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Abstract

In this short communication, which is self-contained, we show that the set of
24 Kummer solutions of the classical hypergeometric differential equation has an
elegant, simple group theoretic structure associated with the symmetries of a cube;
or, in other words, that the underlying symmetry group is the symmetric group S4.
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E.E. Kummer [5] showed that the second order ordinary differential equation, charac-

terized by three regular singular points at 0, 1 and ∞, i.e.

z(1 − z)u′′(z) + [c − (a + b + 1)z]u′(z) − (ab)u(z) = 0, (1)

with a, b and c real or complex parameters, has one solution as the hypergeometric series:
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where (a)n is the classical Pochhammer symbol:

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
, n > 0,

= 1, n = 0,

and that (2) belongs to a set of 24 functions. Kummer published a set of 6 distinct

solutions of the hypergeometric equation. Each of these six solutions has four forms,
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related to one another by Euler’s transformations, giving 24 forms in total [6, 2, 9]. Often,

these 24 forms are referred to as the Kummer solutions of the hypergeometric equation.

In many classical textbooks these 24 solutions are given as a list. The fact that these

24 solutions are related to one another by a finite group of transformations was observed

more recently; we know of two such references: in an article by Prosser [8], and in a

book [4, pp. 36-40]. In none of these references, however, the finite group of order 24

(or, by a natural extension, of order 48) is characterized. In this short communication we

show that the finite group relating the 24 Kummer solutions is the group of (rotational)

symmetries of the cube, which is isomorphic to the symmetric group S4. We shall not

refer to any of the analytic properties of the solutions, since these have been discussed

extensively in many books.

The series in (2) converges for |z| < 1, and the hypergeometric function F (a, b; c; z) is

the analytic continuation of this series in C \ [1, +∞). The hypergeometric function has

the obvious symmetry, that we shall refer to as the mirror symmetry:

F (a, b; c; z) = F (b, a; c; z). (3)

Furthermore, the following transformations due to Euler and/or Pfaff [1, p. 68] are valid:

F (a, b; c; z) = (1 − z)−aF (a, c − b; c; z/(z − 1)),

F (a, b; c; z) = (1 − z)−bF (c − a, b; c; z/(z − 1)), (4)

F (a, b; c; z) = (1 − z)c−a−bF (c − a, c − b; c; z).

Thus, the solution F (a, b; c; z) of (1) has four different forms, (2) and (4), or eight different

forms if one includes the mirror symmetries (3). For this reason, Kummer’s six solutions

of (1) become a list of 24 solutions (or 48 solutions if one includes the mirror symmetries).

Kummer’s 24 solutions are listed in Table 1 (column 3). The 24 solutions are grouped

into six sets of four; the first element of each set refers to one of the six solutions given by

Kummer, the remaining elements in the set follow by applying Euler’s transformations (4).

It was already established in [8, 4] that these 24 solutions are related to one another

by a finite group of order 24 (or, if one includes the mirror symmetries, by a finite group

of order 48). Here we shall show that this group of order 24 is the group of (rotation)
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Table 1: Kummer’s 24 solutions
i Permutation Function αi

1 ( ) F (a, b; c; z) 0
(2, 4, 5, 3) (1 − z)−bF (b, c − a; c; z/(z − 1))
(2, 5)(3, 4) (1 − z)c−a−bF (c − a, c − b; c; z)
(2, 3, 5, 4) (1 − z)−aF (c − b, a; c; z/(z − 1))

2 (1, 2, 6, 5) z1−cF (1 + a − c, 1 + b − c; 1 + a + b − c; 1 − z) (a + b)/4 − 1/12
(1, 2)(3, 4)(5, 6) F (b, a; 1 + a + b − c; 1 − z)
(1, 2, 3)(4, 6, 5) z−aF (a, 1 + a − c; 1 + a + b − c; 1 − 1/z)
(1, 2, 4)(3, 6, 5) z−bF (1 + b − c, b; 1 + a + b − c; 1 − 1/z)

3 (1, 3, 6, 4) z−aF (1 + a − c, a; 1 + a − b; 1/z) (3a + b − c)/4 + 1/12
(1, 3)(2, 5)(4, 6) zb−c(1 − z)c−a−bF (c − b, 1 − b; 1 + a − b; 1/z)
(1, 3, 2)(4, 5, 6) (1 − z)−aF (a, c − b; 1 + a − b; 1/(1 − z))
(1, 3, 5)(2, 6, 4) z1−c(1 − z)c−a−1F (1 − b, 1 + a − c; 1 + a − b; 1/(1 − z))

4 (1, 4, 6, 3) z−bF (b, 1 + b − c; 1 + b − a; 1/z) (a + 3b − c)/4 + 1/12
(1, 4)(2, 5)(3, 6) za−c(1 − z)c−a−bF (1 − a, c − a; 1 + b − a; 1/z)
(1, 4, 2)(3, 5, 6) (1 − z)−bF (c − a, b; 1 + b − a; 1/(1 − z))
(1, 4, 5)(2, 6, 3) z1−c(1 − z)c−b−1F (1 + b − c, 1 − a; 1 + b − a; 1/(1 − z))

5 (1, 5, 6, 2) (1 − z)c−a−bF (c − b, c − a; 1 + c − a − b; 1 − z) −(a + b − 2c)/4 − 1/12
(1, 5)(2, 6)(3, 4) z1−c(1 − z)c−a−bF (1 − a, 1 − b; 1 + c − a − b; 1 − z)
(1, 5, 3)(2, 4, 6) za−c(1 − z)c−a−bF (c − a, 1 − a; 1 + c − a − b; 1 − 1/z)
(1, 5, 4)(2, 3, 6) zb−c(1 − z)c−a−bF (1 − b, c − b; 1 + c − a − b; 1 − 1/z)

6 (1, 6)(2, 5) z1−c(1 − z)c−a−bF (1 − b, 1 − a; 2 − c; z) c/2 − 1/2
(1, 6)(3, 4) z1−cF (1 + b − c, 1 + a − c; 2 − c; z)

(1, 6)(2, 4)(3, 5) z1−c(1 − z)c−b−1F (1 − a, 1 + b − c; 2 − c; z/(z − 1))
(1, 6)(2, 3)(4, 5) z1−c(1 − z)c−a−1F (1 + a − c, 1 − b; 2 − c; z/(z − 1))

symmetries of the cube, also known as the “direct symmetry group of the cube”, or as

the octahedral group O [7]. The group of order 48 is the complete group of (rotation and

reflection) symmetries of the cube, known also as the complete symmetry group of the

cube Oh [7].

In order to describe the group O, consider a cube of which the faces are labelled by

1, 2, 3, 4, 5 and 6, in such a way that the sum of the labels of opposite faces is 7 (like the

markings on a dice), see Figure 1. Consider the original configuration of the cube, given in

Figure 2(a). Each rotation symmetry of the cube, i.e. each element of O, is then described

by a particular permutation of the faces of the cube. For example, a rotation over −π/2

among the axis passing through the midpoints of faces 1 and 6 yields the configuration in

Figure 2(b). Clearly, the transformation from (a) to (b) is described by the permutation

(

1 2 3 4 5 6
1 4 2 5 3 6

)

,
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or, in cycle notation, (2, 4, 5, 3). Similarly, Figure 2(c) describes a rotation through the

axis passing through the midpoints of faces 3 and 4; the corresponding permutation of the

faces is given by (1, 2, 6, 5). The group O is thus a subgroup of the symmetric group S6.

Its 24 elements are given in the second column of Table 1. It is easy to see that O is the

subgroup of S6 generated by the two elements g1 = (2, 4, 5, 3) and g2 = (1, 2, 6, 5). Observe

also that O is isomorphic to the symmetric group S4. This can be seen by considering

the four main diagonals of the cube: every symmetry is then uniquely described by a

permutation of these four diagonals (see, e.g. [3]).

Figure 1: The cube, with top face 1, bottom face 6, front face 2, back face 5, left face 3
and right face 4.
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Figure 2: The cube, and two of its rotation symmetries
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Let xi (i = 1, . . . , 6) be six variables satisfying the constraint

6
∑

i=1

xi = 0 (5)

and consider the following function:

f(x) = F (
1

2
+ x1 + x2 + x3,

1

2
+ x1 + x2 + x4; 1 + x1 − x6;−

x1 + x6

x3 + x4

). (6)
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Identify the four arguments of F with a, b, c and z; solving this system with respect to

the xi leaves one degree of freedom (since there are 5 independent xi’s). Consider any

element g of O; the action of g on x is determined by permuting the indices of the xi. So,

acting with g1 = (2, 4, 5, 3) on f(x) gives

f(g1 · x) = F (
1

2
+ x1 + x4 + x2,

1

2
+ x1 + x4 + x5; 1 + x1 − x6;−

x1 + x6

x2 + x5

), (7)

and this is equal to F (b, c − a; c; z/(z − 1)) when the original f(x) is identified with

F (a, b; c; z). Similarly, one finds with g2 = (1, 2, 6, 5) that f(g2 · x) = F (1 + a − c, 1 +

b − c; 1 + a + b − c; 1 − z). For each element g of O, the corresponding function f(g · x)

is given in the third column of Table 1 (only the hypergeometric function; not yet the

powers of z and 1 − z). Thus with every element of O one of the 24 Kummer solutions

is associated. One can do even better and reproduce the complete solution, including

the power functions in front of the hypergeometric functions (even though this is slightly

more technical). For this purpose, consider

C(x) = (−1)
x1−x6

4
+

1

12 (x1 + x6)
x1−x6

2
+

1

6 (x2 + x5)
x2−x5

2
+

1

6 (−x3 − x4)
x1−x6

2
+

x2−x5

2
+

1

3 . (8)

The action of any element g ∈ O is again by permutation of the indices, as follows:

g : f(x) →
C(g · x)

C(x)
f(g · x). (9)

It is now easy to verify that the 24 elements of O yield the 24 solutions given in Table 1.

For completeness, we should mention that (9) gives in fact a constant times the Kummer

solution, but this constant is irrelevant. Here, this constant is (−1)αi , where αi is also

given in Table 1.

As a first remark, note that O does not include the mirror symmetries. If one extends

O to Oh by including reflection symmetries of the cube, one gets a group of order 48.

This can be done by adding the additional generator g3 = (3, 4) to g1 and g2. In Figure 1

one can see that g3 corresponds to a reflection about a plane. In (6), the permutation

(3, 4) corresponds to the mirror symmetry (3). One can verify that the 48 elements of Oh

yield the 24 Kummer solutions given in Table 1 plus their 24 mirror symmetries.

Secondly, note that the subgroup of O consisting of those symmetries that leave the

top and bottom face (with labels 1 and 6) invariant is a cyclic group of order 4. This

group describes the four solutions related to one another by Euler’s transformations.
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The fact that O is the symmetry group of the Kummer solutions can be best under-

stood from the hypergeometric equation. It is well known that this equation is related to

the Riemann equation [10, Chapter XIV]:

u′′(z) +

(

1 − α − α′

z − za

+
1 − β − β ′

z − zb

+
1 − γ − γ′

z − zc

)

u′(z) +

(

αα′(za − zb)(za − zc)

z − za

+
ββ ′(zb − zc)(zb − za)

z − zb

+
γγ′(zc − za)(zc − zb)

z − zc

)

×
u(z)

(z − za)(z − zb)(z − zc)
= 0, (10)

where α+α′ +β +β ′ +γ +γ′ = 1. Putting the regular singularities (za, zb, zc) = (0,∞, 1)

and (α, α′), (β, β ′), (γ, γ′) to (0, 1 − c), (a, b), (0, c − a − b), one obtains (1).

A solution of (10) is given by:

(

z − za

z − zb

)α (

z − zc

z − zb

)γ

F

(

α + β + γ, α + β ′ + γ; 1 + α − α′;
(zc − zb)(z − za)

(zc − za)(z − zb)

)

. (11)

In total, one can list 24 such solutions, see e.g. [10, p. 284], or – including the trivial

mirror symmetries – 48 solutions. The 48 solutions arise from the 3! = 6 permutations

of the singularities (za, zb, zc) and the 23 = 8 transpositions of the primed and unprimed

parameters (α, α′), (β, β ′), (γ, γ′), in the following way. Consider again the cube, with

opposite faces now being labelled by α and α′, β and β ′, γ and γ′. The axis passing

through the midpoints of faces α and α′ is labelled by za, and similarly for zb and zc, see

Figure 3.

Figure 3: The cube, with labels of faces and axes referring to the Riemann equation.
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The 24 (or, including mirror symmetries, 48) solutions of (10), as given e.g. in [10], are

now in an obvious way related to the symmetries of the cube. Here, this follows immedi-

ately from the fact that each symmetry of the cube in Figure 3 leaves the equation (10)

invariant.
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