The 'Structural After Measurement' (SAM) approach: updates and extensions.

Yves Rosseel Department of Data Analysis Ghent University – Belgium

Meeting of the SEM Working Group – TU Chemnitz 20 March 2025

the setting

the setting (2)

- we focus on 'large' models with many (say, > 100) parameters:
 - many constructs (motivation, ability, personality traits, ...)
 - each construct is measured by a set of (observed) indicators
 - many 'background' variables (age, gender, ...)
 - multilevel data, missing data, binary/ordinal indicators, ...
- we are mostly interested in the structural part of the model:
 - if not saturated: how well does the structural model fit?
 - size of direct/indirect effect, hypothesis testing
- assumption: the measurement instruments for the latent variables are well established, and fit (reasonably) well
- BUT: the sample size is not large (say, N = 150)

the standard estimation approach in SEM: 'system-wide' estimation

- all parameters (measurement and structural) are estimated jointly
- frequentist: typically using an iterative optimization approach (e.g., ML); Bayesian: typically using MCMC
- advantages:
 - one-step, and therefore efficient (in terms of sampling variability)
 - inference is straightforward (standard errors, hypothesis testing)
 - (relatively) easy to handle constraints, missing data, ...
- works very well if the following conditions are met:
 - correctly specified model, large sample size, (multivariate normal data)
- but under less ideal circumstances, system-wide estimation does not (always) work well (bias, instability, nonconvergence, improper solutions, ...)
- in addition, a joint estimation approach potentially leads to interpretational confounding

the structural-after-measurement (SAM) approach

- SAM is an umbrella term to describe many different (estimation) approaches that have the following in common:
 - first step: we estimate the parameters related to the measurement part
 - second step: we estimate the parameters related to the structural part
- the term SAM was used by Rosseel & Loh (2024), to avoid the overloaded terms 'two-step', 'two-stage', ...
- reference:

Rosseel, Y., & Loh, W.W. (2024). A structural after measurement approach to structural equation modeling. *Psychological Methods*, 29(3), 561–588. https://doi.org/10.1037/met0000503 https://osf.io/pekbm/ (includes original version)

• Rosseel & Loh (2024) proposed a special case: 'local SAM' (LSAM)

local SAM: rationale

• the measurement model:

$$y =
u + \Lambda \eta + \epsilon$$

• to solve this for η , we proceed as follows:

where \mathbf{M} is $M \times P$ mapping matrix such that $\mathbf{M} \mathbf{\Lambda} = \mathbf{I}_M$

• we assume $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and write $Var(\boldsymbol{\epsilon}) = \boldsymbol{\Theta}$; it follows that

$$E(\boldsymbol{\eta}) = \mathbf{M} [E(\boldsymbol{y}) - \boldsymbol{\nu}]$$
$$Var(\boldsymbol{\eta}) = \mathbf{M} [Var(\boldsymbol{y}) - \boldsymbol{\Theta}] \mathbf{M}^{T}$$

local SAM: estimation

- first stage: estimation of the measurement part of the model (only)
- this results in estimates of:
 - $E(\boldsymbol{\eta})$: the mean vector of the latent variables
 - $Var(\eta)$: the variance-covariance matrix of the latent variables
 - $\Gamma(\eta)$ ('Gamma'): capturing the sampling variability of these sample statistics
- second stage: a regression or path analysis is performed, using the sample statistics of the latent variables as input
 - twostep-corrected standard errors and fit measures
 - we can use ML, GLS, ... or we can use noniterative estimators (OLS, TSLS)
- typical choice for the mapping matrix: the 'ML/Bartlett' matrix

$$\mathbf{M} = (\mathbf{\Lambda}^T \mathbf{\Theta}^{-1} \mathbf{\Lambda})^{-1} \mathbf{\Lambda}^T \mathbf{\Theta}^{-1}$$

LSAM: limitations and missing features

- the goal of LSAM —and its implementation in the sam() function— is to be a plugin replacement for SEM (and therefore the sem() function)
- when we wrote the SAM paper (2021), LSAM had the following limitations:
 - all indicators of the latent variables should be observed (i.e., no higherorder factor models)
 - all indicators of the latent variables should be continuous (i.e., no binary/ordinal indicators)
 - the 'Lambda' matrix of factor loadings should not be rank deficient
 - there cannot be a priori fixed (to zero) elements in the unrestricted variance-covariance matrix of the latent variables
 - the structural model contains linear relations only (no interactions)
 - to compute two-step standard errors, we need to switch back to the global (measurement + structural) model

LSAM: limitations and missing features

- the goal of LSAM —and its implementation in the sam() function— is to be a plugin replacement for SEM (and therefore the sem() function)
- when we wrote the SAM paper (2021), LSAM had the following limitations:
 - all indicators of the latent variables should be observed (i.e., no higher-order factor models)
 - all indicators of the latent variables should be continuous (i.e., no binary/ordinal indicators)
 - the 'Lambda' matrix of factor loadings should not be rank deficient
 - there cannot be a priori fixed (to zero) elements in the unrestricted variance-covariance matrix of the latent variables
 - the structural model contains linear relations only (no interactions)
 - to compute two-step standard errors, we need to switch back to the global (measurement + structural) model

higher-order measurement models

higher-order measurement models

- the first-order factor model: $oldsymbol{y}=oldsymbol{\Lambda}_1oldsymbol{\eta}_1+oldsymbol{\epsilon}_1$
- the second-order factor model: $oldsymbol{\eta}_1 = oldsymbol{\Lambda}_2 oldsymbol{\eta}_2 + oldsymbol{\epsilon}_2$
- substituting the second in the first:

$$egin{aligned} m{y} &= m{\Lambda}_1(m{\Lambda}_2m{\eta}_2 + m{\epsilon}_2) + m{\epsilon}_1 \ &= m{\Lambda}_1m{\Lambda}_2m{\eta}_2 + m{\Lambda}_1m{\epsilon}_2 + m{\epsilon}_1 \ &= m{\Lambda}^\starm{\eta}_2 + m{\epsilon}^\star \end{aligned}$$

- in the second-order case: $\Lambda^{\star} = \Lambda_1 \Lambda_2$ and $\Theta^{\star} = \Lambda_1 \text{Var}(\epsilon_2) \Lambda_1^T + \Theta_1$
- in general, we have ${f \Lambda}^\star = {f \Lambda}_1 ({f I} {f B})^{-1}$ and

$$\mathbf{\Theta}^{\star} = (\mathbf{I} - \mathbf{B})^{-1} \operatorname{Var}(\boldsymbol{\epsilon}_{(-1)}) (\mathbf{I} - \mathbf{B})^{-1\prime} + \mathbf{\Theta}_{1},$$

where **B** contains the 'factor loadings' of the higher-order factors (only)

- we now use Λ^\star and Θ^\star when constructing the mapping matrix ${\bf M}$

where $\operatorname{Var}(y^*)$ is the matrix of polychoric (or tetrachoric, or polyserial) correlations

- warning: this only works if the *indicators* of the latent variables are binary/ordinal
- not working yet: the structural model contains (endogenous) binary/ordinal variables

Department of Data Analysis

binary or ordinal indicators in the measurement model

- for every measurement block, we use (D)WLS to estimate the model parameters
- · but instead of using

we now need to use

$$\operatorname{Var}(\boldsymbol{\eta}) = \mathbf{M} \left[\operatorname{Var}(\boldsymbol{y}) - \boldsymbol{\Theta} \right] \mathbf{M}^T$$

$$\operatorname{Var}(\boldsymbol{\eta}) = \mathbf{M} \left[\operatorname{Var}(\boldsymbol{y}^{\star}) - \boldsymbol{\Theta} \right] \mathbf{M}^{T}$$

adding latent quadratic and interaction terms

• basic idea: find an explicit expression for

paper:

Rosseel, Y., Burghgraeve, E., Loh, W.W., Schermelleh-Engel, K. (2025). Structural after Measurement (SAM) approaches for accommodating latent quadratic and interaction effects. *Behavior Research Methods*. https://doi.org/10.3758/s13428-024-02532-y

• no two-step analytic standard errors yet; but bootstrapping is possible

work in progress: local two-step standard errors

- currently, to compute two-step corrected standard errors, we switch back to the global view (measurement + structural)
- in local SAM, we prefer to proceed (in the second step) with the sufficient statistics $E(\eta)$ and $Var(\eta)$ only
- to obtain two-step standard errors, we also need the 'Gamma' matrix $\Gamma(\eta)$ capturing the sampling variability of these sufficient statistics
- then, to obtain local two-step standard errors for the second step parameters (θ_2) , we can use the familiar (sandwich) formula for 'robust' standard errors:

$$\operatorname{Var}(\boldsymbol{\theta}_2) = \frac{1}{N} \left[(\Delta^T \,\mathcal{I}_1 \,\Delta)^{-1} \, (\Delta^T \,\mathcal{I}_1 \,\Gamma(\boldsymbol{\eta}) \,\mathcal{I}_1 \,\Delta) \, (\Delta^T \,\mathcal{I}_1 \,\Delta)^{-1} \right]$$

were \mathcal{I}_1 is the unit expected information matrix, and Δ is the Jacobian of the function that maps θ_2 to $\Sigma(\theta_2)$

how to obtain $\Gamma(\eta)$

- let \mathbf{s}_y be the vector of sample statistics, containing the elements of \bar{y} and vech[**S**]; the 'Gamma' matrix is then equal to N times the asymptotic variance matrix of the sample statistics: $\Gamma(\mathbf{s}_y) = N \operatorname{Var}(\mathbf{s}_y)$
- let s_{η} be the vector of sample statistics that we use in the second step; that is the elements of $E(\eta)$ and vech[Var(η)]
- let f be a mapping function that takes as input the sample statistics (s_y), and outputs s_η; using to the Delta method, we have

$$\operatorname{Var}(\mathbf{s}_{\eta}) = \Delta_f^T \operatorname{Var}(\mathbf{s}_y) \Delta_f$$

where Δ_f is the Jacobian of the mapping function f, and $\Gamma(\eta) = N \text{Var}(\mathbf{s}_{\eta})$

• reference:

Jennrich, R.I. (2008). Nonparametric estimation of standard errors in covariance analysis using the infinitesimal jackknife. *Psychometrika*, 73(4), 579–594.

last slide

- eventually, sam() should be able to replace sem() in all circumstances
- more work is needed:
 - models where (by design) the 'Lambda' matrix of factor loadings is not rank deficient and/or where the variance-covariance matrix of the latent variables contains a priori fixed (to zero) values
 - categorical endogenous variables in the structural part
 - local standard errors for everything
 - more analytic work to explain why/when sam() and sem() give similar/different results
- other news:
 - lavaan now supports composites! (on GitHub only)
 - lavaan goes functional (see talk tomorrow by Marc Vidal)

Thank you!

(questions?)

https://lavaan.org

https://lavaan.ugent.be/about/donate.html