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Abstract. This paper describes a quantum system consisting of a one-
dimensional chain oM identical harmonic oscillators coupled by means
of springs. We approach this as a Wigner Quantum System, not imposing
the canonical commutation relations, but using instead weaker relations fol-
lowing from the compatibility of Hamilton’s equations and the Heisenberg
equations. We show that a class of solutions can be obtained using-genera
tors of the Lie superalgebgi(1|M), and study the properties and spectra of
the physical operators in a class of unitary representatiog diM ).

1 Introduction and description of the problem

Consider a guantum system consisting of a linear chaM adentical har-
monic oscillators (with mass and natural frequencg) coupled by some
nearest neighbour interaction, the coupling being represented bygsprin
obeying Hooke’s law. The Hamiltonian of such a system is given by:

2
i = z (B g TG Ge)?). ®

The position and momentum operator for #ik oscillator are given byg”

and pk; more preciselygx measures the displacement of #te mass point

with respect to its equilibrium position. The last term in (1) represents the

nearest neighbour coupling by means of “springs”, with coupling stheng

(c> 0). We shall also assume periodic boundary conditions, i.e.

Gv+1 = G (2)

Such quantum systems are relevant in quantum information theory, in quan-
tum optics (photonic crystals), or for describing phonons in a cryst&][1
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In the standard approach for the quantum system governed by £1), on
assumes the canonical commutation relations (CCR’s)

[Qqu} = 07 [ﬁka p|] = 07 [Qka ﬁl] = Iﬁd(l (3)

Here, we start from a more general quantization procedure. This is
based upon the compatibility of Hamilton’s equations with the Heisenberg
equations. Such systems are called Wigner Quantum Systems (WQS's) [3].
For the Hamlltonlan (1) the equwalence of Hamilton’s equatigns: a;' ,

= ﬁ[H Pl Qk = H[H G«] leads

to the foqowmg compatibility conditions:

A ih,

[H7CIk} = _mpk7 (4)

H,p = —ifcmGy_1+iAm(w?+ 2c) G — ifcmGi 1, (5)
wherek =1,2,...,M, and — extending (2) g stands fomgy, or more gen-

erally
6Ik:qkmodMa f’k: pkmodM (6)

whenevek is out of the rangd 1,2,...,M}. The task is to find operator so-
lutions for dx and px such that the compatibility conditions (4)-(5), together
with (1), are satisfied. Furthermore, sirggeand px correspond to physical
observables, the operators should be Hermitian:

G=6 Bi=p (k=12,...,M). 7)

Using finite Fourier transforms af and p,

M 1 M 2mir
- P - emMp , 8
~ Z PR ©
with Qf = Qu_r andP! = By_, (using the same convention as in (6)), the

Hamiltonian becomes, just as in the canonical case [1, 2]

A= 3 (508 + 150 ©

where, forr = 1,2,..., M, the quantitiegy are positive numbers with

2 .
W = w?+2c— chos(vm) = w2+4csm2(%), (10)



and clearlywy_r = wy.

As a final step it is convenient to introduce linear combinations of the
unknown operator®, andP;, saya;” anda; (r =1,2,...,M), by

- _ wa 51 + 5

with (gF)" = aF. Itis important to remember that, since the CCR’s do not
hold, the operatora; do not satisfy the usual boson relations. Now the
Hamiltonian (9) becomes:

M ﬁm
o8} = + (12)
2 — {aat= 212 a a +a’a ),
and the conditions (4)-(5) are equivalent to:
H,af] = +hwa’, (r=12...,M). (13)

Thus in the approach of (1) as a Wigner Quantum System, the problem is
reduced to finding ® operatorsa;” (r = 1,...,M), acting in some Hilbert
space, such thas")" = aF and

M
[;wj (ajaj +afa;),a ] =+2wa, (r=12...,M). (14)

2 Liesuperalgebraic solution of the problem

The main result is that the algebraic relations (14) have a solution in terms
of generators of the Lie superalgelgid1|M). For this Lie superalgebra,
consider the standard basis elemestswith j,k=0,1,...,M (&0 andegy,
k=1,...,M, being theodd elements having degree deg)) = ded ey) =

and Lie superalgebra bracket

[&,64] = Ojxa — (—1)9ede)deden) 5 g (15)

Then the compatibility conditions (14) have a solution for the operai;brs
in terms ofgl (1|M) generators:

/2[3k L 2B _
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Herein, we have introduced new constgBitsn terms of the quantitiegy :

1 M
Bi=—-w+—= Y w, (17)

with Buy_x = B« and
B

M
Bi-
&0

In order to satisfy the Hermiticity conditiong")" = aF, being equiva-
lent with the star conditior@eok)T = g for the Lie superalgebra elements
(corresponding to the “compact forn(1|M) of gl (1|M), for which finite-
dimensional unitary representations exist), all constgpis (16) should be
positive. This is true only if the coupling constamis in a certain interval
10, co[, wherecy is a critical value depending upd. It can be shown that
is a sufficient condition for alBx > 0 [4].

wj. (18)
1

= amg

3 A classof gl(1|M) representations as state spaces

We consider a class of unitary representatigvg) of gl(1|M) as state
spaces of the system. These are finite-dimensional representationsdiabelle
by a numberp, with eitherp € {0,1,2,...,M — 1} [atypical case] or els@

real withp > M — 1 [typical case]. The basis vectors\Wf(p) are given by:

w(0) =w(61,6,,...,6u), 6 €{0,1}, and|6| =61+ ---+ 6 < p.
(19)
Clearly, forp > M — 1, the dimension oV (p) is given by 2.
The action of thel (1|M) generators on the basis vectors/éfp) is
now given by:

eoW(8) = (p—1[6]) w(B);

aw(B) = 6cw(b);

aow(8) = (1—6)(—1)% %1 /p—|0|W(6Oy,...,0+1,...,6u);
exW(8) = B(—1)%F+01 /o 10]+1wW(Oy,...,60—1,...,6u),

where 1< k < M. The representatiow/(p) is unitary for the star condition
e}rk = g with respect to the inner produc(0)|w(68’)) = g ¢

The main purpose is now the study of the spectrum of the physical
operatorsH, §- and gr, for which we shall present the results only in the
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typical case p > M — 1). Under the solution (16), the Hamiltoni&htakes
the form

M
H=R(Bevo+ S Beduo)- (20)
k=1

It follows that the vectorsy(0) are eigenvectors faf, Hw(6) = REgw(8),
with eigenvalues

M M—2 M
B = B(p—10)+ 5 OB=B(p——10D 5 B (21)
In this expressiond = (6y,...,0u), with eaché € {0,1}, and|8| = T M , 6.
Some analysis, using the symmetriesBpf shows that (for G ¢ < ¢g) the
multiplicity of Eg is given by 2k-1(6—6-0%/2 Whereas there arel + 1
(equidistant) energy levels far= 0, the number of energy levels for0c <
cois 2-3M-D/2 (M odd) or 4 3M-2/2 (M even).

The determination of the spectrum of position and momentum oper-
ators inW(p) requires an extensive analysis. The result is as follows: the
operatorgr has M distinct eigenvalues given byxx = i,/%(p— K)y,
where 0K K <M —1 andy = Zﬁ":lﬁk/af- The multiplicity of the eigen-
value+xg is (Mc1).

The eigenvectors of the position operatprehable us to determine
position probability distributions for the stationary state®) and to de-
scribe the probability distributions of the other oscillator positions when one
oscillator is in a fixed (eigenvalue) position [4].
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