

where λ = qa2/cde and a3q2 = bcdefgh. By redistributing the factors in front of the q-integrals
(and adding some extra factors for symmetry reasons), it is clear that one should consider:

I(a; b; c, d, e, f, g, h) ≡ 1

a

(c, d, e, f, g, h, bc/a, bd/a, be/a, bf/a, bg/a, bh/a; q)∞
(b/a, aq/b; q)∞

×
∫ b

a

(qt/a, qt/b, t/
√

a,−t/
√

a, qt/c, qt/d, qt/e, qt/f, qt/g, qt/h; q)∞
(t, bt/a, qt/

√
a,−qt/

√
a, ct/a, dt/a, et/a, ft/a, gt/a, ht/a; q)∞

dqt.

Using this notation, the identity (7) becomes:

I(a; b; c, d, e, f, g, h) = I(
a2q

cde
; b;

aq

de
,
aq

ce
,
aq

cd
, f, g, h), (8)

with a3q2 = bcdefgh. Note that this identity, including the restriction, is structurally identical
to the two term transformation of terminating 10φ9-series (5) (with b playing the role of q−n).

Using the definition of the q-integral, one rewrites I as a difference of two very-well-poised

10φ9-series; after cancelling common factors on the left and right hand side of (8), one finds that:

Φ(a; b; c, d, e, f, g, h) = Φ(
a2q

cde
; b;

aq

de
,
aq

ce
,
aq

cd
, f, g, h), (9a)

where a3q2 = bcdefgh, (9b)
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and

Φ(a; b; c, d, e, f, g, h)

≡ (aq/c, aq/d, aq/e, aq/f, aq/g, aq/h, bc/a, bd/a, be/a, bf/a, bg/a, bh/a; q)∞
(b/a, aq; q)∞

× 10W9(a; b, c, d, e, f, g, h; q, q)

+
(bq/c, bq/d, bq/e, bq/f, bq/g, bq/h, c, d, e, f, g, h; q)∞

(a/b, b2q/a, ; q)∞

× 10W9(b
2/a; b, bc/a, bd/a, be/a, bf/a, bg/a, bh/a; q, q).

(9c)

One can perform on Φ the transformation (9a), together with permutations of the last six
arguments. Repeated application of (9a) together with the mentioned permutations yields (as
in the terminating case) an invariance group of order 51840. Given that both transformations are
structurally identical, their invariance groups will be isomorphic. The study of this invariance
group is our next subject. Note that although (9a), when expanded, actually comprises four

10W9-series, we still consider it to be a two term transformation, as the natural object now is
no longer a single (possibly rescaled) 10W9-series, but the linear combination (9c) of two such
series.
Invariance group of Bailey’s two term transformations. To study the invariance group
of Bailey’s two term transformations, we consider six transformations (reflections) r1 up to r6.
The first five of which simply correspond to swapping two adjacent arguments of (a, b, c, d, e, f, g, h, q):

r1 ≡ c ↔ d, r2 ≡ d ↔ e, r3 ≡ e ↔ f, r4 ≡ f ↔ g, r5 ≡ g ↔ h.

More rigorously, one writes

r1(a, b, c, d, e, f, g, h, q) = (a, b, d, c, e, f, g, h, q),

and analogously for r2 up to r5. The sixth transformation corresponds to (9a):

r6(a, b, c, d, e, f, g, h, q) = (
a2q

cde
, b,

aq

de
,
aq

ce
,
aq

cd
, f, g, h, q).

Using the GAP-program [2], one verifies quite easily that |H| = |〈r1, r2, r3, r4, r5, r6〉| = 51840.
We will now show that the group H is isomorphic to the Weyl group of type E6. First, we
shall give a description of this Weyl group, and since the Lie algebra E6 plays no role here,
the Weyl group itself will be denoted by E6. For ease and familiarity of notation however, the
description and especially the action of group elements on vectors of the relevant vector space
will be given in the usual additive form, i.e. using ordinary matrix vector multiplication, and
not the action used in (3). When connecting this description with the series transformations,
we will “translate” these results – very straightforwardly – into multiplicative form.

In the literature one can find many descriptions of the root system of type E6 [1, 5, 6].
For our purposes, it will be crucial to have a description of the Weyl group E6 for which the
symmetric subgroup S6 is evident (note how the reflections r1 up to r5 generate the symmetric
group S6). In terms of root systems, this implies that the root system of E6 should have a
natural subsystem of type A5.

To describe the appropriate root system and Weyl group of type E6, consider the 8-dimensional
real vector space R

8 with orthonormal basis vectors ǫi (i = 1, . . . , 8), i.e. with inner product

〈ǫi, ǫj〉 = δij . (10)
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The roots of E6 will be elements of the 6-dimensional subspace V of R
8 consisting of those

elements
∑8

i=1 ciǫi with c1 + c2 = 0 and
∑8

i=3 ci = 0. A set of simple roots of E6 is then given
by the elements

αi = ǫi+2 − ǫi+3 (i = 1, . . . , 5) and α6 =
1

2
(−ǫ1 + ǫ2 − ǫ3 − ǫ4 − ǫ5 + ǫ6 + ǫ7 + ǫ8). (11)

The corresponding Dynkin diagram is given in Figure 1(a); using the inner product (10) it is
easy to check that the Cartan matrix of E6 arises. Also the A5 subsystem is evident. Note that
all 72 non-zero roots (and their number) are given by

± (ǫi − ǫj), (1 ≤ i < j ≤ 2; or 3 ≤ i < j ≤ 8); 32 (12a)

1

2
(

8
∑

i=1

(−1)aiǫi), (ai ∈ {0, 1};
2

∑

i=1

ai = 1 and
8

∑

i=3

ai = 3). 40 (12b)

So all coefficients in
∑8

i=1(−1)aiǫi are ±1, and the condition is equivalent to saying that among
the first two coefficients there is one +1 and one −1, and among the last six coefficients there
are three +1’s and three −1’s.

(a) (b)

α6

α5α4α3α2α1

α6

α5α4α3α2α1α0

Figure 1: Dynkin diagrams of the root systems of type E6 and E7.

The Weyl group E6 is now generated by the six simple reflections r̃i ≡ r̃αi , with i ∈ {1, . . . , 6},
where

r̃i(x) = x − 2
〈x, αi〉
〈αi, αi〉

αi = x − 〈x, αi〉αi. (13)

Herein, x =
∑8

i=1 xiǫi, sometimes denoted by its coordinates x = (x1, x2; x3, x4, x5, x6, x7, x8),
and since each such reflection keeps both x1 + x2 and

∑8
i=1 xi fixed one can think of the Weyl

group acting in the 6-dimensional hyperplane of R
8 with

ℓ(x) ≡ x1 + x2 = C, and |x| ≡
8

∑

i=1

xi = C ′ (14)

for some constants C and C ′. Note that the subgroup S6 of E6, generated by r̃i with 1 ≤ i ≤ 5,
acts on x by permuting the coordinates xj , with j ∈ {3, . . . , 8}; more particularly r̃i, with
i ∈ {1, 2, 3, 4, 5}, acts on x by swapping the coordinates at positions i + 2 and i + 3. For further
reference we give the action of r̃6 here explicitly: x′ = r̃6(x) with

x′

1 = x1 + y, x′

2 = x2 − y, x′

3 = x3 + y, x′

4 = x4 + y,

x′

5 = x5 + y, x′

6 = x6 − y, x′

7 = x7 − y, x′

8 = x8 − y,
(15)

where y is a shorthand for 1
4(−x1 + x2 − x3 − x4 − x5 + x6 + x7 + x8).
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The order of the Weyl group E6 is 51840. It will be useful to describe the orbit of a general
element x (that is, an element not on one of the reflection planes of the Weyl group). To list
the 51840 images of x, it is sufficient to list the 51840/6! = 72 S6 orbits by their representing
elements. Two of these orbits are represented by

(x1, x2; x3, x4, x5, x6, x7, x8) and (x2, x1; x3, x4, x5, x6, x7, x8). (16)

The next 20 S6 orbits are directly represented by an element r̃α(x), where α is one of the 40 roots
given in (12b). More concretely, if α = 1

2(
∑8

i=1(−1)aiǫi), with the conditions given in (12b),
then the components of x′ = r̃α(x) are given by

x′

i =
8

∑

j=1

(δij −
(−1)ai+aj

4
)xj , for i ∈ {1, . . . , 8}. (17)

We only have 20 of these orbits since r̃α(x) = r̃−α(x). One finds another set of 20 orbits by acting
with r̃α on the representative of the second orbit given in (16), or stated otherwise, one acts
first with r̃ǫ1−ǫ2 on x and then with r̃α on the result. A representing element x′ = r̃αr̃ǫ1−ǫ2(x)
has the following coordinates:

x′

i = (δi1 −
(−1)ai+a1

4
)x2 + (δi2 −

(−1)ai+a2

4
)x1 +

8
∑

j=3

(δij −
(−1)ai+aj

4
)xj . (18)

Finally, the remaining 30 S6 orbits are found by reflections of the type rαrβ(x), with both α and
β of type (12b). These 30 orbits are determined by two indices (i, j) with {i, j} ⊂ {3, 4, 5, 6, 7, 8}.
More, explicitly, let

α =
1

2
(

8
∑

p=1

(−1)apǫp) and β =
1

2
(

8
∑

p=1

(−1)bpǫp)

with the same conventions as in (12b), and where the coefficients of α and β overlap in the
positions {1, 2, i, j} and differ in the other positions, or more explicitly

a1 = b1 = aj = bj , a2 = b2 = ai = bi, ak = 1 − bk, al = 1 − bl, am = 1 − bm, an = 1 − bn,

where {k, l, m, n} = {3, 4, 5, 6, 7, 8} \ {i, j}. A representing element x′ has the following coordi-
nates:

x′

1 = −xi + 1
2(x1 + x2 + xi + xj) x′

k = −xk + 1
2(xk + xl + xm + xn)

x′

2 = −xj + 1
2(x1 + x2 + xi + xj) x′

l = −xl + 1
2(xk + xl + xm + xn)

x′

i = −x1 + 1
2(x1 + x2 + xi + xj) x′

m = −xm + 1
2(xk + xl + xm + xn)

x′

j = −x2 + 1
2(x1 + x2 + xi + xj) x′

n = −xn + 1
2(xk + xl + xm + xn).

(19)

Thus the E6 orbit of x, of size 51840, consists of the 72 S6 orbits (16), (17), (18) and (19)
(each of size 720).

With this description of the Weyl group E6, we can now prove our statements about the
invariance group of Φ (and of w). Furthermore, the description of a general orbit under the
action of E6 will allow us to list all distinct forms of the Φ-series.
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Lemma 1 The invariance group H = 〈r1, r2, r3, r4, r5, r6〉 of both (5) and (9a) is isomorphic to
the Weyl group of type E6.

Proof : Let x1 up to x8 be eight variables subject to the condition that their product equals
one, i.e.

∏8
i=1 xi = 1, and let

a = q1/2x2
1, b = q1/2x1x2, c = q1/2x1x3, d = q1/2x1x4,

e = q1/2x1x5, f = q1/2x1x6, g = q1/2x1x7, h = q1/2x1x8,
(20)

which are invertible relations, satisfying the constraint (9b) between a up to h, due to the fact
that

∏8
i=1 xi = 1. In terms of the variables xi, the arguments on the right hand side of (9a) are

a2q

cde
= q1/2 x1

x3x4x5
, b = q1/2x1x2,

aq

de
= q1/2 1

x4x5
,

aq

ce
= q1/2 1

x3x5
,

aq

cd
= q1/2 1

x3x4
, f = q1/2x1x6, g = q1/2x1x7, h = q1/2x1x8.

(21)

It is easily verified that the transition from (20) to (21) is indeed realized by transformation (15),
written in multiplicative form. It is even easier to see that swapping two adjacent parameters
of (c, d, e, f, g, h) corresponds to swapping xi+2 and xi+3, where i gives the position of the first
parameter to be swapped. This completes the proof. 2

Since we have used the fact that
∏8

i=1 xi = 1 in the proof of this lemma, from now on we
assume that the constant C ′ appearing in (14) equals zero:

C ′ = 0. (22)

We now introduce a new function Φ̃ of eight arguments:

Φ̃(x) ≡ Φ(q1/2x2
1; q

1/2x1x2; q
1/2x1x3, q

1/2x1x4, q
1/2x1x5, q

1/2x1x6, q
1/2x1x7, q

1/2x1x8), (23)

which is simply the Φ-function (9c), but rewritten using the realization (20).

Theorem 1 Let x1 up to x8 be eight variables satisfying
∏8

i=1 xi = 1. The function Φ̃(x)
is then invariant under the Weyl group of type E6 acting multiplicatively on the variables
(x1, x2, x3, x4, x5, x6, x7, x8). Stated otherwise, it holds that

Φ̃(x) = Φ̃
(

h̃(x)
)

,

for each element h̃ of the group H = 〈r̃1, r̃2, r̃3, r̃4, r̃5, r̃6〉 ∼= E6.

The description of the 72 S6 orbits of a general element x, given in (16)–(19), enables us to
list all 72 distinct forms of the Φ-series (each form still having the 720 “trivial” permutation
symmetries of the last 6 variables):

Φ(a; b; c, d, e, f, g, h) = Φ(a; b; c, d, e, f, g, h) 1 (24a)

= Φ(
b2

a
; b;

bc

a
,
bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
) 1 (24b)

= Φ(
a2q

cde
; b;

aq

de
,
aq

ce
,
aq

cd
, f, g, h) 20 (24c)

= Φ(
abq

cde
; b;

aq

de
,
aq

ce
,
aq

cd
,
bf

a
,
bg

a
,
bh

a
) 20 (24d)

= Φ(
bc

d
; b; c,

bc

a
,
aq

de
,
aq

df
,
aq

dg
,
aq

dh
) 30 (24e)
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Here, the first two orbits, represented by (24a) and (24b), refer to the two orbits given in (16).
The next 20 orbits, represented by (24c) correspond to a reflection over a root α, see (17); for
this particular case the reflection r̃α is determined by the fact that a2 = a6 = a7 = a8. The
next 20 orbits, represented by (24d), are also determined by a root α and correspond to (18);
in this particular case the same root α as before will do the trick. The last 30 orbits correspond
to (19); in this particular case one has a2 = b2 = a3 = b3 and a1 = b1 = a4 = b4.

The fact that there are 20 different forms of type (24c), for example, can also be seen from
the Φ-arguments: there is a form of this type for any set of 3 elements (like {c, d, e}) out of the
six elements {c, d, e, f, g, h}, thus there are

(

6
3

)

= 20 such forms.
An important observation is that all 72 distinct forms of the Φ-series (or, disregarding the

trivial permutation symmetries, all 51840 forms) all have the same second parameter b. When
no confusion is possible, we shall sometimes refer to this set (or to one of its representatives) as
Φb.

As a final remark regarding the two term transformations we finish by saying that equa-
tions (24) are also valid in the terminating case, provided one changes Φ to w and b to q−n. In
this case (24b) corresponds to a reversal of series.

3 Three Term Transformations

In [4] it is shown that a certain linear combination of two very-well-poised balanced 10φ9-series
satisfies a three term transformation. This linear combination is the one given in (9c) but
multiplied by the inverse of the coefficient in front of the series 10W9(a; b, c, d, e, f, g, h), so that
the coefficient of this series equals 1. This immediately implies that Φ also satisfies a three term
transformation. We will study the group structure underlying this three term transformation,
allowing us to characterize the different types of three term transformations that exist between
Φ-series. If we swap G and C in formula [4, Eq. 6.5] (and write it with lower case parameters),
then it is of the following form:

C1 Φ(a; c; b, d, e, f, g, h) + C2 Φ(
q

a
;
q

h
;
q

b
,
q

c
,
q

d
,
q

e
,
q

f
,
q

g
) + C3 Φ(

c2

a
;
bc

a
; c,

cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
) = 0,

(25)
where a3q2 = bcdefgh and where the coefficients C1 and C2 are infinite products, while the
coefficient C3 is a difference of two infinite products.

We now regard the arguments of these Φ-series as group element transforms of the “original”
arguments of the Φ-series; e.g. we let

r0(a, b, c, d, e, f, g, h, q) = (
c2

a
,
bc

a
, c,

cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
, q). (26)

If we add r0 as a generator to the group H, and call the resulting group G, then one verifies, using
GAP [2], that |G| = |〈r0, r1, r2, r3, r4, r5, r6〉| = 2903040, which is the order of the Weyl group
E7. The arguments of the first two Φ-series do not contribute anything new; when regarded as
group transforms, they are already included in the group G. This is easily checked by noting
that the group size does not increase when the corresponding group transforms are added; it
will also be immediately clear once the group G has been studied.

The three term transformation (25) can be written in many different ways, keeping the
coefficients C1, C2 and C3 fixed. Indeed, on each of the series one can apply an element of the
group H (isomorphic to E6) without changing the identity. In this sense, formula (25) may be

9



regarded not only as an identity connecting three Φ-series, but as an identity connecting three
different sets of Φ-series, each of size 51840. We repeat here that applying an element of H on a
Φ-series preserves its second argument, so following the short hand notation introduced at the
end of the previous section, one can write (25) as:

C1 Φc + C2 Φq/h + C3 Φbc/a = 0. (27)

We would like to prove that the group involved with the three term transformation is indeed
the Weyl group E7, and for the reason just stated, we need a description of the group E7 for
which its subgroup E6 is evident; in terms of root systems this means that the root system of E7

should have that of E6 as a natural subsystem. As in the case of E6 we use an additive notation
when describing the root system.

The roots of E7 can be described in the same space R
8 as the roots of E6 with inner

product (10); they will now be elements of the 7-dimensional subspace V ′ consisting of elements
∑8

i=1 ciǫi with
∑8

i=1 ci = 0. A set of simple roots of E7 consists of the six simple roots αi, with
i ∈ {1, . . . , 6}, of E6 given in (11) plus the extra root

α0 = ǫ1 − ǫ3. (28)

The corresponding Dynkin diagram can be found in Figure 1(b). By construction, the E6

subsystem of E7 is evident. The 126 non-zero roots of E7 consist of

± (ǫi − ǫj), (1 ≤ i < j ≤ 8); 56 (29a)

1

2
(

8
∑

i=1

(−1)aiǫi), (ai ∈ {0, 1};
8

∑

i=1

ai = 4). 70 (29b)

Note that the 72 non-zero E6 roots given in (12) are indeed part of the 126 non-zero roots
of (29).

The Weyl group E7, generated by the seven reflections r̃i, with 0 ≤ i ≤ 6, acts on elements
x =

∑8
i=1 xiǫi of R

8. The quantity |x| =
∑8

i=1 xi is invariant under the action of E7, so it is a
fixed constant C ′ as in (14). In accordance with the choice (22), we shall assume that C ′ = 0 or
∑8

i=1 xi = 0. If we define the E6-level of x by

ℓ(x) = x1 + x2, (30)

then the action of the E6 subgroup will keep the level fixed, see (14), whereas the remaining
E7 reflections will change the level. The order of the E7 Weyl group is 2903040. Since we have
already described the E6 orbit of a general x, it is now sufficient to list the 2903040/51840 = 56
representing elements of the 56 E6 orbits in the E7 orbit of x. By performing the reflections r̃i,
with 0 ≤ i ≤ 5, and r̃ǫ1−ǫ2 repeatedly, one can see that there are 28 orbits of the following type:

u = (xi1 , xi2 ; xi3 , xi4 , xi5 , xi6 , xi7 , xi8), ℓ(u) = xi1 + xi2 , (31)

where (i1, i2, . . . , i8) is a permutation of (1, 2, . . . , 8) with i1 < i2 and i3 < i4 < · · · < i8. Hence
the orbit is characterized by the two numbers 1 ≤ i1 < i2 ≤ 8, or equivalently by its E6-level
xi1 + xi2 .

10



To find the remaining 28 orbits, we consider the three roots

α =
1

2
(ǫ1 + ǫ2 + ǫ3 + ǫ4 − ǫ5 − ǫ6 − ǫ7 − ǫ8),

β =
1

2
(ǫ1 + ǫ2 − ǫ3 − ǫ4 + ǫ5 + ǫ6 − ǫ7 − ǫ8), and

γ =
1

2
(ǫ1 + ǫ2 − ǫ3 − ǫ4 − ǫ5 − ǫ6 + ǫ7 + ǫ8).

One verifies easily that

r̃ǫ7−ǫ8 r̃ǫ5−ǫ6 r̃ǫ3−ǫ4 r̃ǫ1−ǫ2 r̃γ r̃β r̃α(x) = (−x1,−x2;−x3,−x4,−x5,−x6,−x7,−x8). (32)

In view of the first 28 orbits, it it clear that the remaining 28 orbits are of the type

u = (−xi1 ,−xi2 ; −xi3 ,−xi4 ,−xi5 ,−xi6 ,−xi7 ,−xi8), with ℓ(u) = −xi1 − xi2 , (33)

where again (i1, i2, . . . , i8) is a permutation of (1, 2, . . . , 8) with i1 < i2 and i3 < i4 < · · · < i8.
Hence, also these orbits are characterized by two numbers 1 ≤ i1 < i2 ≤ 8, or equivalently by
their E6-level −xi1 − xi2 .

Thus the E7 orbit of x, of size 2903040, consist of 56 E6 orbits (each of size 51840); observe
that each such E6 orbit is uniquely characterized by its level.

The following lemma is now very easy to prove.

Lemma 2 The group G = 〈r0, r1, r2, r3, r4, r5, r6〉 associated with the three term transforma-
tion (25) is isomorphic to the Weyl group E7.

Proof : We return to the realization (20) already used in proving that H is isomorphic to the
Weyl group E6. Given the description of E7 above, all we need to do is verify that r0 given
in (26) indeed corresponds to r̃0 with r̃0(x) = (x3, x2, x1, x4, x5, x6, x7, x8), which is trivial. 2

We have seen that each of the 56 E6 orbits of a general element x is characterized by two
numbers 1 ≤ i1 < i2 ≤ 8, and that there are 28 orbits of type (31) – which we shall label by
(i1, i2) – corresponding to the E6-level xi1 + xi2 , and 28 of type (33) – which we shall label by
(i1, i2)

∗ – corresponding to the E6-level −xi1−xi2 . The description of the 56 E6 orbits can now be
used to list the corresponding 56 sets of Φ-series. In this process, we can use the realization (20),
and work as before with the multiplicative form of the transformations. As an example, let us
identify the sets corresponding to the three terms of (25). The first series, Φ(a; c; b, d, e, f, g, h),
can be written as Φ̃

(

r̃ǫ2−ǫ3(x)
)

= Φ̃(x1; x3; x2, x4, x5, x6, x7, x8) in this correspondence. Hence,

it is labelled by (1, 3). Note that it is also characterized by its second parameter c = q1/2x1x3.
The second series, Φ(q/a; q/h; q/b, q/c, q/d, q/e, q/f, q/g), can be written as

Φ̃(x−1
1 ; x−1

8 ; x−1
2 , x−1

3 , x−1
4 , x−1

5 , x−1
6 , x−1

7 )

in the correspondence governed by (20) and (23). Hence, it is labelled by (1, 8)∗. Note that the
second parameter of this Φ-series is q/h = q1/2/x1x8.

The third series, Φ(c2/a; bc/a; c, cd/a, ce/a, cf/a, cg/a, ch/a), has just been identified in the
proof of Lemma 2 as Φ̃(x3; x2; x1, x4, x5, x6, x7, x8) under the correspondence (20). Thus it is
labelled by (2, 3). The second parameter of Φ is bc/a = q1/2x2x3, so again there is an obvious
relation between the characterizing parameter of Φ and the corresponding orbit label.
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Thus we see that (25) connects three orbits (in this context thought of as sets of Φ-series,
each of size 51840) determined by (1, 3), (1, 8)∗ and (2, 3). Equation (27) could now also be
rewritten as

C1 Φ̃(1,3) + C2 Φ̃(1,8)∗ + C3 Φ̃(2,3) = 0.

The relation with the previously introduced short hand notation is clear:

Φ̃(i,j) ↔ Φq1/2xixj and Φ̃(i,j)∗ ↔ Φq1/2/xixj ,

where the superscripts should be rewritten in terms of a up to h using (20). In this notation,
the 56 series are denoted by Φu with u ∈ U . Herein, U = U1 ∪ U2, where

U1 = {ab

a
,
ac

a
, . . . ,

gh

a
} and U2 = {aq

ab
,
aq

ac
, . . . ,

aq

gh
},

both sets containing 28 elements.
The 56 series considered here correspond precisely with a set of 56 solutions of a second order

difference equation determined in [4]. It follows that there exists a three term transformation
connecting any three of the 56 series. Since

(

56
3

)

= 27720, there are thus 27720 three term
transformations between Φ-series. Of course, many three term transformations are equivalent
with (25), since one can act on it with an arbitrary element of G to obtain a different looking, but
equivalent, identity. For instance, applying the element of G corresponding to the transformation

a → acq

bdh
, b → aq

dh
, c → c, d → aq

bh
, e → ce

a
, f → cf

a
, g → cg

a
, h → aq

d
, (34)

yields a relation between the series Φb, Φc and Φbd/a, or stated otherwise between Φ̃(1,2), Φ̃(1,3)

and Φ̃(2,4) respectively. It is however impossible to obtain the identity connecting the series Φb,

Φc and Φbc/a by acting on (25) with an element of E7. The question thus arises how many
“prototype” relations one needs so that each of the 27720 relations is connected with such a
prototype relation through the action with an element of E7. To put it differently, we would
like to determine the number of E7 orbits when acting on three term identities.

Let c1, c2 and c3 denote three different elements from {(i, j), (i, j)∗} with 1 ≤ i < j ≤ 8, and
let X denote the set of all sets of the form {c1, c2, c3}. The E7 orbits when acting on X can be
computed using GAP. In Appendix I we describe an elegant way of achieving this. One finds
that there are five orbits, and thus one needs five prototype relations. In Table 1 we summarize
the sizes of these orbits, together with a list that enables to determine for any {c1, c2, c3} the
orbit it belongs to. In Table 1, i, j, k, l, m and n stand for different numbers between 1 and 8.
With each orbit the patterns determining the three term identities belonging to that orbit are
given. These patterns are given in two columns, where the pattern in the right column is the
complement (obtained by replacing each xi by 1/xi) of the pattern in the left column (and vice
versa). The numbers given in the rightmost column are for one pattern.

Using this table one sees that (25) belongs to the second orbit since {(1, 3), (1, 8)∗, (2, 3)}
matches {(i, j), (i, k), (j, l)∗} by setting i = 3, j = 1, k = 2 and l = 8. Likewise, {(1, 2), (1, 3), (2, 4)}
matches {(i, j), (i, k), (j, l)} and hence also belongs the the second orbit (an already known fact
since we have explicitly given a transformation between the two identities). On the other
hand, the identity connecting the series Φb, Φc and Φbc/a belongs to the first orbit since
{(1, 2), (1, 3), (2, 3)} matches the pattern {(i, j), (i, k), (j, k)}; a confirmation of the fact that
this identity cannot be reached by transforming (25).
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Orbit 1 (size 4032) (i, j), (i, k), (i, l) (i, j)∗, (i, k)∗, (i, l)∗ 8 ×
(

7
3

)

= 280

(i, j), (i, k), (j, k) (i, j)∗, (i, k)∗, (j, k)∗
(

8
3

)

= 56

(i, j), (i, k), (l, m)∗ (i, j)∗, (i, k)∗, (l, m)
(

8
2

)

× 6 ×
(

5
2

)

= 1680

Orbit 2 (size 7560) (i, j), (i, k), (j, l) (i, j)∗, (i, k)∗, (j, l)∗
(

8
2

)

× 6 × 5 = 840

(i, j), (i, k), (j, l)∗ (i, j)∗, (i, k)∗, (j, l) 8 × 7 × 6 × 5 = 1680

(i, j), (k, l), (m, n)∗ (i, j)∗, (k, l)∗, (m, n)
(

8
2

)

×
(

6
2

)

×
(

4
2

)

/2 = 1260

Orbit 3 (size 12096) (i, j), (j, k), (l, m) (i, j)∗, (j, k)∗, (l, m)∗ 8 ×
(

7
2

)

×
(

5
2

)

= 1680

(i, j), (i, k), (j, k)∗ (i, j)∗, (i, k)∗, (j, k) 8 ×
(

7
2

)

= 168

(i, j), (j, k), (j, l)∗ (i, j)∗, (j, k)∗, (j, l) 8 × 7 ×
(

6
2

)

= 840

(i, j), (k, l), (i, m)∗ (i, j)∗, (k, l)∗, (i, m) 8 × 7 × 6 ×
(

5
2

)

= 3360

Orbit 4 (size 2520) (i, j), (k, l), (m, n) (i, j)∗, (k, l)∗, (m, n)∗
(

8
2

)

×
(

6
2

)

×
(

4
2

)

/3! = 420

(i, j), (k, l), (i, k)∗ (i, j)∗, (k, l)∗, (i, k)
(

8
2

)

× 6 × 5 = 840

Orbit 5 (size 1512) (i, j), (i, k), (i, j)∗ (i, j)∗, (i, k)∗, (i, j) 8 × 7 × 6 = 336

(i, j), (k, l), (i, j)∗ (i, j)∗, (k, l)∗, (i, j)
(

8
2

)

×
(

6
2

)

= 420

Table 1: Characterization of the five orbits.

In the next section, we will give an identity for each of the five orbits given in Table 1. It
is however, also interesting to know how to move around within each of the orbits. This is, one
would like to be able to find transformations as (34) without relying on a computer program.
To this end, we investigate how a sum of two x-variables, e.g. xi + xj , transforms when acted
upon with an element of E7, and more specifically with an element of the form r̃α, where α is
a non-zero root of type (29b) of E7. This is, we investigate how the E6-level transforms under
reflections of the form r̃α. Using (17) it is easy to show that xi + xj remains invariant under r̃α

whenever {ai, aj} = {0, 1}. On the other hand, whenever ai = aj , then x′

i + x′

j = −(xk + xl)
where k and l are such that ai = aj = ak = al.

It is clear that within each pattern, one can simply permute the indices to go from one
identity to another; moreover using (32) one can also go from a pattern to its complement
pattern on the other side of the table. In Table 2 we indicate how to move around within each
orbit using reflections through roots α of type (29b), and, in some cases, the reflection (32). In
this table, the primed indices such as (i′, j′) in the top rows are independent of the indices in
the columns. They are included only to indicate the goal pattern; the source pattern is given
in the first column. The subscripts used inside the table, e.g. ai, refer to the indices in the first
column. This table has a twofold purpose. First, it proves that the patterns given in Table 1
are indeed divided over the orbits as is given there. (The calculation given in Appendix I does
not show this.) Secondly, it gives a means of transforming identities without having to rely on
a computer program.

As an example, let us show how to find (34). We start with an identity connecting Φ̃(1,3),

Φ̃(2,3) and Φ̃(1,8)∗ , and we would like to find an identity connecting Φ̃(1,2), Φ̃(1,3) and Φ̃(2,4). In a

first step, we apply r̃α where a1 = a2 = a4 = a8; this gives an identity connecting Φ̃(1,3), Φ̃(2,3)

and Φ̃(2,4). A simple observation now shows that one only has to swap x1 and x3 to reach the
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Orbit 1 (i′, j′), (i′, k′), (i′, l′) (i′, j′), (i′, k′), (j′, k′) (i′, j′), (i′, k′), (l′, m′)∗

(i, j), (i, k), (i, l) ai = aj = ak = al, x → −x ai = al = am = an

(i, j), (i, k), (j, k) ai = aj = ak = al, x → −x aj = ak = am = an

(i, j), (i, k), (l, m)∗ ai = al = am = an aj = ak = al = am

Orbit 2 (i′, j′), (i′, k′), (j′, l′) (i′, j′), (i′, k′), (j′, l′)∗ (i′, j′), (k′, l′), (m′, n′)∗

(i, j), (i, k), (j, l) aj = al = ak = am ai = aj = am = an

(i, j), (i, k), (j, l)∗ aj = ak = al = am ai = ak = am = an

(i, j), (k, l), (m, n)∗ ai = ak = am = an ai = aj = ak = ap

Orbit 3 (i′, j′), (j′, k′), (l′, m′) (i′, j′), (i′, k′), (j′, k′)∗ (i′, j′), (j′, k′), (j′, l′)∗ (i′, j′), (k′, l′), (i′, m′)∗

(i, j), (j, k), (l, m) ai = ak = al = am aj = al = am = an aj = ak = am = an

(i, j), (i, k), (j, k)∗ aj = ak = al = am ai = aj = ak = am, x → −x ai = ak = am = an, x → −x
(i, j), (j, k), (j, l)∗ aj = al = am = an ai = aj = ak = al, x → −x ai = aj = al = am

(i, j), (k, l), (i, m)∗ ai = ak = am = an aj = ak = al = am, x → −x ai = aj = ak = am

Orbit 4 (i′, j′), (k′, l′), (m′, n′) (i′, j′), (k′, l′), (i′, k′)∗

(i, j), (k, l), (m, n) ai = al = am = an

(i, j), (k, l), (i, k)∗ ai = ak = am = an

Orbit 5 (i′, j′), (i′, k′), (i′, j′)∗ (i′, j′), (k′, l′), (i′, j′)∗

(i, j), (i, k), (i, j)∗ ai = aj = al = am

(i, j), (k, l), (i, j)∗ ai = aj = ak = am

Table 2: Transitions between the patterns in the orbits. We use reflections through a root α of type (29b), sometimes followed by (32).
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desired identity. This means once has to perform the following substitution

x′

1 = x3 + y, x′

3 = x1 − y, x′

i = xi + y, i ∈ {2, 4, 8}, x′

i = xi − y, i ∈ {5, 6, 7},
with y = 1

4(x1 − x2 − x3 − x4 + x5 + x6 + x7 − x8). Translating this into a transformation for a
up to h in multiplicative form, using (20), gives exactly the transformation (34).

We summarize the main results of our analysis:

Theorem 2 Let G = E7 and H = E6. The series Φ̃(x) satisfies Φ̃
(

h̃(x)
)

= Φ̃(x) for each

h̃ ∈ H. The 2903040 series Φ̃
(

g̃(x)
)

, with g̃ ∈ G, can be divided in 56 sets corresponding to the 56

cosets of E6 in E7. Of these sets, 28 are represented by Φ̃(i1,i2) = Φ̃(xi1 ; xi2 ; xi3 , xi4 , xi5 , xi6 , xi7 , xi8),

and 28 by Φ̃(i1,i2)∗ = Φ̃(x−1
i1

; x−1
i2

; x−1
i3

, x−1
i4

, x−1
i5

, x−1
i6

, x−1
i7

, x−1
i8

), where 1 ≤ i1 < i2 ≤ 8; (i1, i2)
and (i1, i2)

∗ are referred to as the orbit labels of the (set of) Φ-series. For any three distinct or-
bit labels, there exists a relation (three term transformation) between the corresponding Φ-series.
There are five different types of three term transformations, according to the combinations of
orbit labels: these five types are summarized in Table 1. The action of an element g̃ ∈ G on a
three term transformation of type K, with K ∈ {1, 2, 3, 4, 5}, yields another three term trans-
formation of the same type. The element g̃ turning one particular three term transformation of
type K into another given one of type K can be determined from Table 2.

4 Prototypes of the transformations

It is one thing to know the number of orbits and their sizes, it is another to effectively know
the coefficients of the transformation formulae. It is the purpose of this section to construct one
three term transformation for each of the five different types K, with K ∈ {1, 2, 3, 4, 5}. These
five three term transformations shall be referred to as the prototypes: all 27720 three term
transformations can be deduced from these prototypes by Theorem 2. To derive these identities
explicitly, we (mainly) use the method that was already employed in [4] to derive formula (25).
They show that certain multiples of (9c) (subject to the replacement (g, h) → (gqn, hq−n)) are
solutions of a second order difference equation in n, i.e. a difference equation of the form

Xn+1 − αn Xn + βn Xn−1 = 0, (35)

where αn and βn are complicated expressions given in [4, Eq. 3.2]. Since we are dealing with
a second order difference equation, any three solutions of this difference equation are connected
by a three term identity in which the coefficients are independent of n. In some cases, letting
n tend to infinity yields a three term relation connecting three very-well-poised 8W7-series, for
which the three term transformation is known. Identification of the corresponding coefficients
then gives the desired transformation formula.

Since one is considering solutions of the difference equation (35), one has to introduce the
parameter n (a nonnegative integer) into the set of parameters a up to h, and this is done by
replacing g and h respectively by gqn and hq−n; this leaves the condition (9b) intact. Using the
notation of [4], the following series is a solution of the difference equation at hand:

Xbgqn/a
n = (

gh

a
)n 1

(bgqn/a, cgqn/a, dgqn/a, egqn/a, fgqn/a, gqn, bhq−n/a, b, qn+1/h; q)∞

× (gq2n/h, bq−n/g, gqn+1/b; q)∞
(bc/a, bd/a, be/a, bf/a, aqn+1/bh, aqn+1/ch, aqn+1/dh, aqn+1/eh, aqn+1/fh)∞

× Φ(
q2ng2

a
;
bgqn

a
;
cgqn

a
,
dgqn

a
,
egqn

a
,
fgqn

a
, gqn,

gh

a
).

(36)
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The superscript indicates that bgqn/a plays a special role: it is the characterizing argument
(i.e. the second argument) of the Φ-series. Quite general, each of the 56 solutions Xu

n of (35)
constructed in [4] is proportional to the Φ-series Φu under the appropriate replacement:

Xu
n ∼ Φu

∣

∣

(g,h)→(gqn,hq−n)
,

with u ∈ U .
It can be seen that swapping the parameter bgqn/a in (36) with one of the last six arguments

of the Φ-series also gives solutions to the difference equation. More in particular, the series

X
cgqn/a
n and X

dgqn/a
n are solutions as well. It is these three series that we assume to be connected

in the following way:
P Xbgqn/a

n + QXcgqn/a
n + R Xdgqn/a

n = 0, (37)

where, as stated before, P , Q and R are independent of n. The large n asymptotics of X
bgqn/a
n

is fairly easy to determine and one finds that

lim
n→∞

Xbgqn/a
n

=
(gh/a, bq/c, bq/d, bq/e, bq/f, bq/a, b/g, gq/b; q)∞
(b2q/a, bc/a, bd/a, be/a, bf/a, b, bh/a, aq/bh; q)∞

8W7(
b2

a
; b,

bc

a
,
bd

a
,
be

a
,
bf

a
; q,

gh

a
),

provided that |gh/a| < 1. The asymptotics for the other two series are obtained by interchanging
the role of b and c, respectively of b and d. One sees that the limiting relation of (37) yields
a three term relation between three 8W7-series. The relation between the three 8W7-series at
hand is known, and it reads:

(
b

c
,
cq

b
,
c

d
,
dq

c
,
cd

a
,
q

b
,
aq

be
,
aq

bf
,
bq

a
,
bq

c
,
bq

d
,
bq

e
,
bq

f
,
c2q

a
,
d2q

a
; q)∞ 8W7(

b2

a
; b,

bc

a
,
bd

a
,
be

a
,
bf

a
; q,

gh

a
)

+ (
c

b
,
bq

c
,
b

d
,
dq

b
,
bd

a
,
q

c
,
aq

ce
,
aq

cf
,
cq

a
,
cq

b
,
cq

d
,
cq

e
,
cq

f
,
b2q

a
,
d2q

a
; q)∞ 8W7(

c2

a
; c,

bc

a
,
cd

a
,
ce

a
,
cf

a
; q,

gh

a
)

− (
b

c
,
cq

b
,
c

b
,
bq

c
,
bc

a
,
q

d
,
aq

de
,
aq

df
,
dq

a
,
dq

b
,
dq

c
,
dq

e
,
dq

f
,
b2q

a
,
c2q

a
; q)∞ 8W7(

d2

a
; d,

bd

a
,
cd

a
,
de

a
,
df

a
; q,

gh

a
) = 0.

This identity is equivalent with identity [10, Theorem 3] with k = 1, l = 2 and m = 3. Compar-
ison of coefficients first yields an identity connecting the three Xn-series; rewriting this identity
in term of the Φ-series (and replacing gqn and hq−n back by g and h) results in the following
identity:

(
b

c
,
cq

b
,
c

d
,
dq

c
,
q

b
,
aq

be
,
aq

bf
,
aq

bh
,
cd

a
; q)∞ Φ(

g2

a
;
bg

a
;
cg

a
,
dg

a
,
eg

a
,
fg

a
,
hg

a
, g)

+ (
c

b
,
bq

c
,
b

d
,
dq

b
,
q

c
,
aq

ce
,
aq

cf
,
aq

ch
,
bd

a
; q)∞ Φ(

g2

a
;
cg

a
;
bg

a
,
dg

a
,
eg

a
,
fg

a
,
hg

a
, g)

− (
c

b
,
bq

c
,
b

c
,
cq

b
,
q

d
,
aq

de
,
aq

df
,
aq

dh
,
bc

a
; q)∞ Φ(

g2

a
;
dg

a
;
cg

a
,
bg

a
,
eg

a
,
fg

a
,
hg

a
, g) = 0.

(38)

This identity thus connects the three series Φ̃(2,7), Φ̃(3,7) and Φ̃(4,7); this is thus an identity
corresponding to the first pattern of the first orbit (there are 280 identities of this sort). To
transform it to an identity connecting Φ̃(1,2), Φ̃(1,3) and Φ̃(1,4) all one needs to do is swap x1 and
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x7 in the realization (20). This is, one replaces a by q1/2x2
7 = g2/a, and b by q1/2x2x7 = bg/a,

etc.; the complete transformation is given by:

a → g2/a, b → bg/a, c → cg/a, d → dg/a, e → eg/a, f → fg/a, g → g, h → hg/a.

Applying this transformation on (38) gives, after some trivial manipulations on the coefficients:

bd (
cd

a
,
c

d
,
dq

c
,
aq

be
,
aq

bf
,
aq

bg
,
aq

bh
; q)∞ Φ(a; b; c, d, e, f, g, h)

+ bc (
bd

a
,
d

b
,
bq

d
,
aq

ce
,
aq

cf
,
aq

cg
,
aq

ch
; q)∞ Φ(a; c; d, b, e, f, g, h)

+ cd (
bc

a
,
b

c
,
cq

b
,
aq

de
,
aq

df
,
aq

dg
,
aq

dh
; q)∞ Φ(a; d; b, c, e, f, g, h) = 0.

(39)

Each of the three Φ-series in this identity is symmetric in {e, f, g, h}, and one sees that the three
coefficients obey this symmetry in a way that is clear by simple inspection. Furthermore, one
sees that the second and third coefficient are simply cyclic permutations of (b, c, d) of the first
coefficient. This is thus a very elegant way to represent this identity.

One can also write this identity completely in terms of the variables x; this is one writes:

α(x) Φ̃(x) + β(x) Φ̃
(

r̃ǫ2−ǫ3 r̃ǫ2−ǫ4(x)
)

+ γ(x) Φ̃
(

r̃ǫ2−ǫ4 r̃ǫ2−ǫ3(x)
)

= 0, (40)

with

α(x) = x2x4 (q1/2x3x4,
x3

x4
,
qx4

x3
,

q1/2

x2x5
,

q1/2

x2x6
,

q1/2

x2x7
,

q1/2

x2x8
; q)∞,

β(x) = α
(

r̃ǫ2−ǫ3 r̃ǫ2−ǫ4(x)
)

= α(x1, x3, x4, x2, x5, x6, x7, x8),

γ(x) = α
(

r̃ǫ2−ǫ4 r̃ǫ2−ǫ3(x)
)

= α(x1, x4, x2, x3, x5, x6, x7, x8).

To transform (39) to an identity connecting the series Φb, Φc and Φbc/a or, stated other-
wise the series Φ̃(1,2), Φ̃(1,3) and Φ̃(2,3), we can follow the procedure outlined in Table 2. In
multiplicative notation this means one has to perform the following substitution in (40):

x′

1 = y/x4, x′

2 = y/x2, x′

3 = y/x3, x′

4 = y/x1

x′

5 = 1/x5y, x′

6 = 1/x6y, x′

7 = 1/x7y, x′

8 = 1/x8y,

with y = (x1x2x3x4)
1/2 = (x5x6x7x8)

−1/2. The coefficient β for instance is then transformed
into:

α(y/x4, y/x3, y/x1, y/x2, 1/x5y, 1/x6y, 1/x7y, 1/x8y)

= x1x4 (q1/2x3x4,
x2

x1
,
qx1

x2
, q1/2x3x5, q

1/2x3x6, q
1/2x3x7, q

1/2x3x8; q)∞.

Doing this for the three coefficients and the three series, and translating everything back to the
parameters a up to h yields, with a minor rewriting of the coefficients:

b (
a

b
,
bq

a
,
cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
; q)∞ Φ(a; b; c, d, e, f, g, h)

− c (
a

c
,
cq

a
,
bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
; q)∞ Φ(a; c; b, d, e, f, g, h)

+ c (
b

c
,
cq

b
, d, e, f, g, h; q)∞ Φ(

b2

a
;
bc

a
; b,

bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
) = 0.

(41)
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Thus, identities (38), (39) and (41) are all three term transformations of the first type, trans-
ferable into each other by the action of an element g ∈ G.

We now give a relation belonging to the second orbit, satisfying the first pattern. Applying
the relevant transformation on (25) gives, after some (non-trivial) manipulations the following
identity, symmetric in {e, f, g, h}:

ab

cd
(
cd

a
; q)∞

(

S(e, f, g, h,
c

b
,
d

c
) − S(

ce

a
,
cf

a
,
cg

a
,
ch

a
,
d

a
,
a

b
)
)

Φ(a; b; c, d, e, f, g, h)

− (
be

a
,
bf

a
,
bg

a
,
bh

a
,
aq

ce
,
aq

cf
,
aq

cg
,
aq

ch
,
bd

a
,
a

c
,
cq

a
,
a

d
,
dq

a
; q)∞ Φ(a; c; b, d, e, f, g, h)

+ (e, f, g, h,
aq

de
,
aq

df
,
aq

dg
,
aq

dh
, c,

a

c
,
cq

a
,
b

c
,
cq

b
; q)∞ Φ(

b2

a
;
bd

a
; b,

bc

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
) = 0.

(42)

An easier way of finding the same transformation, is eliminating the series Φd from two identities,
both belonging to the first orbit. One of these connects the series Φb, Φc and Φd, see (39), while
the second one connects the series Φb, Φd and Φbd/a, see (41) with c and d interchanged.

In order to find a relation belonging to the third orbit, we start with the three series X
gh/a
n ,

Xgqn

n and X
qn+1/h
n from the article [4]. Using the same limit process one arrives at an identity

connecting three 8W7-series, namely, with the notation of [10], w0, w0∗ and w5; identification of
coefficients yields a relation between Φgh/a, Φg and Φq/h. This identity clearly belongs to the
third orbit, as it satisfies the second pattern of this orbit. The simplification of this identity is
however not trivial, and as an example of how to manipulate the coefficients in these identities
we included an appendix showing the various steps required in the simplification process; these
can be found in Appendix II. In the end one arrives at:

(

c2 S(
d

c
,
e

c
,
f

c
,
g

c
,
h

c
, b) − a S(

cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
,
bc2

a
)
)

× (
aq

bd
,
aq

be
,
aq

bf
,
aq

bg
,
aq

bh
,
b2

a
,
aq

b2
; q)∞ Φ(a; b; c, d, e, f, g, h)

+
(

a S(
bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
,
b2c

a
) − b2 S(

d

b
,
e

b
,
f

b
,
g

b
,
h

b
, c)

)

× (
aq

cd
,
aq

ce
,
aq

cf
,
aq

cg
,
aq

ch
,
c2

a
,
aq

c2
; q)∞ Φ(a; c; b, d, e, f, g, h)

− a2q

bc2
(
aq

de
,
aq

df
,
aq

dg
,
aq

dh
,
aq

ef
,
aq

eg
,
aq

eh
,
aq

fg
,
aq

fh
,
aq

gh
,
bc

a
, b, c,

b2

a
,
aq

b2
,
c2

a
,
aq

c2
,
c

b
,
bq

c
; q)∞

× Φ(
aq

b2
;
aq

bc
;
q

b
,
aq

bd
,
aq

be
,
aq

bf
,
aq

bg
,
aq

bh
) = 0.

(43)

Notice the symmetry in {d, e, f, g, h} and how swapping b and c changes the sign of the last
coefficient, due to the presence of the factor (c/b, bq/c; q)∞, whilst interchanging the first two
coefficients.

As a remark, we note that we could also have derived this identity be eliminating Φd from
the two identities connecting Φb, Φc, Φd and Φb, Φd, Φaq/bd respectively. The first one belongs
to the first orbit, the second one to the second orbit. There would still remain some serious
simplification to do, as this yields an identity where the coefficient of Φb is a sum of three
products. The point is, however, that we could have found identity (43) by a double elimination
procedure starting from the first orbit.
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For the fourth orbit, one can once more use a limiting process, this time starting from the

three series Xf
n , X

gh/a
n and X

aqn+1/fh
n . Again, after some considerable simplification resem-

bling the calculations given in Appendix II, one arrives at the following identity, symmetric in
{e, f, g, h}:
1

a

(

b S(
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a
,
bf

a
,
bg

a
,
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a
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a
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)
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a
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a
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a
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a
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a
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a
,
a

c
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b

c
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d

b
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q

a
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a
,
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,
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,
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eh
,
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fg
,
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,
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q

a
;
q

c
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q

b
,
q

d
,
q

e
,
q

f
,
q

g
,
q

h
) = 0.

(44)

In this case, one could obtain this identity be an elimination procedure using two identities from
the second orbit.

An element of the fifth orbit, finally, cannot be reached using the limit process which was
used for the previous four orbits. In this case, we have to rely on an elimination procedure. This
is, we eliminate Φc from the identities (41) and (43); this will result in an identity connecting
the series Φb, Φbc/a and Φaq/bc. From the structure of the identities (41) and (43) it is clear that
at first the coefficient of Φb will involve a sum of four S-products, that the coefficient of Φbc/a

will involve a sum of two S-products, while the coefficient of Φaq/bc will simply be an infinite
product. Since we started with two identities symmetric in {d, e, f, g, h} the resulting identity
too will have this desirable property. One obvious simplification can be made using (46), after
multiplying all coefficients by S(a/bc):

S(
c2

a
,
a

b
,
b2c

a
,

a
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) =

c

b
S(

bc2

a
,
a

c
,
b2

a
,

a

bc
) − c2

a
S(
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b2c2
,
b

c
, b, c, ).

This allows to reduce the sum of four S-products to a sum of three S-products. The resulting
identity is:

(

c3 S(
bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
,
d

c
,
e

c
,
f

c
,
g

c
,
h

c
,
b2

a
,
a

c
,
bc

a
, b) − b3 S(

cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
,
d

b
,
e

b
,
f

b
,
g

b
,
h

b
,
c2

a
,
a

b
,
bc

a
, c)

− ac S(
bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
,
cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
,
b

c
, b, c,

b2c2

a2
)
)

Φ(a; b; c, d, e, f, g, h)

+ c
(

a S(
bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
,
b2c

a
) − b2 S(

d

b
,
e

b
,
f

b
,
g

b
,
h

b
, c)

)

× (
aq

cd
,
aq

ce
,
aq

cf
,
aq

cg
,
aq

ch
, d, e, f, g, h,

c2

a
,
aq

c2
,
b

c
,
cq

b
,
bc

a
,
aq

bc
; q)∞ Φ(

b2

a
;
bc

a
; b,

bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
)

− a2q

bc
(
aq

de
,
aq

df
,
aq

dg
,
aq

dh
,
aq

ef
,
aq

eg
,
aq

eh
,
aq

fg
,
aq

fh
,
aq

gh
,
bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
; q)∞

× (
b2

a
,
aq

b2
,
c2

a
,
aq

c2
,
c

b
,
bq

c
,
a

c
,
cq

a
,
bc

a
,
aq

bc
, b, c,

bc

a
; q)∞ Φ(

aq

b2
;
aq

bc
;
q

b
,
aq

bd
,
aq

be
,
aq

bf
,
aq

bg
,
aq

bh
) = 0.

(45)
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Theorem 3 Following the notation and description of Theorem 2, all 27720 three term trans-
formations between the 56 different Φ-series are equivalent to one of the five prototypes (39),
(42), (43), (44) or (45).

5 Conclusion

In this article, we have studied Bailey’s transformations for both terminating and non-terminating
series. We have shown, by given an explicit description of the root system E6, that the invariance
group for the two term transformations for both the terminating balanced very-well-poised 10φ9

and the non-terminating Φ-series is the Weyl group of type E6, a fact maybe known to some in
the field but, to our knowledge, never written down explicitly.

Secondly, we have studied the group structure underlying the three term transformations for
Φ-series, which we have unravelled. The group involved is the Weyl group of type E7, again
shown using an explicit description of the appropriate root system. An identity involving three
Φ-series can be seen as connecting three sets (each of size 51840) of these series; they can be
seen as E6 cosets in E7. Between any three of these 56 cosets there exists a three term identity,
and we have shown that one needs five prototypes in order to describe each of the

(

56
3

)

= 27720
relationships. We have given an example of each of these prototypes, and we have given a table
indicating how to obtain all other three term transformations.

The explicit identification of the symmetry groups for the two term transformations and
for the three term transformations is of importance in itself. A significant consequence is the
unravelling of the five different types of three term transformations. Our study of the symmetry
groups and the three term transformations should also be of interest in the construction of hy-
pergeometric solutions to the q-Painlevé equations, where similar affine Weyl group symmetries
have been encountered [8, 7].

I Calculation of the orbits using GAP

We know that there are 56 cosets of E6 in E7, and our goal is to find out how many different
orbits there are when E7 acts on sets consisting of three cosets each; the number of such sets
is

(

56
3

)

= 27720. To this end, we will construct a permutation group P3 ⊆ S27720, and we will
use GAP to determine the different orbits when P3 acts pointwise on the set {1, 2, . . . , 27720};
the underlying idea being that each set {ci, cj , ck} consisting of three cosets is mapped onto an
element of {1, 2, . . . , 27720}. As an intermediate step however we first construct a permutation
group P2 ⊆ S56 that acts naturally on each of the 56 cosets, i.e. each cosets is assigned a number
between 1 and 56 and the group P2 then sends i to j if and only if the i-th coset is mapped
onto the j-th coset using the natural action of E7 on cosets. The GAP-code implementing this
strategy is the following:

E7 := Group(m0,m1,m2,m3,m4,m5,m6);

E6 := Group(m1,m2,m3,m4,m5,m6);

rc := RightCosets(E7,E6);;

P2 := Action(E7, rc, OnRight);;

comb := Combinations([1..56],3);;

P3 := Action(P2,comb,OnSets);;

orb := Orbits(P3,[1..27720],OnPoints);;
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Herein, m0 up to m6 are eight-dimensional matrices corresponding to the reflections r̃0 up to
r̃6. Examining the object orb yields that there are indeed five orbits, and that their sizes are as
given in Table 1. This is shown here:

gap> Size(orb);

5

gap> [Size(orb[1]), Size(orb[2]), Size(orb[3]), Size(orb[4]), Size(orb[5])];

[ 4032, 7560, 12096, 1512, 2520 ]

One sees that the order of the orbits given here is different from the order in Table 1; we have
chosen to sort the orbits in order of increasing complexity of their identities.

II Calculation of an element of the third orbit

During the course of the manipulations, we will need some product identities; these are known
and are already given in [3, Exercises 5.21 and 5.22], albeit in a different form, less suitable for
direct application of the identities. The identities are respectively:

S(a2, b2, c2, d2) = S(
bcd

a
,
acd

b
,
abd

c
,
abc

d
) − a2 S(

cd

ab
,
bd

ac
,
bc

ad
, abcd). (46)

and

S(a3, b3, c3, d3, e3, f3,
f3

e3
) = S(

bcdf2

a2e
,
acdf2

b2e
,
abdf2

c2e
,
abcf2

d2e
,
abcd

ef
, e3,

e2abcd

f
)

− f3

e3
S(

bcde2

a2f
,
acde2

b2f
,
abde2

c2f
,
abce2

d2f
,
abcd

ef
, f3,

f2abcd

e
)

+
abcd

ef
S(

a2ef

bcd
,
b2ef

acd
,
c2ef

abd
,
d2ef

abc
,
f3

e3
,
abcde2

f
,
abcdf2

e
).

(47)

We will also use the following trivial identities very frequently:

S(a) = S(q/a), and S(a) = −a S(aq).

To find a three term identity belonging to the third orbit, we start with the three series X
gh/a
n ,

Xqng
n and X

qn+1/h
n . Using the described limit process one arrives at an identity connecting w0,

w0∗ and w5 [10]; identification of coefficients yields:

(

S(b, d, e,
cf

a
,
cgh

aq
,
fgh

a
) − S(

bd

a
,
be

a
,
de

a
,
a

f
,
c

a
,
gh

a
)
)

× (
aq

bh
,
aq

ch
,
aq

dh
,
aq

eh
,
aq

fh
, f,

f

a
,
aq

f
; q)∞ Φ(

g2

a
;
gh

a
;
bg

a
,
cg

a
,
dg

a
,
eg

a
,
fg

a
, g)

+
(

S(
bde

a
,
bf

a
,
df

a
,
ef

a
,
fgh

a
,
cf

a
,
a

h
, h) − S(

fh

a
,
f

h
, b, d, e,

cf

a
,
cgh

aq
,
fgh

a
)

+ S(
fh

a
,
f

h
,
bd

a
,
be

a
,
de

a
,
a

f
,
c

a
,
gh

a
)
)

(
q

b
,
q

c
,
q

d
,
q

e
; q)∞ Φ(a; g; b, c, d, e, f, h)

+
aq

fgh
(f, g, h,

gh

a
,
aq

bc
,
aq

bd
,
aq

be
,
aq

bf
,
aq

cd
,
aq

ce
,
aq

cf
,
aq

de
,
aq

df
,
aq

ef
,
f

a
,
aq

f
,
bde

a
,

aq

bde
,
a

h
,
hq

a
; q)∞

× Φ(
q

a
;
q

h
;
q

b
,
q

c
,
q

d
,
q

e
,
q

f
,
q

g
) = 0.

(48)
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We will now rewrite identity (48) as a relation between Φb, Φc and Φaq/bc, where we keep a
twofold goal in mind; firstly we would like to reduce the sum of three S-products in the coefficient
of Φc to a sum (or difference) of two S-products, and secondly, we would like that the identity
shows symmetry in {d, e, f, g, h} in a trivial way. After applying the transformation:

a → c2

a
, b → cd

a
, c → ce

a
, d → cf

a
, e → cg

a
, f → ch

a
, g → c, h → bc

a
,

we will roughly perform the following steps:

• Use a double application of (46) on both the coefficients of Φb and Φc.

• Apply (47) on the resulting coefficient of Φc, which will then allow to use (46) once again.
This will realize the requested simplification.

• Apply (47) once more on the (now simplified) coefficient of Φc which will establish the
required symmetry in {d, e, f, g, h}.

The coefficient of Φb is

(

S(
cd

a
,
cf

a
,
cg

a
,
bce

aq
,
bch

a
,
eh

a
) − S(

fg

a
,
df

a
,
dg

a
,
c

h
, b,

e

c
)
)

(
aq

bd
,
aq

be
,
aq

bf
,
aq

bg
,
aq

bh
,
ch

a
,
h

c
,
cq

h
; q)∞, (49)

while those of Φc and Φaq/bc are:
(

(

S(
fg

a
,
df

a
,
dg

a
,
c

h
, b,

e

c
) − S(

cd

a
,
cf

a
,
cg

a
,
bce

aq
,
bch

a
,
eh

a
)
)

S(
h

b
,
bh

a
)

+ S(
beh

aq
,
dh

a
,
eh

a
,
fh

a
,
gh

a
,
bch

a
,
c

b
,
bc

a
)
)

(
aq

cd
,
aq

ce
,
aq

cf
,
aq

cg
; q)∞,

(50)

respectively

aq

bch
(
ch

a
,
h

c
,
cq

h
,
beh

aq
,
aq2

beh
,
bc

a
, b, c,

aq

de
,
aq

df
,
aq

dg
,
aq

dh
,
aq

ef
,
aq

eg
,
aq

eh
,
aq

fg
,
aq

fh
,
aq

gh
,
c

b
,
bq

c
; q)∞ (51)

One sees that coefficient (51) is symmetric in {d, e, f, g, h} but for the factors (ch/a; q)∞,
S(h/c) and S(beh/aq). Furthermore, one notices that the first two of these factors also ap-
pear in (49). It is obvious that (50) lacks the product (aq/ch; q)∞ to make its common factor
symmetric. Our first goal is now to rewrite the difference in (49) so that it contains the factor
S(beh/aq). In a later stage we would like to extract S(ch/a, h/c) from (50) as well.

Multiply all coefficients by S(a/c2) and apply the following double application of (46) twice,
i.e. on both the coefficient of Φb and Φc:

S(
fg

a
,
df

a
,
dg

a
,

a

c2
,
c

h
, b,

e

c
) = − c

h
S(

d

c
,
e

c
,
f

c
,
g

c
,
h

c
, b,

beh

aq
) − a

c2
S(

cd

a
,
cf

a
,
cg

a
,
dfg

ac
,
c

h
, b,

e

c
)

= − c

h
S(

d

c
,
e

c
,
f

c
,
g

c
,
h

c
, b,

beh

aq
) + S(

cd

a
,
cf

a
,
cg

a
,

a

c2
,
eh

a
,
bch

a
,
bce

aq
) +

a

ch
S(

cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
,
bc2

a
,
beh

aq
).

First, we applied (46) on S(fg/a, df/a, dg/a, a/c2) and then on S(dfg/ac, c/h, b, e/c). After this
a factor S(beh/aq) can be cancelled out from each of the three coefficients, and the coefficient
of Φc is:

(

( a

ch
S(

cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
,
bc2

a
) − c

h
S(

d

c
,
e

c
,
f

c
,
g

c
,
h

c
, b)

)

S(
h

b
,
bh

a
)

+ S(
dh

a
,
eh

a
,
fh

a
,
gh

a
,
bch

a
,
c

b
,
bc

a
,

a

c2
)
)

(
aq

cd
,
aq

ce
,
aq

cf
,
aq

cg
; q)∞.
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Multiply all coefficients by S(bc/h)1 and apply (47) on the coefficient of Φc:

S(
d

cq
,
e

c
,
f

c
,
g

c
,
h

c
, b,

bc

h
) = −bcd

aq
S(

bcd

a
,
bce

a
,
bcf

a
,
bcg

a
,

a

ch
,
h

c
,

a

c2
)

− d

cq
S(

dh

a
,
eh

a
,
fh

a
,
gh

a
, b,

a

c2
,
bc2

a
) − ad

c3q
S(

cd

a
,
ce

a
,
cf

a
,
cg

a
,
ch

a
,
bc

h
,
bc2

a
).

At this point the coefficient of Φc is:

(
aq

cd
,
aq

ce
,
aq

cf
,
aq

cg
,

a

c2
,
c2q

a
; q)∞ ×

(

−bc3

ah
S(

bcd

a
,
bce

a
,
bcf

a
,
bcg

a
,

a

ch
,
h

c
,
h

b
,
bh

a
)

+ S(
dh

a
,
eh

a
,
fh

a
,
gh

a
)
(

S(
bch

a
,
c

b
,
bc

a
,
bc

h
) − c

h
S(b,

bc2

a
,
h

b
,
bh

a
)
)

)

.

It is now clear that one has to apply (46) again:

S(
bch

a
,
c

b
,
bc

a
,
bc

h
) =

c2

a
S(

a

ch
, c,

b2c

a
,
h

c
) +

c

h
S(b,

bc2

a
,
h

b
,
bh

a
)

in order to reduce the sum of three S-products. At this point S(a/ch, h/c) can be factored
out of the difference; all three coefficients now have (h/c, qc/h, ch/a; q)∞ as a factor, and the
coefficient at hand becomes:

(

−bc3

ah
S(

bcd

a
,
bce

a
,
bcf

a
,
bcg

a
,
h

b
,
bh

a
) +

c2

a
S(

dh

a
,
eh

a
,
fh

a
,
gh

a
, c,

b2c

a
)
)

× (
aq

cd
,
aq

ce
,
aq

cf
,
aq

cg
,
aq

ch
,

a

c2
,
c2q

a
; q)∞.

Finally, we apply (47) once again, after multiplying each coefficient by S(b2/a), to make the
symmetry in {d, e, f, g, h} clear:

S(
dhq

a
,
eh

a
,
fh

a
,
gh

a
, c,

b2c

a
,
b2

a
) =

b2

dh
S(

d

b
,
e

b
,
f

b
,
g

b
,
h

b
, c,

bc

h
)

− a

dh
S(

bd

a
,
be

a
,
bf

a
,
bg

a
,
bh

a
,
b2c

a
,
bc

h
) − abc

dh2
S(

bcd

a
,
bce

a
,
bcf

a
,
bcg

a
,
h

b
,
bh

a
,
b2

a
).

After some final trivial simplifications the identity (48) finally becomes the already given
identity (43).
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