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Abstract. After introducing Wigner Quantum Systems, we give a short review
of the one-dimensional Wigner Quantum Oscillator. Then we define the three-
dimensionalN-particle Wigner Quantum Oscillator, and its relation to the Lie su-
peralgebrasl(1|3N). In this framework (and first forN = 1), energy, coordinates,
momentum and the angular momentum of the particles are investigated.

Wigner Quantum Systems (WQSs) are quantum systems in which the canonical com-
mutation relations (CCRs) are replaced by a compatibility condition between the Heisenberg
equations and Hamilton’s equations. By dropping the CCRs, WQSs offer a natural framework
for quantum mechanics with non-commutative coordinates. Here we consider in particular
the three-dimensionalN-particle Wigner Quantum Oscillator (WQO). As an introductory ex-
ample, some properties of the one-dimensional WQO are reviewed, with an emphasis on the
different particle probability distributions (as compared to the ordinary one-dimensional os-
cillator). For the three-dimensionalN-particle WQO, a solution related to the Lie superalge-
bra sl(1|3N) is considered. ForN = 1 we investigate the operators corresponding to coordi-
nates, momentum and angular momentum of the particle in a class of representation spaces.
Remarkable properties include the discrete spectrum of coordinate operators and their non-
commutativity (and the same for the momentum operators). This has some unconventional
consequences for the particle localisation. We compare some of these properties with those of
the canonical quantum oscillator (CQO). Finally, the case for generalN is described.

Let Ĥ be the Hamiltonian of a system expressed in terms of the coordinates and mo-
menta. This system is a WQS [1, 2] if all postulates of ordinaryquantum mechanics hold,
i.e.

P1 The state spaceW is a Hilbert space. To every physical observableO there corresponds
a Hermitian (self-adjoint) operator̂O acting inW .
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P2 The observableO can take on only those values which are eigenvalues ofÔ. The expec-
tation value of the observableO in a stateψ is given by〈Ô〉ψ = (ψ, Ôψ)/(ψ,ψ).

But the postulate on canonical commutation relations (CCRs) is replaced by:

P3 In the Heisenberg picture, Hamilton’s equations and the Heisenberg equations hold and
are identical (as operator equations) inW .

Let us consider the harmonic oscillator Hamiltonian for a system ofN particles in three di-
mensions,

Ĥ =
N

∑
α=1

( P̂
2
α

2m
+

mω2

2
R̂2

α

)

, (1)

in terms of the 6N variablesR̂αk andP̂αk (k = 1,2,3, α = 1,2. . . ,N) interpreted as the Carte-
sian coordinates and momenta of theN particles. By postulateP3, the 3D vector operators
R̂1, . . . , R̂N andP̂1, . . . , P̂N must satisfy Hamilton’s equations

˙̂Pα = −mω2R̂α , ˙̂Rα =
1
m

P̂α , (2)

and the Heisenberg equations

˙̂Pα =
i
h̄
[Ĥ, P̂α ], ˙̂Rα =

i
h̄
[Ĥ, R̂α ], (3)

for α = 1,2, . . . ,N. Moreover (2) and (3) should be identical as operator equations. This leads
to the following compatibility conditions (CCs):

[Ĥ, P̂α ] = ih̄mω2R̂α , [Ĥ, R̂α ] = − ih̄
m

P̂α . (4)

The task is now to find operator solutions of (4). This turns out to be a difficult problem, for
which not all solutions are known, except for the case of one particle in one dimension. Let us
therefore first consider the Hamiltonian̂H for the one-dimensional WQO,

Ĥ =
p̂2

2m
+

mω2

2
r̂2, (5)

depending upon the 2 variables (operators) ˆr and p̂. The compatibility conditions (4) are

[Ĥ, p̂] = ih̄mω2r̂, [Ĥ, r̂] = − ih̄
m

p̂. (6)

Wigner solved these equations [3], leading to the first example of a “Wigner quantum system”.
The solution can be obtained by introducing two new operators b− andb+:

b± =

√

mω
2h̄

r̂∓ i

√

1
2mω h̄

p̂. (7)

Then it follows thatĤ = h̄ω
2 {b−,b+}, and the compatibility conditions (6) read

[{b−,b+},b±] = ±2b±. (8)

These relations correspond to the defining relations of the Lie superalgebraosp(1|2). Further-
more, the self-adjointness of̂H, r̂ and p̂ lead to the star conditionŝH† = Ĥ and(b±)† = b∓.
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Thus one is led to the classification of star representationsof the Lie superalgebraosp(1|2).
These representations are known: they are of typeℓ2(Z+) and labelled by a positive real num-
bera. The actions of the operatorsb± on the orthonormal basis vectors|n〉 (n ≥ 0) are:

b+ |2n〉 =
√

2(n+a) |2n+1〉, b+ |2n+1〉 =
√

2(n+1) |2n+2〉, (9)

b− |2n〉 =
√

2n |2n−1〉, b− |2n+1〉 =
√

2(n+a) |2n〉. (10)

Only for a = 1/2 one finds back the canonical case. In general, one has

Ĥ |n〉 = (n+a)h̄ω |n〉. (11)

So the energy levels are equidistant, and in units ofh̄ω they are given byEn = n+a. From (7),
one finds[ p̂, r̂] = ih̄(b+b−−b−b+). Then the action (9)-(10) yields

[ p̂, r̂] |2n〉 = −2aih̄ |2n〉, [ p̂, r̂] |2n+1〉 = −2(1−a)ih̄ |2n+1〉. (12)

So again it is easy to see that fora = 1/2 one gets the canonical commutation relation[ p̂, r̂] =
−ih̄. But this also shows that there are non-canonical solutions for this WQS.

In order to discuss position probabilities for this WQO, seth̄ = m = ω = 1. Using
r̂ = (b+ +b−)/

√
2, one finds now from (9) and (10)

r̂ |2n〉 =
1√
2
(
√

2n |2n−1〉+
√

2(n+a) |2n+1〉),

r̂ |2n+1〉 =
1√
2
(
√

2(n+a) |2n〉+
√

2(n+1) |2n+2〉). (13)

This means that ˆr is (or extends to) an unbounded Jacobi operator onℓ2(Z+). In fact, this
Jacobi operator corresponds to the generalized Hermite polynomialsH(a−1/2)

n (x), orthogonal
over R with respect to the weight function|x|2a−1e−x2

[4, p. 157] (a = 1/2 corresponds to
the usual Hermite polynomials). So the spectrum of ˆr is R. In order to see this, consider the
formal eigenvectorsv(x) of r̂, for the eigenvaluex, and write them asv(x) = ∑∞

n=0αn(x) |n〉.
The equation ˆrv(x) = x v(x) leads, using (13), to

xα2n(x) =
√

nα2n−1(x)+
√

n+aα2n+1(x), xα2n+1(x) =
√

n+aα2n(x)+
√

n+1α2n+2(x).
(14)

Comparing this with the recurrence relations ofH(a−1/2)
n (x) yields

v(x) =
∞

∑
n=0

h(a−1/2)
n (x)|x|a−1/2exp(−x2/2) |n〉, (15)

whereh(a−1/2)
n (x) is thenormalized generalized Hermite polynomial. By orthogonality it fol-

lows that (see also [5])

|n〉 =
∫ +∞

−∞
h(a−1/2)

n (x)|x|a−1/2exp(−x2/2)v(x)dx. (16)

This means that the probability distribution for the WQO being located at positionx, when

the system is in the stationary state|n〉, is given by
(

h(a−1/2)
n (x)

)2
|x|2a−1e−x2

. The position
probability distributions for the WQO show deviations with respect to those of the CQO. For
example, the position probabilities for the ground state (n = 0) are plotted in Figure 1.
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Figure 1. Position probability distribution for the ground staten = 0 for a = 1/4
(full line), for a = 1/2 (the canonical case, grey line) and fora = 1 (dotted line).
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Let us next consider the simple case of one particle in three dimensions. The general
compatibility conditions (4), withN = 1, also admit solutions in the context ofosp(1|6) that
can be seen as deviations of the canonical solutions. However, the state spaces of general
osp(1|6) solutions are not easy to describe. Another, and easier, class of solutions was first ob-
served by Palev [1], and is related to the Lie superalgebrasl(1|3). To describe these, consider
new (unkown) operators as linear combination of the old ones(k = 1,2,3),

A±
k =

√

mω
2h̄

R̂k ± i

√

1
2mω h̄

P̂k, (17)

where we have dropped the indexα (since there is only oneα = 1). In terms of these operators,
(1) becomesĤ = ω h̄

2 ∑3
k=1{A+

k ,A−
k }, and the compatibility conditions (4) read:

3

∑
j=1

[{A+
j ,A−

j },A±
k ] = ∓2A±

k . (18)

The following yields an important family of solutions:

[{A+
i ,A−

j },A+
k ] = δ jkA+

i −δi jA
+
k , [{A+

i ,A−
j },A−

k ] = −δikA−
j +δi jA

−
k , {A±

i ,A±
j } = 0.

(19)
It is easy to verify that (19) implies indeed (18). The main observation of [1] is that the
operatorsA±

k (k = 1,2,3), subject to the above relations (19), are odd elements generating the
Lie superalgebrasl(1|3). They are sometimes referred to as creation and annihilation operators
(CAOs) ofsl(1|3).

The operatorŝR = (R̂1, R̂2, R̂3) and P̂ = (P̂1, P̂2, P̂3) of the WQO are interpreted and
referred to as the position and momentum operators. We introduce one more physical notion,
namely the angular momentum, to be defined asM̂ = (M̂1,M̂2,M̂3) with [2]

M̂ j = −1
h̄

3

∑
k,l=1

ε jkl{R̂k, P̂l} = −i
3

∑
k,l=1

ε jkl{A+
k ,A−

l }, (20)

whereε jkl is the familiar antisymmetric tensor. The componentsM̂ j ( j = 1,2,3) generate an
so(3) algebra, and they commute with the Hamiltonian.

In order to investigate physical properties of the WQO, we need to consider state spaces
in which the operators act. According to the postulates, thestate spaceW is a Hilbert space,
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and(A±
j )† = A∓

j . The last condition implies that the operatorsA±
j act in “unitary” (i.e. star)

representations ofsl(1|3). Instead of considering all star representations, we shallstudy only
one class of them, namely the so-called Fock type representations [6] ofsl(1|3). The advantage
of these representations is the fact that all operators havea simple action in a particular basis.
The Fock representationsW are characterized by a positive integerp, and are determined
by the relationsA−

j |0〉 = 0 andA−
j A+

k |0〉 = pδ jk |0〉, where |0〉 is some generating vector.
W = W (p) is a finite dimensional covariant irreducible representation (irrep) with highest
weight(p,0,0). It is a typical irrep whenp ≥ 3 andatypical when p < 3 [7]. A basis vector
of W (p) is characterized by a string of 0’s and 1’s,Θ ≡ (θ1,θ2,θ3), with θi ∈ {0,1}. Then, an
orthonormal basis ofW (p) is given by the vectors

| p;Θ〉 ≡ |p;θ1,θ2,θ3〉 =

√

(p−q)!
p!

(A+
1 )θ1(A+

2 )θ2(A+
3 )θ3 |0〉, (21)

whereq ≡ ∑3
i=1θi must satisfy: 0≤ q ≤ min(p,3). The action of the CAOs reads:

A−
i | p;Θ〉 = θi(−1)ψi

√

p−q+1| p;Θ〉i, (22)

A+
i | p;Θ〉 = (1−θi)(−1)ψi

√
p−q | p;Θ〉i, (23)

whereψi = ∑ j<i θ j, and| p;Θ〉i stands for the state obtained from| p;Θ〉 after the replacement
of θi by θ i = (1− θi). Some physical properties can now be deduced from the following
relations [7]:

Ĥ | p;Θ〉 =
h̄ω
2

(3p−2q) | p;Θ〉, (24)

M̂2|p;Θ〉 =

{

0 if θ1 = θ2 = θ3

2|p;Θ〉 otherwise
, (25)

R̂2|p;Θ〉 =
h̄

2mω
(3p−2q)|p;Θ〉, (26)

R̂2
k|p;Θ〉 =

h̄
2mω

(p−q+θk)|p;Θ〉 (27)

So the energy levels are equidistant, in steps ofh̄ω/2. The angular momentum of the particle
is 0 or 1. In fact, forp > 2 the decomposition with respect toso(3) is (1)⊕ (3)⊕ (3)⊕ (1).
The most striking differences are a result of the non-commutativity of the position operatorŝRk

(and similarly for the momentum operators). Quite surprisingly, however, thesquares of the
position (and momentum) operators do commute (and are diagonal in the basis considered).
As a consequence of this and of the relations (26)-(27), if the system is in a fixed state|p;Θ〉,
the particle will be detected on one of the eight “nests” withcoordinates(±r1,±r2,±r3),

rk =
√

h̄
2mω

√

(p−q+θk), on a sphere with radius
√

h̄(3p−2q)/(2mω) [7]. Note that by the
non-commutativity of the coordinates the particle cannot be localised precisely: it is the choice
of coordinates to be measured that leads to the observed values. The main feature however is
that the spectrum of the operatorsR̂2, R̂2

k and R̂k is finite (and thus discrete), quite different
from the canonical solution.

It is interesting to compare properties of the canonical solution (in the Fock space) with
the representation spaceW = ⊕∞

p=0W (p) of the WQO. In Table 1, we list (according to in-
creasing values of energy) the energy values (in units ofh̄ω), the multiplicity (number of
states with this energy), the angular momentum valuesM, and the expectation values of〈R̂2〉
in the stationary states (in units ofh̄/mω).
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Table 1. Summary of some physical properties of the WQO compared to theCQO

WQO spaceW : CQO Fock space:
E mult M 〈R̂2〉 E mult M 〈R̂2〉

0 1 0 0 3/2 1 0 3/2
1/2 3 1 1/2 5/2 3 1 5/2
1 3 1 1 7/2 6 2, 0 7/2

3/2 2 0, 0 3/2 9/2 10 3, 1 9/2
2 3 1 2 11/2 15 4, 2, 0 11/2

5/2 3 1 5/2 13/2 21 5, 3, 1 13/2
3 2 0, 0 3 15/2 28 6, 4, 2, 0 15/2
...

...

For theN-particle WQO [8] one introduces new operatorsA±
αk (k = 1,2,3, α = 1, . . . ,N),

with relations similar to (19). These operators generate the Lie superalgebrasl(1|3N), and
provide a solution for the compatibility conditions for theN-particle case. The corresponding
Fock spaces are given by representationsW (p) of sl(1|3N), with basis states| p;Θ〉, where
Θ is now a string of 3N 0’s or 1’s. The energy spectrum is again equidistant. Each particle
has angular momentum 0 or 1, and the angular momentum of the complete system follows
from the branching rule ofsl(1|3N) to so(3). The configuration of the system can be seen as
a superposition of the single particle positions (with the previously described properties such
as a discrete spectrum of position operators and the consequences of non-commutativity). The
atypical representations (those withp < 3N) give rise to certain exclusion phenomena.

Acknowledgments

NIS was supported by a Marie Curie Individual Fellowship of the European Community Pro-
gramme ‘Improving the Human Research Potential and the Socio-Economic Knowledge Base’
under contract number HPMF-CT-2002-01571.

References

[1] Palev T D 1982J. Math. Phys. 23 1778

[2] Palev T D and Stoilova N I 1997J. Math. Phys. 38 2506

[3] Wigner E P 1950Phys. Rev. 77 711

[4] Chihara T S 1978An introduction to orthogonal polynomials (New York: Gorden and Breach)

[5] Mukunda N, Sudarshan E C G, Sharma J K and Mehta C L 1980J. Math. Phys. 21 2386

[6] Palev T D 1980J. Math. Phys. 21 1283

[7] King R C, Palev T D, Stoilova N I and Van der Jeugt J 2003J. Phys. A: Math. Gen. 36 4337

[8] King R C, Palev T D, Stoilova N I and Van der Jeugt J 2003J. Phys. A: Math. Gen. 36 11999

6


