The 'Structural After Measurement' (SAM) approach to SEM

Yves Rosseel Department of Data Analysis Ghent University – Belgium

CFE-CMStatistics – King's College London 14 December, 2024

acknowledgements

- Wen Wei Loh (Maastricht University)
- Sara Dhaene (Delaware BeLux), Julie De Jonckere (UGent)
- Jasper Bogaert (UGent), Seda Can (University of Izmir)
- Andres Perez Alonso (Tilburg), Jennifer Dang Guay (KUL), Jeroen Vermunt (Tilburg) & Kim De Roover (KUL)

paper

Rosseel, Y., & Loh, W.W. (2024). A structural after measurement approach to structural equation modeling. *Psychological Methods*, 29(3), 561–588. https://doi.org/10.1037/met0000503

slides

https://lavaan.org

the setting: structural equation models

the setting (2)

- structural equation models
- we focus on 'large' models with many (say, > 100) parameters:
 - many constructs (motivation, ability, personality traits, ...)
 - each construct is measured by a set of (observed) indicators
 - many 'background' variables (age, gender, ...)
 - multilevel data, missing data, ...
- we are mostly interested in the structural part of the model:
 - regression model: variables are either dependent or independent
 - path analysis model: includes mediating effects, perhaps non-recursive
- assumption: the measurement instruments for the latent variables are well established, and usually fit (reasonably) well
- BUT: the sample size is not large (say, N = 150)

the standard estimation approach in SEM: 'system-wide' estimation

- all parameters (measurement and structural) are estimated jointly
- frequentist: typically using an iterative optimization approach (e.g., ML); Bayesian: typically using MCMC
- advantages:
 - one-step, and therefore efficient (in terms of sampling variability)
 - inference is straightforward (standard errors, hypothesis testing)
 - (relatively) easy to handle constraints, missing data, ...
- works very well if the following conditions are met:
 - correctly specified model, large sample size
 - (normally distributed data)
- but under less ideal circumstances, system-wide estimation does not (always) work well (bias, instability, nonconvergence, improper solutions, ...)
- in addition: combining 'structural' and 'measurement' may lead to interpretational confounding (the meaning of the latent variables changes, if the structural model changes)

example (stolen from Roy Levy, 2023)

- left panel: only measurement
- right panel: measurement + structural
- · conceptually very different
- mathematically identical (in system-wide SEM)

generate some data

```
> library(lavaan)
> Sigma <- matrix(c(2.0, 1.0, 1.0, 1.0, 1.5,
                    1.0, 2.0, 1.0, 1.0, 0.1,
                    1.0, 1.0, 2.0, 1.0, 0.1,
                    1.0, 1.0, 1.0, 2.0, 0.1,
                    1.5, 0.1, 0.1, 0.1, 2.0, nrow = 5, ncol = 5)
> rownames(Sigma) <- colnames(Sigma) <- c("v1", "v2", "v3", "v4", "z")
> Siama
   v1 v2 v3 v4 z
v1 2.0 1.0 1.0 1.0 1.5
v2 1.0 2.0 1.0 1.0 0.1
v3 1.0 1.0 2.0 1.0 0.1
v4 1.0 1.0 1.0 2.0 0.1
z 1.5 0.1 0.1 0.1 2.0
> set.seed(3)
> Data <- MASS::mvrnorm(n = 200L, mu = rep(0, 5), Sigma = Sigma)
```

R code left panel (model1)

```
> model1 <- '
     f = v_1 + v_2 + v_3 + v_4
 .
> fit1 <- sem(model1, data = Data)</pre>
> summary(fit1)
lavaan 0.6-20.2250 ended normally after 25 iterations
  Estimator
                                                       ML
  Optimization method
                                                   NLMINB
  Number of model parameters
                                                        8
  Number of observations
                                                      200
Model Test User Model:
  Test statistic
                                                    0.140
  Degrees of freedom
                                                        2
  P-value (Chi-square)
                                                    0 932
Parameter Estimates:
                                                 Standard
  Standard errors
  Information
                                                 Expected
  Information saturated (h1) model
                                              Structured
```

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
f =~				
y1	1.000			
y2	0.996	0.123	8.122	0.000
у3	0.894	0.116	7.689	0.000
y4	0.911	0.120	7.608	0.000
ariances:				
	Estimate	Std.Err	z-value	P(> z)
.y1	1.096	0.148	7.388	0.000
.y2	0.837	0.127	6.601	0.000
.y3	0.987	0.128	7.694	0.000
.y4	1.081	0.138	7.820	0.000
f	1.031	0.208	4.959	0.000

v

Yves	Rosseel
------	---------

R code right panel (model2)

```
> mode12 <- '
     f = v_1 + v_2 + v_3
     y4 ~ f
 ,
> fit2 <- sem(model2, data = Data)</pre>
> summary(fit2)
lavaan 0.6-20.2250 ended normally after 26 iterations
  Estimator
                                                       MT.
  Optimization method
                                                   NLMINB
  Number of model parameters
                                                        8
  Number of observations
                                                      200
Model Test User Model:
  Test statistic
                                                    0.140
  Degrees of freedom
                                                        2
  P-value (Chi-square)
                                                    0.932
Parameter Estimates:
  Standard errors
                                                Standard
  Information
                                                Expected
  Information saturated (h1) model
                                              Structured
```

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
f =~				
y1	1.000			
y2	0.996	0.123	8.122	0.000
уЗ	0.894	0.116	7.689	0.000
Regressions:				
	Estimate	Std.Err	z-value	P(> z)
y4 ~				
f	0.911	0.120	7.608	0.000
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.y1	1.096	0.148	7.388	0.000
. y2	0.837	0.127	6.601	0.000
.y3	0.987	0.128	7.694	0.000
.y4	1.081	0.138	7.820	0.000
f	1.031	0.208	4.959	0.000

change outcome variable (y4 becomes z) (model3)

```
> mode13 <- '
     f = v_1 + v_2 + v_3
     7 ~ f
 ,
> fit3 <- sem(model3, data = Data)</pre>
> summary(fit3)
lavaan 0.6-20.2250 ended normally after 58 iterations
  Estimator
                                                       MT.
  Optimization method
                                                   NLMINB
  Number of model parameters
                                                        8
  Number of observations
                                                      200
Model Test User Model:
  Test statistic
                                                   50.659
  Degrees of freedom
                                                        2
  P-value (Chi-square)
                                                    0.000
Parameter Estimates:
  Standard errors
                                                 Standard
  Information
                                                 Expected
  Information saturated (h1) model
                                              Structured
```

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
f =~				
y1	1.000			
y2	0.138	0.053	2.601	0.009
уЗ	0.133	0.051	2.591	0.010
Regressions:				
	Estimate	Std.Err	z-value	P(> z)
z ~				
f	0.276	0.087	3.156	0.002
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.y1	-4.169	1.801	-2.315	0.021
.y2	1.740	0.173	10.071	0.000
.y3	1.699	0.168	10.086	0.000
. Z	1.677	0.211	7.953	0.000
f	6.296	1.715	3.671	0.000

interpretational confounding

- replacing y_4 by z (= changing the structural part) also changes the parameters of the measurement model
- if the resulting parameters of the measurement model imply a different 'meaning' of the latent variable than was intended by the researcher, we have a problem
- this problem was coined "interpretational confounding" by Burt (1976)

Burt, R.S. (1976). Interpretational confounding of unobserved variables in structural equation models. *Sociological Methods & Research*, 5(1), 3–52.

• Burt (1976) already suggested the solution: first fit the measurement part of the model, and then fit the structural part of the model

solution: replace sem() by sam()

Latent Variables:

	Step	Estimate	Std.Err	z-value	P(> z)
f =~					
y1	1	1.000			
y2	1	0.969	0.139	6.977	0.000
у3	1	0.884	0.127	6.979	0.000

Regressions:

	Step	Estimate	Std.Err	z-value	P(> z)
z ~					
f	2	0.540	0.121	4.471	0.000

Variances:

	Step	Estimate	Std.Err	z-value	P(> z)
.y1	1	1.067	0.170	6.287	0.000
.y2	1	0.865	0.151	5.723	0.000
.y3	1	0.983	0.142	6.900	0.000
. z	2	1.846	0.195	9.462	0.000
f	2	1.059	0.226	4.678	0.000

the structural-after-measurement (SAM) approach

- SAM is an umbrella term to describe many different (estimation) approaches that have the following in common:
 - first step: we estimate the parameters related to the measurement part
 - second step: we estimate the parameters related to the structural part
- the term SAM was used by Rosseel & Loh (2024), to avoid the overloaded terms 'two-step', 'two-stage', ...
- various SAM approaches have been suggested in the literature:
 - early references: Burt (1976), Hunter & Gerbing (1982), Lance, Cornwell & Mulaik (1988)
 - (uncorrected and bias-corrected) factor score regression (FSR)
 - SAM is the default approach in many other fields
- ... but they never received much attention in the SEM literature/community
- Rosseel & Loh (2024) proposed a special case: 'local SAM' (LSAM)

local SAM: rationale

• the measurement model:

$$y =
u + \Lambda \eta + \epsilon$$

• to solve this for η , we proceed as follows:

where \mathbf{M} is $M \times P$ mapping matrix such that $\mathbf{M} \mathbf{\Lambda} = \mathbf{I}_M$

• we assume $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and write $Var(\boldsymbol{\epsilon}) = \boldsymbol{\Theta}$; it follows that

$$E(\boldsymbol{\eta}) = \mathbf{M} [E(\boldsymbol{y}) - \boldsymbol{\nu}]$$
$$Var(\boldsymbol{\eta}) = \mathbf{M} [Var(\boldsymbol{y}) - \boldsymbol{\Theta}] \mathbf{M}^{T}$$

local SAM: estimation

- first stage: estimation of the measurement part of the model (only)
- this results in estimates of:
 - $E(\boldsymbol{\eta})$: the mean vector of the latent variables
 - Var(η): the variance-covariance matrix of the latent variables
 - $\Gamma(\eta)$ ('Gamma'): capturing the sampling variability of these sample statistics
- second stage: a regression or path analysis is performed, using the sample statistics of the latent variables as input
 - twostep-corrected standard errors and fit measures
 - we can use ML, GLS, ... or we can use noniterative estimators (OLS, TSLS)
- typical choice for the mapping matrix: the 'ML/Bartlett' matrix

$$\mathbf{M} = (\mathbf{\Lambda}^T \mathbf{\Theta}^{-1} \mathbf{\Lambda})^{-1} \mathbf{\Lambda}^T \mathbf{\Theta}^{-1}$$

application 1: adding latent quadratic and interaction terms (2)

- in the joint setting, adding latent quadratic/interaction terms is not trivial
- two popular methods are the product-indicator (PI) approach, and the so-called 'Latent Moderated Structural Equations' (LMS) approach
- none of these scale well: they cannot handle many quadratic and latent interaction terms simultaneously
- but if you can decouple the measurement and structural part, this becomes feasible
- a very general SAM solution (allowing for polynomial relations between latent variables) was already described in Wall & Amemiya (2000)
- the local SAM approach: find an explicit expression for

 $E(\boldsymbol{\eta}\otimes\boldsymbol{\eta})$ and $Var(\boldsymbol{\eta}\otimes\boldsymbol{\eta})$

where \otimes denotes the tensor (or Kronecker) product

the augmented (latent) sample statistics

• augmented mean vector:

$$E(\boldsymbol{\eta} \otimes \boldsymbol{\eta}) = vec[Var(\boldsymbol{\eta})] + E(\boldsymbol{\eta}) \otimes E(\boldsymbol{\eta})$$

• augmented variance-covariance matrix (simple version, assuming normality for the measurement error):

$$\operatorname{Var}(oldsymbol{\eta}\otimesoldsymbol{\eta})pprox\,\operatorname{Var}(\mathbf{f}\otimes\mathbf{f})-\left[\mathbf{Q}+\mathbf{K}_m\mathbf{Q}+\mathbf{Q}\mathbf{K}_m^T+\mathbf{K}_m\mathbf{Q}\mathbf{K}_m^T+\mathbf{\Gamma}_{22}^{\star(NT)}(\mathbf{r})
ight]$$

where

$$\mathbf{Q} = \operatorname{Var}(\boldsymbol{\eta}) \otimes \operatorname{Var}(\mathbf{r}) + \operatorname{E}(\boldsymbol{\eta}) \operatorname{E}(\boldsymbol{\eta})^T \otimes \operatorname{Var}(\mathbf{r})$$

and

$$\mathbf{\Gamma}_{22}^{\star(NT)}(\mathbf{r}) = (\mathbf{I}_{m^2} + \mathbf{K}_m) \left(\text{Var}(\mathbf{r}) \otimes \text{Var}(\mathbf{r}) \right)$$

- \mathbf{K}_m is the commutation matrix
- $\Gamma_{22}^{\star(NT)}(\mathbf{r})$ is the 'Gamma' matrix of the measurement error (**r**)

implementation in lavaan

```
> model <- '
    # measurement part
    f1 = ~ y1 + y2 + y3
    f2 = ~ y4 + y5 + y6
    f3 = ~ y7 + y8 + y9
    # structural part
    f3 ~ f1 + f2 + f1:f1 + f2:f2 + f1:f2
'
> fit <- sam(model, data = Data, se = "none") # or se = "bootstrap"</pre>
```

- no two-step analytic standard errors yet; but bootstrapping is possible
- forthcoming paper:

Rosseel, Y., Burghgraeve, E., Loh, W.W., Schermelleh-Engel, K. (in press). Structural after Measurement (SAM) approaches for accommodating latent quadratic and interaction effects. *Behavior Research Methods.*

application 2: noniterative SEM

• for CFA, many noniterative estimators are available; some (i.e., the multiple group method) perform better than ML in terms of mean squared error

Dhaene, S. & Rosseel, Y. (2023). An Evaluation of Non-Iterative Estimators in Confirmatory Factor Analysis. *Structural Equation Modeling: A Multidisciplinary Journal.*

· we can use these noniterative estimators for the measurement part in SAM

Dhaene, S., & Rosseel, Y. (2023). An Evaluation of Non-Iterative Estimators in the Structural after Measurement (SAM) Approach to Structural Equation Modeling (SEM). *Structural Equation Modeling: A Multidisciplinary Journal*, 30(6), 926–940

• "[the] local SAM approach outperforms traditional SEM in small to moderate samples (both in terms of convergence and MSE values), especially when reliability drops. "

application 3: comparing structural relations across many groups

• reference (open access):

Perez Alonso, A.F., Rosseel, Y., Vermunt, J.K., & De Roover, K. (in press). Mixture Multigroup Structural Equation Modeling: A Novel Method for Comparing Structural Relations Across Many Groups. *Psychological Methods*. https://doi.org/10.1037/met0000667

- relationships between latent variables are often different across groups (e.g., countries); but some groups may be similar in the sense that they have similar values for the regression coefficients
- we like to 'discover' these hidden clusters of similar groups
- in a first step, we estimated the measurement part across all groups (fixing the factor loadings to be the same across groups); this resulted in (model-implied) latent (co)variance matrices for all the groups
- in a second step, a mixture modeling approach is used to find homogeneous clusters that share similar regression coefficients

SAM: software implementation

- the SAM approach has been implemented in the sam() function in the R package lavaan
- · available methods:
 - sam.method = "local" (default)
 - sam.method = "global"
 - sam.method = "fsr" (using Bartlett factor scores)
- typical call:

diagram of the Political Democracy model

sam() output

```
> # just for illustration, we also show the estimated parameters
> # of the measurement blocks
> #
> summary(fit.sam, remove.step1 = FALSE)
This is lavaan 0.6-20.2250 -- using the SAM approach to SEM
 SAM method
                                                 LOCAL.
 Mapping matrix M method
                                                    ML
 Number of measurement blocks
                                                     2
 Estimator measurement part
                                                    MT.
 Estimator structural part
                                                   GLS
 Number of observations
                                                    75
Summary Information Measurement + Structural:
 Block
           Latent Nind Chisq Df
             ind60
                       3 0.00 0
      1
     2 dem60, dem65 8 15.32 16
 Model-based reliability latent variables:
 ind60 dem60 dem65
 0.966 0.868 0.87
 Summary Information Structural part:
```

chisq	df	cfi	rmsea	srmr
0	0	1	0	0

Parameter Estimates:

Standard errors	Twostep
Information	Expected
Information saturated (h1) model	Structured

Latent Variables:

		Step	Estimate	Std.Err	z-value	P(> z)
ind60 =~						
x 1		1	1.000			
x 2		1	2.193	0.142	15.403	0.000
x 3		1	1.824	0.153	11.883	0.000
dem60 =~						
y1		1	1.000			
y2	(a)	1	1.213	0.143	8.483	0.000
у3	(b)	1	1.210	0.125	9.690	0.000
y4	(c)	1	1.273	0.122	10.453	0.000
dem65 =~						
y5		1	1.000			
y6	(a)	1	1.213	0.143	8.483	0.000
y7	(b)	1	1.210	0.125	9.690	0.000
у8	(c)	1	1.273	0.122	10.453	0.000

Regressions:

	Step	Estimate	Std.Err	z-value	P(> z)
dem60~					
ind60	2	1.454	0.389	3.741	0.000
dem65 ~					
ind60	2	0.558	0.225	2.480	0.013
dem60	2	0.871	0.076	11.497	0.000
Covariances:					
	Step	Estimate	Std Err	z-value	P(> z)
.v1 ~~	CCCF				- (* 1-17
.v5	1	0.577	0.364	1.585	0.113
.v2 ^{~~}					
.y4	1	1.390	0.685	2.030	0.042
.y6	1	2.068	0.733	2.822	0.005
.y3 ^{~~}					
.y7	1	0.727	0.611	1.190	0.234
.y4 ~~					
. y8	1	0.476	0.453	1.049	0.294
.y6 ~~					
. y8	1	1.257	0.583	2.156	0.031
Variances:					
	Step	Estimate	Std.Err	z-value	P(> z)
.x1	1	0.084	0.020	4.140	0.000
. x2	1	0.108	0.074	1.455	0.146
.x3	1	0.468	0.091	5.124	0.000
.y1	1	1.879	0.431	4.355	0.000
. y2	1	7.530	1.363	5.523	0.000

. уЗ	1	4.966	0.966	5.141	0.000
. y4	1	3.214	0.722	4.449	0.000
.y5	1	2.499	0.518	4.824	0.000
.y6	1	4.809	0.924	5.202	0.000
. y7	1	3.302	0.699	4.722	0.000
. y8	1	3.227	0.720	4.482	0.000
ind60	2	0.446	0.087	5.135	0.000
.dem60	2	3.766	0.848	4.439	0.000
.dem65	2	0.189	0.224	0.843	0.399

last slide

- why should we decouple the measurement and structural part?
 - because we should (avoid interpretational confounding)
 - because we can (we can still do SEM)
 - this is what is done in most fields outside SEM
 - good performance in simulation studies (small/moderate sample sizes)
 - opens up modeling possibilities that were (computationally) difficult (if not impossible) in a joint estimation approach
- but still some obstacles:
 - analytic standard errors not always available (yet)
 - limitations (e.g., no higher-order measurement models)
 - more studies are needed to discover potential weaknesses
- the SAM approach deserves the (renewed) interest of the SEM community

Thank you!

(questions?)

https://lavaan.org

https://lavaan.ugent.be/about/donate.html

references

Bakk, Z., & Kuha, J. (2021). Relating latent class membership to external variables: An overview. *British Journal of Mathematical and Statistical Psychology*, 74(2), 340–362. https://doi.org/10.1111/bmsp.12227 (Open Access)

Burt, R.S. (1976). Interpretational confounding of unobserved variables in structural equation models. *Sociological Methods & Research*, 5(1), 3–52.

Dhaene, S., & Rosseel, Y. (2023). An Evaluation of Non-Iterative Estimators in the Structural after Measurement (SAM) Approach to Structural Equation Modeling (SEM). *Structural Equation Modeling: A Multidisciplinary Journal*, 30(6), 926–940 https://doi.org/10.1080/10705511.2023.2220135 (Open Access)

Dhaene, S. & Rosseel, Y. (2023). An Evaluation of Non-Iterative Estimators in Confirmatory Factor Analysis. *Structural Equation Modeling: A Multidisciplinary Journal*. https://doi.org/10.1080/10705511.2023.2187285. (Open Access)

Fornell, C., & Yi, Y. (1992). Assumptions of the two-step approach to latent variable modeling. *Sociological Methods* & *Research*, 20(3), 291–320.

Fuller, W A. (1987). Measurement error models. John Wiley & Sons.

Hunter, J.E., & Gerbing, D. W. (1982). Unidimensional measurement, second-order factor analysis, and causal models. *Research in Organizational Behavior*, 4, 267–320.

Lance, C.E., Cornwell, J.M., & Mulaik, S.A. (1988). Limited information parameter estimates for latent or mixed manifest and latent variable models. *Multivariate Behavioral Research*, 23 (2), 171–187.

Levy, R. (2023). Precluding interpretational confounding in factor analysis with a covariate or outcome via measurement and uncertainty preserving parametric modeling. *Structural Equation Modeling: A Multidisciplinary Journal*. https://doi.org/10.1080/10705511.2022.2154214

Perez Alonso, A.F., Rosseel, Y., Vermunt, J.K., & De Roover, K. (in press). Mixture Multigroup Structural Equation Modeling: A Novel Method for Comparing Structural Relations Across Many Groups. *Psychological Methods*.

Rosseel, Y., & Loh, W.W. (2024). A structural after measurement approach to structural equation modeling. *Psychological Methods*, 29(3), 561–588. https://doi.org/10.1037/met0000503 https://osf.io/pekbm/(includes original version)

Rosseel, Y., Burghgraeve, E., Loh, W.W., Schermelleh-Engel, K. (accepted). Structural after Measurement (SAM) approaches for accommodating latent quadratic and interaction effects. *Behavior Research Methods*.

Wall, M.M., & Amemiya, Y. (2000). Estimation for polynomial structural equation models. *Journal of the American Statistical Association*, 95(451), 929–940.