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Abstract

The Clement or Sylvester-Kac matrix is a tridiagonal matrix with zero diagonal and simple integer entries.
Its spectrum is known explicitly and consists of integers which makes it a useful test matrix for numerical
eigenvalue computations. We consider a new class of appealing two-parameter extensions of this matrix
which have the same simple structure and whose eigenvalues are also given explicitly by a simple closed
form expression. The aim of this paper is to present in an accessible form these new matrices and exam-
ine some numerical results regarding the use of these extensions as test matrices for numerical eigenvalue
computations.
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1. Introduction

For a positive integer n, consider the (n+ 1)× (n+ 1) matrix Cn whose non-zero entries are given by

ck,k+1 = cn+2−k,n+1−k = k for k ∈ {1, . . . , n}, (1)

or explicitly, the matrix

Cn =



0 1
n 0 2

n− 1 0 3
. . .

. . .
. . .

3 0 n− 1
2 0 n

1 0


. (2)

This matrix appears in the literature under several names: the Sylvester-Kac matrix, the Kac matrix, the
Clement matrix, etc. It was already considered by Sylvester [19], used by M. Kac in some of his seminal
work [13], proposed by Clement as a test matrix for eigenvalue computations [5], and it continues to attract
attention [20, 3, 2].

The matrix Cn has a simple structure, it is tridiagonal with zero diagonal and has integer entries. The
main property of Cn is that its spectrum is known explicitly and is remarkably simple; the eigenvalues of
Cn are the integers

− n,−n+ 2,−n+ 4, . . . , n− 2, n. (3)
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The n + 1 distinct eigenvalues are symmetric around zero, equidistant and range from −n to n. Hence for
even n, they are n+ 1 consecutive even integers, while for odd n they are n+ 1 consecutive odd integers.

Remark 1. The eigenvectors of the matrix Cn are also known, they can be expressed in terms of the
Krawtchouk orthogonal polynomials [16].

As the eigenvalues of (2) are known explicitly and because of the elegant and simple structure of both ma-
trix and spectrum, Cn is a standard test matrix for numerical eigenvalue computations (see e.g. example 7.10
in [9]), and part of some standard test matrix toolboxes (e.g. [10]). In MATLAB, Cn can be produced from
the gallery of test matrices using gallery(‘clement’,n+1). The Clement matrix also appears in several
applications, e.g. as the transition matrix of a Markov chain [1], or in biogeography [11].

General tridiagonal matrices with closed form eigenvalues are rare, most examples being just variations
of the tridiagonal matrix with fixed constants a, b and c on the subdiagonal, diagonal and superdiagonal
respectively [6, 21]. In this paper we present appealing two-parameter extensions of Cn with closed form
eigenvalues. These extensions first appeared in a different form in the paper [17] as a special case of a class
of matrices related to orthogonal polynomials. Special cases of these matrices were originally encountered
in the context of finite quantum oscillator models (e.g. [12]) and their classification led to the construction
of new interesting models [18]. Here, we feature them in a simpler, more accessible form which immedi-
ately illustrates their relation with Cn. Moreover, we consider some specific parameter values which yield
interesting special cases.

Another purpose of this paper is to demonstrate by means of some numerical experiments the use of
these extensions of Cn as test matrices for numerical eigenvalue computations. Hereto, we examine how
accurately the inherent MATLAB function eig() is able to compute the eigenvalues of our test matrices
compared to the exact known eigenvalues. An interesting feature of the new class of test matrices is that
they include matrices with double eigenvalues for specific parameter values.

In section 2 we present in an accessible form the two-parameter extensions of the Clement matrix. We
state the explicit and rather simple form of their eigenvalues which makes them potentially interesting
examples of eigenvalue test matrices. In section 3 we consider some specific parameter values for the new
classes of test matrices which yield interesting special cases. In section 4 we display some numerical results
regarding the use of these extensions as test matrices for numerical eigenvalue computations. This is done
by looking at the relative error when the exact known eigenvalues are compared with those computed using
the inherent MATLAB function eig().

2. New test matrices

Now, we consider the following extension of the matrix (2), by generalizing its entries (1) to:

hk,k+1 =

{
k if k even

k + a if k odd
and hn+2−k,n+1−k =

{
k if k even

k + b if k odd
(4)

where we introduce two parameters a and b (having a priori no restrictions). We will denote this extension
by Hn(a, b). For n even, the matrix Hn(a, b) is given by (5). Note in particular that the first entry of the
second row is h2,1 = n and contains no parameter, and the same for hn,n+1 = n. For odd n, the matrix (7)
has entries h2,1 = n+ b and hn,n+1 = n+ a which now do contain parameters, contrary to the even case.

The reason for considering this extension is that, similar to (3) for Cn, we also have an explicit expression
for the spectrum of Hn(a, b), namely:
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Theorem 2. For n even, say n = 2m, the 2m+ 1 eigenvalues of

Hn(a, b) =



0 1 + a
n 0 2

n− 1 + b 0 3 + a
. . .

. . .
. . .

3 + b 0 n− 1 + a
2 0 n

1 + b 0


(5)

are given by
0,±

√
(2k)(2k + a+ b) for k ∈ {1, . . . ,m}. (6)

Theorem 3. For n odd, say n = 2m+ 1, the 2m+ 2 eigenvalues of

Hn(a, b) =



0 1 + a
n+ b 0 2

n− 1 0 3 + a
. . .

. . .
. . .

3 + b 0 n− 1
2 0 n+ a

1 + b 0


(7)

are given by
±
√

(2k + 1 + a)(2k + 1 + b) for k ∈ {0, . . . ,m} (8)

We will prove the results for the symmetrized form of these matrices. We briefly elaborate on this.
Consider a (n+ 1)× (n+ 1) tridiagonal matrix with zero diagonal

A =



0 b1 0

c1 0 b2
. . .

0 c2 0
. . . 0

. . .
. . .

. . . bn
0 cn 0


. (9)

It is clear that the characteristic polynomial of A depends on the products bici (i = 1, . . . , n) only, and
not on bi and ci separately. Therefore, if all the products bici are positive, the eigenvalues of A or of its
symmetrized form

A′ =



0
√
b1c1 0

√
b1c1 0

√
b2c2

. . .

0
√
b2c2 0

. . . 0
. . .

. . .
. . .

√
bncn

0
√
bncn 0


(10)

are the same. The eigenvectors of A′ are those of A after multiplication by a diagonal matrix (the diagonal
matrix that is used in the similarity transformation from A to A′).

Using this procedure, the aforementioned matrices can be made symmetric. For Cn the entries (1) can
be symmetrized to

c̃k,k+1 = c̃k+1,k =
√
k(n+ 1− k) for k ∈ {1, . . . , n}.
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This matrix is also implemented in MATLAB, namely as gallery(’clement’,n+1,1). For the extension
Hn(a, b), the entries of its symmetric form H̃n(a, b) are

h̃ek,k+1 = h̃ek+1,k =

{√
k(n+ 1− k + b) if k even√
(k + a)(n+ 1− k) if k odd

for n even and k ∈ {1, . . . , n}, while for n odd we have

h̃ok,k+1 = h̃ok+1,k =

{√
k(n+ 1− k) if k even√
(k + a)(n+ 1− k + b) if k odd

for k ∈ {1, . . . , n}.
The above theorems are now proved using a property of the dual Hahn polynomials, which are defined

in terms of the generalized hypergeometric series as follows [14]

Rn(λ(x); γ, δ,N) = 3F2

(
−x, x+ γ + δ + 1,−n

γ + 1,−N
; 1

)
. (11)

The dual Hahn polynomials satisfy a discrete orthogonality relation, see [17, (2.7)], and we denote the related
orthonormal functions as R̃n(λ(x); γ, δ,N).

Lemma 1. The orthonormal dual Hahn functions satisfy the following pairs of recurrence relations:√
(n+ 1 + γ)(N − n)R̃n(λ(x); γ, δ,N)−

√
(n+ 1)(N − n+ δ)R̃n+1(λ(x); γ, δ,N)

=
√
x(x+ γ + δ + 1)R̃n(λ(x− 1); γ + 1, δ + 1, N − 1), (12)

−
√

(n+ 1)(N − n+ δ)R̃n(λ(x− 1); γ + 1, δ + 1, N − 1) +
√

(n+ 2 + γ)(N − n− 1)

× R̃n+1(λ(x− 1); γ + 1, δ + 1, N − 1) =
√
x(x+ γ + δ + 1)R̃n+1(λ(x); γ, δ,N) (13)

and √
(n+ 1 + γ)(N − n+ δ)R̃n(λ(x); γ, δ,N)−

√
(n+ 1)(N − n)R̃n+1(λ(x); γ, δ,N)

=
√

(x+ γ + 1)(x+ δ)R̃n(λ(x); γ + 1, δ − 1, N), (14)

−
√

(n+ 1)(N − n)R̃n(λ(x); γ + 1, δ − 1, N) +
√

(n+ 2 + γ)(N − n+ δ − 1)

× R̃n+1(λ(x); γ + 1, δ − 1, N) =
√

(x+ γ + 1)(x+ δ)R̃n+1(λ(x); γ, δ,N). (15)

Proof.
The first two relations follow from the case dual Hahn I of [17, Theorem 1] multiplied by the square root

of the weight function and norm squared, and similarly the last two from the case dual Hahn III.
�

Proof of Theorem 2.
Let n be an even integer, say n = 2m, and let a and b be real numbers greater than −1. Take k ∈

{1, . . . ,m} and let U±k = (u1, . . . , un+1)T be the column vector with entries

ul =

{
(−1)(l−1)/2R̃(l−1)/2(λ(k); a−1

2 , b−12 ,m) if l odd

±(−1)l/2−1R̃l/2−1(λ(k − 1); a+1
2 , b+1

2 ,m− 1) if l even.

We calculate the entries of the vector H̃n(a, b)U±k to be

(H̃n(a, b)U±k)l = h̃el,l−1ul−1 + h̃el,l+1ul+1.
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For l even, using the recurrence relation (12) with the appropriate parameter values substituted in the
orthonormal dual Hahn functions, this becomes

(H̃n(a, b)U±k)l =
√

(l − 1 + a)(2m+ 2− l)(−1)l/2−1R̃l/2−1(λ(k); a−1
2 , b−12 ,m)

+
√
l(2m+ 1− l + b)(−1)l/2R̃l/2(λ(k); a−1

2 , b−12 ,m)

= 2
√
k(k + a

2 + b
2 )(−1)l/2−1R̃l/2−1(λ(k − 1); a+1

2 , b+1
2 ,m− 1)

= ±
√

(2k)(2k + a+ b) ul.

Similarly, for l odd we have, using now the recurrence relation (13),

(H̃n(a, b)U±k)l = ±
√

(l − 1)(2m+ 2− l + b)(−1)(l−3)/2R̃(l−3)/2(λ(k − 1); a+1
2 , b+1

2 ,m− 1)

±
√

(l + a)(2m+ 1− l)(−1)(l−1)/2R̃(l−1)/2(λ(k − 1); a+1
2 , b+1

2 ,m− 1)

= ± 2
√
k(k + a

2 + b
2 )(−1)(l−1)/2R̃(l−1)/2(λ(k); a−1

2 , b−12 ,m)

= ±
√

(2k)(2k + a+ b) ul.

Finally, define U0 = (u1, . . . , un+1)T as the column vector with entries

ul =

{
(−1)(l−1)/2R̃(l−1)/2(λ(0); a−1

2 , b−12 ,m) if l odd

0 if l even.

Putting x = 0 in the right-hand side of (12), it is clear that the entries of the vector H̃n(a, b)U0 are all zero.
This shows that the eigenvalues of H̃n(a, b) are given by (6), so its characteristic polynomial must be

λ

m∏
k=1

(
λ2 − (2k)(2k + a+ b)

)
,

which allows us to extend the result to arbitrary parameters a and b.
�

Theorem 3 is proved in the same way, using now relations (14) and (15).

3. Special cases

We now consider some particular cases where the eigenvalues as given in Theorem 2 and Theorem 3
reduce to integers or have a special form.

For the specific values a = 0 and b = 0, it is clear that Hn(0, 0) reduces to Cn for both even and odd
values of n. As expected, the explicit formulas for the eigenvalues (6) and (8) also reduce to (3).

Next, we look at n even. In (6), we see that the square roots cancel if we take b = −a. For this choice
of parameters, the eigenvalues of Hn(a,−a) are even integers, which are precisely the same eigenvalues as
those of the Clement matrix (3). However, the matrix

Hn(a,−a) =



0 1 + a
n 0 2

n− 1− a 0 3 + a
. . .

. . .
. . .

3− a 0 n− 1 + a
2 0 n

1− a 0


(16)
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still contains a parameter a which does not affect its eigenvalues. So for every even integer n, (16) gives
rise to a one-parameter family of tridiagonal matrices with zero diagonal whose eigenvalues are given by
(3). This property is used explicitly in [18] to construct a finite oscillator model with equidistant position
spectrum.

For n odd, say n = 2m + 1, the square roots in (8) cancel if we take b = a. Substituting a for b, the
matrix (7) becomes

Hn(a, a) =



0 1 + a
n+ a 0 2

n− 1 0 3 + a
. . .

. . .
. . .

3 + a 0 n− 1
2 0 n+ a

1 + a 0


, (17)

while for the eigenvalues we get

± |2k + 1 + a| for k ∈ {0, . . . ,m}. (18)

These are integers for integer a and real numbers for real a. We see that for a = 0, (18) reduces to the
eigenvalues (3), but then the matrix is precisely Cn. Non-zero values for a induce a shift in the eigenvalues,
away from zero for positive a and towards zero for −1 < a < 0. However, for −n < a < −1 the positive and
negative (when a > −1) eigenvalues get mingled. Moreover, for a equal to a negative integer ranging from
−1 to −n, we see that there are double eigenvalues. A maximum number of double eigenvalues occurs for
a = −m− 1, then each of the values

2k −m for k ∈ {0, . . . ,m},

is a double eigenvalue. By choosing a nearly equal to a negative integer, we can produce a matrix with
nearly, but not exactly, equal eigenvalues. For a < −n, all positive eigenvalues (when a > −1) become
negative and vice versa. Finally, for the special value a = −n − 1, the eigenvalues (18) also reduce to (3)
while the matrix becomes

Hn(−n− 1,−n− 1) =



0 −n
−1 0 2

n− 1 0 2− n
−3 0 4

. . .
. . .

. . .

4 0 −3
2− n 0 n− 1

2 0 −1
−n 0


.

This is up to a similarity transformation, as explained at the end of section 2, the matrix Cn.
Also for n odd, another peculiar case occurs when b = a = 1. Scaling by one half we then have the

matrix

1

2
H2m+1(1, 1) =



0 1
m+ 1 0 1

m 0 2
m 0 2

. . .
. . .

. . .

2 0 m
2 0 m

1 0 m+ 1
1 0


. (19)
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with eigenvalues, by (8),
±(k + 1) for k ∈ {0, . . . ,m}.

The even equivalent of this matrix,

1

2
H2m(1, 1) =



0 1
m 0 1

m 0 2
m− 1 0 2

. . .
. . .

. . .

2 0 m− 1
2 0 m

1 0 m
1 0


, (20)

does not have integer spectrum, but instead, using the expression (6), has as eigenvalues

0,±
√
k(k + 1) for k ∈ {1, . . . ,m}.

We have reviewed the special cases where the explicit formulas for the eigenvalues (6) and (8) which
generally contain square roots, reduce to integers. In the following, we will use the notation

Hn(a) =

{
Hn(a,−a) if n even

Hn(a, a) if n odd
(21)

to denote these special cases.

4. Numerical results

We now examine some numerical results regarding the use of the extensions of the previous sections as
test matrices for numerical eigenvalue computations. This is done by comparing the exact known eigenvalues
of Hn(a, b) with those computed using the inherent MATLAB function eig(). These numerical experiments
are included merely to illustrate the potential use of the matrices Hn(a, b) as eigenvalue test matrices, and
to examine the sensitivity of the computed eigenvalues on the new parameters.

A measure for the accuracy of the computed eigenvalues is the relative error

‖x− x∗‖∞
‖x‖∞

,

where x is the vector of eigenvalues as ordered list (by real part) and x∗ its approximation.
Recall that both for n odd and n even, for the special case Hn(a) the square roots in the expressions

for the eigenvalues cancel, yielding real eigenvalues for every real value of the parameter a. In the general
case, the eigenvalues (6) are real when a + b > −2 and those in (8) are real when a > −1 and b > −1 or
a < −n and b < −n. A first remark is that when we compute the spectrum of Cn using eig() in MATLAB,
eigenvalues with imaginary parts are found when n exceeds 116, but not for lower values of n. Therefore,
for the extensions, we have chosen n = 100 and n = 101 (for the even and the odd case respectively) for
most of our tests, as this gives reasonably large matrices but is below the bound of 116. We will see that in
this case for the extensions, the eig() function in MATLAB does find eigenvalues with imaginary part for
certain parameter values.

We first consider the special case (21). For n even, Hn(a) has the eigenvalues (3), which are integers
independent of the parameter a. In figure 1, we have depicted the largest imaginary part of the computed
eigenvalues for the matrix Hn(a) for n = 10 and n = 100 at different values for the parameter a. We see that
outside a central region imaginary parts are found. For example, for H100(a), MATLAB finds eigenvalues
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with imaginary parts when a > 21 or a < −2.5. Moreover, the relative error for the computed eigenvalues,
shown in figures 2, increases as a approaches the region where eigenvalues with imaginary parts are found.
In this latter region, the size of the relative error is of course due to the presence of imaginary parts which
do not occur in the theoretical exact expression for the eigenvalues. As a reference, the relative error for
C100 is 3.6612× 10−5, while that for H100(20) is 1.1471× 10−3 and 4.9444× 10−3 for H100(20.97).

For n odd, Hn(a) has the eigenvalues (18), which dependent on the parameter a but are real for every
real number a. Nevertheless, even for a small dimension such as n = 11, eigenvalues with (small) imaginary
parts are found when a equals −2,−4,−6 or −8. This produces a relative error of order 10−8, while for
other values of a (and for the Clement matrix) the relative error is of order 10−15, near machine precision.
For H101(a), the largest imaginary part of the computed eigenvalues is portrayed in figure 3, together with
the relative error. MATLAB finds eigenvalues with imaginary parts when −100 ≤ a < −1.5. These findings
correspond to the region where double eigenvalues occur as mentioned in the previous section. The relative
error is largest around this region and is several orders smaller when moving away from this region. As a
reference, the relative error for C101 is 3.6881×10−5, while that for H101(−1.75) is 1.4840×10−3. Finally, we
note that eigenvalues with imaginary parts also appear when a is extremely large, i.e. a > 1010 or a < −1010.

Next, we consider the general setting where we have two parameters a and b, starting with the case
where n is even. Although the two parameters a and b occur symmetric in (6) and in the matrix (5) itself,
there are some disparities in the numerical results. From the expression for the eigenvalues (6) we see that
they are real when the parameters satisfy a+ b > −2. However,

• when a is a negative number less than −2, MATLAB finds eigenvalues with imaginary parts for almost
all values of b.

• for negative values of b, no imaginary parts are found as long as a+ b > −2.

• For positive values of a, eigenvalues with imaginary parts are found when b gets sufficiently large, as
illustrated in figure 4.

• For positive values of b the opposite holds: eigenvalues with imaginary parts are found when a is
comparatively small, see figure 5.

In the case where n is odd, similar results hold for positive parameter values for a and b, as shown in
figure 6 for example. For negative parameter values we have a different situation, as the eigenvalues (8) can
become imaginary if the two factors have opposite sign. When a < −n and b < −n, the eigenvalues (8) are
real again and the behaviour mimics that of the positive values of a and b. The picture we get is a mirror
image of figure 6.

The reason for this disparity between the seemingly symmetric parameters a and b is that the QR
algorithm wants to get rid of subdiagonal entries in the process of creating an upper triangular matrix. As
a consequence, the numerical computations are much more sensitive to large values of b as it resides on
the subdiagonal. This is showcased in figures 4, 5 and 6. Most important is the sensitivity on the extra
parameters (a or a and b) which makes them appealing as test matrices.

It would be interesting future work if these new eigenvalue test matrices were to be used to test also
numerical algorithms for computing eigenvalues designed specifically for matrices having multiple eigenvalues
[8], being tridiagonal [15], or symmetric and tridiagonal [4].
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[8] A. Galántai, C.J. Hegedűs, Hymans method revisited. J. Comput. Appl. Math. 226 (2009), no. 2, 246–258.
[9] R.T. Gregory, D.L. Karney, A collection of matrices for testing computational algorithms. Wiley-Interscience A Division

of John Wiley & Sons, Inc., New York-London-Sydney 1969 ix+154 pp.
[10] N. Higham, The Test Matrix Toolbox for Matlab, Numerical Analysis Report No. 237, University of Manchester, 1993.
[11] B. Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in biogeography. Appl. Math. Comput. 218 (2011), no. 1,

195-201.
[12] E.I. Jafarov, N.I. Stoilova, J. Van der Jeugt, Finite oscillator models: the Hahn oscillator, J. Phys. A: Math. Theor. 44

(2011), 265203.
[13] M. Kac, Random walk and the theory of Brownian motion, Amer. Math. Monthly 54 (1947), 369–391.
[14] R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer Mono-

graphs in Mathematics, Springer-Verlag, Berlin, 2010.
[15] K. Maeda, S. Tsujimoto, A generalized eigenvalue algorithm for tridiagonal matrix pencils based on a nonautonomous

discrete integrable system. J. Comput. Appl. Math. 300 (2016), 134–154.
[16] K. Nomura, P. Terwilliger, Krawtchouk polynomials, the Lie algebra sl(2), and Leonard pairs, Linear Algebra Appl. 437

(2012), 345–375.
[17] R. Oste, J. Van der Jeugt, Doubling (dual) Hahn polynomials: classification and applications, Symmetry, Integrability

and Geometry: Methods and Applications 12 (2016), 003.
[18] R. Oste, J. Van der Jeugt, A finite oscillator model with equidistant position spectrum based on an extension of su(2), J.

Phys. A: Math. Theor. 49 (2016), 175204.
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Figure 1: Plots of the largest imaginary part of the computed eigenvalues of Hn(a) (n even and a = −b) for different values of
a on horizontal axis. On the left for n = 10, on the right for n = 100.
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Figure 2: Plots of the relative error in the computed eigenvalues of Hn(a) (n even and a = −b) for different values of a on
horizontal axis. Left n = 10 and right n = 100.
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Figure 3: For different values of a as denoted on the horizontal axis, on the left a plot of the largest imaginary part and on the
right a plot of the relative error of the computed eigenvalues of H101(a).
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Figure 4: Plots of the largest imaginary part (left) and the relative error (right) in the computed eigenvalues of H100(a, b),
horizontal axis varying values of b. Top row a = 0, middle row a = 1, bottom row a = 20.
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Figure 5: Plots of the largest imaginary part (left) and the relative error (right) in the computed eigenvalues of H100(a, b),
horizontal axis varying values of a. Top row b = 50, bottom row b = 100.
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Figure 6: Plots of the largest imaginary part (left) and the relative error (right) in the computed eigenvalues of H101(a, b),
horizontal axis varying values of b. Top row a = 0, bottom row a = 25.
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