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the setting: structural equation models
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the setting (2)

• structural equation models

• we focus on ‘large’ models with many (say, > 100) parameters:

– many constructs (motivation, ability, personality traits, . . . )

– each construct is measured by a set of (observed) indicators

– many ‘background’ variables (age, gender, . . . )

– multilevel data, missing data, . . .

• we are mostly interested in the structural part of the model:

– regression model: variables are either dependent or independent

– path analysis model: includes mediating effects, perhaps non-recursive

• assumption: the measurement instruments for the latent variables are well estab-
lished, and usually fit (reasonably) well

• BUT: the sample size is not large (say, N = 150)
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the standard estimation approach in SEM: ‘system-wide’ estimation

• all parameters (measurement and structural) are estimated jointly

• frequentist: typically using an iterative optimization approach (e.g., ML); Bayesian:
typically using MCMC

• advantages:

– one-step, and therefore efficient (in terms of sampling variability)

– inference is straightforward (standard errors, hypothesis testing)

– (relatively) easy to handle constraints, missing data, . . .

• works very well if the following conditions are met:

– correctly specified model, large sample size

– (normally distributed data)

• but under less ideal circumstances, system-wide estimation does not (always) work
well (bias, instability, nonconvergence, improper solutions, . . . )

• in addition: combining ‘structural’ and ‘measurement’ may lead to interpretational
confounding (the meaning of the latent variables changes, if the structural model
changes)
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example (stolen from Roy Levy, 2023)

η

y1 y2 y3 y4

η

y1 y2 y3

y4

• left panel: only measurement

• right panel: measurement + structural

• conceptually very different

• mathematically identical (in system-wide SEM)
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generate some data
> library(lavaan)
> Sigma <- matrix(c(2.0, 1.0, 1.0, 1.0, 1.5,

1.0, 2.0, 1.0, 1.0, 0.1,
1.0, 1.0, 2.0, 1.0, 0.1,
1.0, 1.0, 1.0, 2.0, 0.1,
1.5, 0.1, 0.1, 0.1, 2.0), nrow = 5, ncol = 5)

> rownames(Sigma) <- colnames(Sigma) <- c("y1", "y2", "y3", "y4", "z")
> Sigma

y1 y2 y3 y4 z
y1 2.0 1.0 1.0 1.0 1.5
y2 1.0 2.0 1.0 1.0 0.1
y3 1.0 1.0 2.0 1.0 0.1
y4 1.0 1.0 1.0 2.0 0.1
z 1.5 0.1 0.1 0.1 2.0

> set.seed(3)
> Data <- MASS::mvrnorm(n = 200L, mu = rep(0, 5), Sigma = Sigma)
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R code left panel (model1)
> model1 <- '

f =˜ y1 + y2 + y3 + y4
'
> fit1 <- sem(model1, data = Data)
> summary(fit1)

lavaan 0.6-20.2250 ended normally after 25 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 8

Number of observations 200

Model Test User Model:

Test statistic 0.140
Degrees of freedom 2
P-value (Chi-square) 0.932

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured

Latent Variables:
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Estimate Std.Err z-value P(>|z|)
f =˜
y1 1.000
y2 0.996 0.123 8.122 0.000
y3 0.894 0.116 7.689 0.000
y4 0.911 0.120 7.608 0.000

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 1.096 0.148 7.388 0.000

.y2 0.837 0.127 6.601 0.000

.y3 0.987 0.128 7.694 0.000

.y4 1.081 0.138 7.820 0.000
f 1.031 0.208 4.959 0.000
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R code right panel (model2)
> model2 <- '

f =˜ y1 + y2 + y3
y4 ˜ f

'
> fit2 <- sem(model2, data = Data)
> summary(fit2)

lavaan 0.6-20.2250 ended normally after 26 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 8

Number of observations 200

Model Test User Model:

Test statistic 0.140
Degrees of freedom 2
P-value (Chi-square) 0.932

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured
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Latent Variables:
Estimate Std.Err z-value P(>|z|)

f =˜
y1 1.000
y2 0.996 0.123 8.122 0.000
y3 0.894 0.116 7.689 0.000

Regressions:
Estimate Std.Err z-value P(>|z|)

y4 ˜
f 0.911 0.120 7.608 0.000

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 1.096 0.148 7.388 0.000

.y2 0.837 0.127 6.601 0.000

.y3 0.987 0.128 7.694 0.000

.y4 1.081 0.138 7.820 0.000
f 1.031 0.208 4.959 0.000
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change outcome variable (y4 becomes z) (model3)
> model3 <- '

f =˜ y1 + y2 + y3
z ˜ f

'
> fit3 <- sem(model3, data = Data)
> summary(fit3)

lavaan 0.6-20.2250 ended normally after 58 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 8

Number of observations 200

Model Test User Model:

Test statistic 50.659
Degrees of freedom 2
P-value (Chi-square) 0.000

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured
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Latent Variables:
Estimate Std.Err z-value P(>|z|)

f =˜
y1 1.000
y2 0.138 0.053 2.601 0.009
y3 0.133 0.051 2.591 0.010

Regressions:
Estimate Std.Err z-value P(>|z|)

z ˜
f 0.276 0.087 3.156 0.002

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 -4.169 1.801 -2.315 0.021

.y2 1.740 0.173 10.071 0.000

.y3 1.699 0.168 10.086 0.000

.z 1.677 0.211 7.953 0.000
f 6.296 1.715 3.671 0.000
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interpretational confounding

• replacing y4 by z (= changing the structural part) also changes the parameters of the
measurement model

• if the resulting parameters of the measurement model imply a different ‘meaning’ of
the latent variable than was intended by the researcher, we have a problem

• this problem was coined “interpretational confounding” by Burt (1976)

Burt, R.S. (1976). Interpretational confounding of unobserved variables
in structural equation models. Sociological Methods & Research, 5(1),
3–52.

• Burt (1976) already suggested the solution: first fit the measurement part of the
model, and then fit the structural part of the model
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solution: replace sem() by sam()
> fit3.sam <- sam(model3, data = Data)
> parameterEstimates(fit3.sam, remove.step1 = FALSE, ci = FALSE,

output = "text")

Latent Variables:
Step Estimate Std.Err z-value P(>|z|)

f =˜
y1 1 1.000
y2 1 0.969 0.139 6.977 0.000
y3 1 0.884 0.127 6.979 0.000

Regressions:
Step Estimate Std.Err z-value P(>|z|)

z ˜
f 2 0.540 0.121 4.471 0.000

Variances:
Step Estimate Std.Err z-value P(>|z|)

.y1 1 1.067 0.170 6.287 0.000

.y2 1 0.865 0.151 5.723 0.000

.y3 1 0.983 0.142 6.900 0.000

.z 2 1.846 0.195 9.462 0.000
f 2 1.059 0.226 4.678 0.000
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the structural-after-measurement (SAM) approach

• SAM is an umbrella term to describe many different (estimation) approaches that
have the following in common:

– first step: we estimate the parameters related to the measurement part

– second step: we estimate the parameters related to the structural part

• the term SAM was used by Rosseel & Loh (2024), to avoid the overloaded terms
‘two-step’, ‘two-stage’, . . .

• various SAM approaches have been suggested in the literature:

– early references: Burt (1976), Hunter & Gerbing (1982), Lance, Cornwell &
Mulaik (1988)

– (uncorrected and bias-corrected) factor score regression (FSR)

– SAM is the default approach in many other fields

• . . . but they never received much attention in the SEM literature/community

• Rosseel & Loh (2024) proposed a special case: ‘local SAM’ (LSAM)

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 16 / 33



Department of Data Analysis Ghent University

local SAM: rationale

• the measurement model:
y = ν +Λη + ϵ

• to solve this for η, we proceed as follows:

ν +Λη + ϵ = y

Λη = y − ν − ϵ

MΛη = M [y − ν − ϵ]

η = M [y − ν − ϵ]

where M is M × P mapping matrix such that MΛ = IM

• we assume E(ϵ) = 0 and write Var(ϵ) = Θ; it follows that

E(η) = M [E(y)− ν]

Var(η) = M [Var(y)−Θ]MT
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local SAM: estimation

• first stage: estimation of the measurement part of the model (only)

• this results in estimates of:

– E(η): the mean vector of the latent variables

– Var(η): the variance-covariance matrix of the latent variables

– Γ(η) (‘Gamma’): capturing the sampling variability of these sample statistics

• second stage: a regression or path analysis is performed, using the sample statistics
of the latent variables as input

– twostep-corrected standard errors and fit measures

– we can use ML, GLS, . . . or we can use noniterative estimators (OLS, TSLS)

• typical choice for the mapping matrix: the ‘ML/Bartlett’ matrix

M = (ΛTΘ−1Λ)−1 ΛTΘ−1
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application 1: adding latent quadratic and interaction terms (2)

• in the joint setting, adding latent quadratic/interaction terms is not trivial

• two popular methods are the product-indicator (PI) approach, and the so-called ‘La-
tent Moderated Structural Equations’ (LMS) approach

• none of these scale well: they cannot handle many quadratic and latent interaction
terms simultaneously

• but if you can decouple the measurement and structural part, this becomes feasible

• a very general SAM solution (allowing for polynomial relations between latent vari-
ables) was already described in Wall & Amemiya (2000)

• the local SAM approach: find an explicit expression for

E(η ⊗ η) and Var(η ⊗ η)

where ⊗ denotes the tensor (or Kronecker) product
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the augmented (latent) sample statistics

• augmented mean vector:

E(η ⊗ η) = vec[Var(η)] + E(η)⊗ E(η)

• augmented variance-covariance matrix (simple version, assuming normality for the
measurement error):

Var(η ⊗ η) ≈ Var(f ⊗ f)−
[
Q+KmQ+QKT

m +KmQKT
m + Γ

⋆(NT )
22 (r)

]
where

Q = Var(η)⊗ Var(r) + E(η)E(η)T ⊗ Var(r)

and
Γ

⋆(NT )
22 (r) = (Im2 +Km) (Var(r)⊗ Var(r))

• Km is the commutation matrix

• Γ
⋆(NT )
22 (r) is the ‘Gamma’ matrix of the measurement error (r)
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implementation in lavaan
> model <- '

# measurement part
f1 =˜ y1 + y2 + y3
f2 =˜ y4 + y5 + y6
f3 =˜ y7 + y8 + y9

# structural part
f3 ˜ f1 + f2 + f1:f1 + f2:f2 + f1:f2

'
> fit <- sam(model, data = Data, se = "none") # or se = "bootstrap"

• no two-step analytic standard errors yet; but bootstrapping is possible

• forthcoming paper:

Rosseel, Y., Burghgraeve, E., Loh, W.W., Schermelleh-Engel, K. (in
press). Structural after Measurement (SAM) approaches for accommo-
dating latent quadratic and interaction effects. Behavior Research Meth-
ods.
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application 2: noniterative SEM

• for CFA, many noniterative estimators are available; some (i.e., the multiple group
method) perform better than ML in terms of mean squared error

Dhaene, S. & Rosseel, Y. (2023). An Evaluation of Non-Iterative Esti-
mators in Confirmatory Factor Analysis. Structural Equation Modeling:
A Multidisciplinary Journal.

• we can use these noniterative estimators for the measurement part in SAM

Dhaene, S., & Rosseel, Y. (2023). An Evaluation of Non-Iterative Esti-
mators in the Structural after Measurement (SAM) Approach to Struc-
tural Equation Modeling (SEM). Structural Equation Modeling: A Mul-
tidisciplinary Journal, 30(6), 926–940

• “[the] local SAM approach outperforms traditional SEM in small to moderate sam-
ples (both in terms of convergence and MSE values), especially when reliability
drops. ”
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application 3: comparing structural relations across many groups

• reference (open access):

Perez Alonso, A.F., Rosseel, Y., Vermunt, J.K., & De Roover, K. (in
press). Mixture Multigroup Structural Equation Modeling: A Novel
Method for Comparing Structural Relations Across Many Groups. Psy-
chological Methods. https://doi.org/10.1037/met0000667

• relationships between latent variables are often different across groups (e.g., coun-
tries); but some groups may be similar in the sense that they have similar values for
the regression coefficients

• we like to ‘discover’ these hidden clusters of similar groups

• in a first step, we estimated the measurement part across all groups (fixing the fac-
tor loadings to be the same across groups); this resulted in (model-implied) latent
(co)variance matrices for all the groups

• in a second step, a mixture modeling approach is used to find homogeneous clusters
that share similar regression coefficients
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SAM: software implementation

• the SAM approach has been implemented in the sam() function in the R package
lavaan

• available methods:

– sam.method = "local" (default)

– sam.method = "global"

– sam.method = "fsr" (using Bartlett factor scores)

• typical call:

> fit.sam <- sam(model, data = PoliticalDemocracy,
sam.method = "local",
# link measurement blocks
mm.list = list(ind = "ind60", dem = c("dem60", "dem65")),
# measurement options
mm.args = list(estimator = "ML"),
# structural options
struc.args = list(estimator = "GLS"),
# global options
meanstructure = FALSE)

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 24 / 33



Department of Data Analysis Ghent University

diagram of the Political Democracy model
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sam() output
> # just for illustration, we also show the estimated parameters
> # of the measurement blocks
> #
> summary(fit.sam, remove.step1 = FALSE)

This is lavaan 0.6-20.2250 -- using the SAM approach to SEM

SAM method LOCAL
Mapping matrix M method ML
Number of measurement blocks 2
Estimator measurement part ML
Estimator structural part GLS

Number of observations 75

Summary Information Measurement + Structural:

Block Latent Nind Chisq Df
1 ind60 3 0.00 0
2 dem60,dem65 8 15.32 16

Model-based reliability latent variables:

ind60 dem60 dem65
0.966 0.868 0.87

Summary Information Structural part:
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chisq df cfi rmsea srmr
0 0 1 0 0

Parameter Estimates:

Standard errors Twostep
Information Expected
Information saturated (h1) model Structured

Latent Variables:
Step Estimate Std.Err z-value P(>|z|)

ind60 =˜
x1 1 1.000
x2 1 2.193 0.142 15.403 0.000
x3 1 1.824 0.153 11.883 0.000

dem60 =˜
y1 1 1.000
y2 (a) 1 1.213 0.143 8.483 0.000
y3 (b) 1 1.210 0.125 9.690 0.000
y4 (c) 1 1.273 0.122 10.453 0.000

dem65 =˜
y5 1 1.000
y6 (a) 1 1.213 0.143 8.483 0.000
y7 (b) 1 1.210 0.125 9.690 0.000
y8 (c) 1 1.273 0.122 10.453 0.000

Regressions:

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 27 / 33



Department of Data Analysis Ghent University

Step Estimate Std.Err z-value P(>|z|)
dem60 ˜
ind60 2 1.454 0.389 3.741 0.000

dem65 ˜
ind60 2 0.558 0.225 2.480 0.013
dem60 2 0.871 0.076 11.497 0.000

Covariances:
Step Estimate Std.Err z-value P(>|z|)

.y1 ˜˜
.y5 1 0.577 0.364 1.585 0.113

.y2 ˜˜
.y4 1 1.390 0.685 2.030 0.042
.y6 1 2.068 0.733 2.822 0.005

.y3 ˜˜
.y7 1 0.727 0.611 1.190 0.234

.y4 ˜˜
.y8 1 0.476 0.453 1.049 0.294

.y6 ˜˜
.y8 1 1.257 0.583 2.156 0.031

Variances:
Step Estimate Std.Err z-value P(>|z|)

.x1 1 0.084 0.020 4.140 0.000

.x2 1 0.108 0.074 1.455 0.146

.x3 1 0.468 0.091 5.124 0.000

.y1 1 1.879 0.431 4.355 0.000

.y2 1 7.530 1.363 5.523 0.000
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.y3 1 4.966 0.966 5.141 0.000

.y4 1 3.214 0.722 4.449 0.000

.y5 1 2.499 0.518 4.824 0.000

.y6 1 4.809 0.924 5.202 0.000

.y7 1 3.302 0.699 4.722 0.000

.y8 1 3.227 0.720 4.482 0.000
ind60 2 0.446 0.087 5.135 0.000
.dem60 2 3.766 0.848 4.439 0.000
.dem65 2 0.189 0.224 0.843 0.399
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last slide

• why should we decouple the measurement and structural part?

– because we should (avoid interpretational confounding)

– because we can (we can still do SEM)

– this is what is done in most fields outside SEM

– good performance in simulation studies (small/moderate sample sizes)

– opens up modeling possibilities that were (computationally) difficult (if not
impossible) in a joint estimation approach

• but still some obstacles:

– analytic standard errors not always available (yet)

– limitations (e.g., no higher-order measurement models)

– more studies are needed to discover potential weaknesses

• the SAM approach deserves the (renewed) interest of the SEM community
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Thank you!

(questions?)

https://lavaan.org

https://lavaan.ugent.be/about/donate.html
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