
Department of Data Analysis Ghent University

The ‘Structural After Measurement’ (SAM)
approach to SEM

Yves Rosseel
Department of Data Analysis
Ghent University – Belgium

Pre-Conference Workshop – Meeting of the SEM Working Group
TU Chemnitz, 19 March, 2025

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 1 / 118



Department of Data Analysis Ghent University

Contents
1 Introduction 5

1.1 Overview of the workshop . . . . . . . . . . . . . . . . . . . . . 5
1.2 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The standard estimation approach in SEM . . . . . . . . . . . . . 8
1.4 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Structural-after-measurement (SAM) approaches 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Early SAM approaches . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Overview of SAM approaches (for SEM) . . . . . . . . . . . . . 35
2.4 Potential advantages of a SAM approach . . . . . . . . . . . . . . 36
2.5 Critique on the SAM approach . . . . . . . . . . . . . . . . . . . 37
2.6 Related techniques . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Replacing the latent variables by (‘factor’) scores 39
3.1 Factor scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 (Uncorrected) factor score regression (UFSR) . . . . . . . . . . . 48

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 2 / 118



Department of Data Analysis Ghent University

3.3 Skrondal & Laake (2001) . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Correlation-preserving factor scores . . . . . . . . . . . . . . . . 55
3.5 Sum scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Instrumental variables . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Two-step standard errors . . . . . . . . . . . . . . . . . . . . . . 64

4 Computing summary statistics for latent variables 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 The method of Croon (2001) . . . . . . . . . . . . . . . . . . . . 67
4.3 Local SAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Application 1: adding latent quadratic and interaction terms . . . . 79
4.5 Application 2: noniterative SEM . . . . . . . . . . . . . . . . . . 84
4.6 Application 3: comparing structural relations across many groups 85

5 SAM: other approaches 86
5.1 The single-indicator (SI) approach . . . . . . . . . . . . . . . . . 86
5.2 Global SAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Consistency versus MSE 94

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 3 / 118



Department of Data Analysis Ghent University

6.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Bias, variability and mean squared error (MSE) . . . . . . . . . . 96

7 SAM: software implementation 103

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 4 / 118



Department of Data Analysis Ghent University

1 Introduction

1.1 Overview of the workshop
• provide an overview of SAM approaches:

– replacing the latent variables by (‘factor’) scores

– computing summary statistics—the mean vector and (co)variance matrix—
for the latent variables

– the single-indicator (SI) approach

– global SAM

• why/when should we (not) consider SAM approaches?

• special attention: local SAM

• which one to choose? Consistency versus mean squared error (MSE)

• if time permits, practical session
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1.2 The setting
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• we focus on ‘large’ models with many (say, > 100) parameters:

– many constructs (motivation, ability, personality traits, . . . )

– each construct is measured by a set of (observed) indicators

– many ‘background’ variables (age, gender, . . . )

– multilevel data, missing data, . . .

• we are mostly interested in the structural part of the model:

– if not saturated: how well does the structural part fit?

– size of direct/indirect effects, hypothesis testing

• assumption: the measurement instruments for the latent variables are
well established, and fit (reasonably) well

– SAM approaches should not be used to ‘test’ the quality of your mea-
surement instruments

• in addition: the sample size may not be very large (say, N = 150)
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1.3 The standard estimation approach in SEM
• all parameters (measurement and structural) are estimated jointly

• we call this ‘joint’ or ‘system-wide’ estimation (Bollen, 1996)

• frequentist: typically using an iterative optimization approach

– maximum likelihood (normal or Wishart) (ML)
– generalized least squares (GLS)
– (diagonally) weighted least squares, (D)WLS

• Bayesian: typically using MCMC

• advantages:

– one-step, and therefore efficient (in terms of sampling variability)
– inference is straightforward (standard errors, hypothesis testing)
– (relatively) easy to handle constraints, missing data, . . .
– well-known, well-studied
– widely available in software
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• works very well if the following conditions are met:

– correctly specified model

– large sample size

– (normally distributed data)

• but under less ideal circumstances, system-wide estimation does not (al-
ways) work well:

– bias

– instability (small changes in the data lead to very different results)

– nonconvergence

– improper solutions

• in addition: combining ‘structural’ and ‘measurement’ is not a good idea,
due to a phenomenon called ‘interpretational confounding’
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example interpretational confounding (stolen from Roy Levy, 2023)

η

y1 y2 y3 y4

η

y1 y2 y3

y4

• left panel: only measurement

• right panel: measurement + structural

• conceptually very different

• mathematically identical (in system-wide SEM)
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generate some data
> library(lavaan)
> Sigma <- matrix(c(2.0, 1.0, 1.0, 1.0, 1.5,

1.0, 2.0, 1.0, 1.0, 0.1,
1.0, 1.0, 2.0, 1.0, 0.1,
1.0, 1.0, 1.0, 2.0, 0.1,
1.5, 0.1, 0.1, 0.1, 2.0), nrow = 5, ncol = 5)

> rownames(Sigma) <- colnames(Sigma) <- c("y1", "y2", "y3", "y4", "z")
> Sigma

y1 y2 y3 y4 z
y1 2.0 1.0 1.0 1.0 1.5
y2 1.0 2.0 1.0 1.0 0.1
y3 1.0 1.0 2.0 1.0 0.1
y4 1.0 1.0 1.0 2.0 0.1
z 1.5 0.1 0.1 0.1 2.0

> set.seed(3)
> Data <- MASS::mvrnorm(n = 200L, mu = rep(0, 5), Sigma = Sigma)
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R code left panel (model1)
> model1 <- '

f =˜ y1 + y2 + y3 + y4
'
> fit1 <- sem(model1, data = Data)
> summary(fit1)

lavaan 0.6-20.2277 ended normally after 25 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 8

Number of observations 200

Model Test User Model:

Test statistic 0.140
Degrees of freedom 2
P-value (Chi-square) 0.932

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured
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Latent Variables:
Estimate Std.Err z-value P(>|z|)

f =˜
y1 1.000
y2 0.996 0.123 8.122 0.000
y3 0.894 0.116 7.689 0.000
y4 0.911 0.120 7.608 0.000

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 1.096 0.148 7.388 0.000

.y2 0.837 0.127 6.601 0.000

.y3 0.987 0.128 7.694 0.000

.y4 1.081 0.138 7.820 0.000
f 1.031 0.208 4.959 0.000
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R code right panel (model2)
> model2 <- '

f =˜ y1 + y2 + y3
y4 ˜ f

'
> fit2 <- sem(model2, data = Data)
> summary(fit2)

lavaan 0.6-20.2277 ended normally after 26 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 8

Number of observations 200

Model Test User Model:

Test statistic 0.140
Degrees of freedom 2
P-value (Chi-square) 0.932

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured
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Latent Variables:
Estimate Std.Err z-value P(>|z|)

f =˜
y1 1.000
y2 0.996 0.123 8.122 0.000
y3 0.894 0.116 7.689 0.000

Regressions:
Estimate Std.Err z-value P(>|z|)

y4 ˜
f 0.911 0.120 7.608 0.000

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 1.096 0.148 7.388 0.000

.y2 0.837 0.127 6.601 0.000

.y3 0.987 0.128 7.694 0.000

.y4 1.081 0.138 7.820 0.000
f 1.031 0.208 4.959 0.000
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change outcome variable (y4 becomes z) (model3)
> model3 <- '

f =˜ y1 + y2 + y3
z ˜ f

'
> fit3 <- sem(model3, data = Data)
> summary(fit3)

lavaan 0.6-20.2277 ended normally after 58 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 8

Number of observations 200

Model Test User Model:

Test statistic 50.659
Degrees of freedom 2
P-value (Chi-square) 0.000

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 16 / 118



Department of Data Analysis Ghent University

Latent Variables:
Estimate Std.Err z-value P(>|z|)

f =˜
y1 1.000
y2 0.138 0.053 2.601 0.009
y3 0.133 0.051 2.591 0.010

Regressions:
Estimate Std.Err z-value P(>|z|)

z ˜
f 0.276 0.087 3.156 0.002

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 -4.169 1.801 -2.315 0.021

.y2 1.740 0.173 10.071 0.000

.y3 1.699 0.168 10.086 0.000

.z 1.677 0.211 7.953 0.000
f 6.296 1.715 3.671 0.000
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interpretational confounding

• replacing y4 by z (= changing the structural part) also changes the parame-
ters of the measurement model

• if the resulting parameters of the measurement model imply a different ‘mean-
ing’ of the latent variable than was intended by the researcher, we have a
problem

• this problem was coined “interpretational confounding” by Burt (1976)

Burt, R.S. (1976). Interpretational confounding of unobserved variables
in structural equation models. Sociological Methods & Research, 5(1),
3–52.

• Burt (1976) already suggested the solution: first fit the measurement part of
the model, and then fit the structural part of the model
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solution: replace sem() by sam()
> fit3.sam <- sam(model3, data = Data)
> parameterEstimates(fit3.sam, remove.step1 = FALSE, ci = FALSE,

output = "text")

Latent Variables:
Step Estimate Std.Err z-value P(>|z|)

f =˜
y1 1 1.000
y2 1 0.969 0.139 6.977 0.000
y3 1 0.884 0.127 6.979 0.000

Regressions:
Step Estimate Std.Err z-value P(>|z|)

z ˜
f 2 0.540 0.121 4.471 0.000

Variances:
Step Estimate Std.Err z-value P(>|z|)

.y1 1 1.067 0.170 6.287 0.000

.y2 1 0.865 0.151 5.723 0.000

.y3 1 0.983 0.142 6.900 0.000

.z 2 1.846 0.195 9.462 0.000
f 2 1.059 0.226 4.678 0.000
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1.4 Running example
• throughout the workshop, we will make use of a simple ‘latent mediation’

example to illustrate the various estimation approaches

• we generate ‘perfect’ (population-level) data

> library(lavaan)
> pop.model <- '

# factor loadings
Y =˜ 1*y1 + 1.2*y2 + 0.8*y3 + 0.5*y4
M =˜ 1*m1 + 0.5*m2 + 0.5*m3 + 0.7*m4
X1 =˜ 1*x1 + 0.7*x2 + 0.6*x3 + 1.1*x4
X2 =˜ 1*x5 + 0.7*x6 + 0.6*x7 + 0.9*x8
X3 =˜ 1*x9 + 0.7*x10 + 0.6*x11 + 1.1*x12

# covariances among exogenous X1-X3 and Age
X1 ˜˜ 0.4*X2; X1 ˜˜ -0.2*X3; X2 ˜˜ 0.4*X3
Age ˜˜ 0.6*X1 + 0.7*X2 + 0.2*X3

# regression part
Y ˜ 0.25*X3 + 0.4*M + (-0.1)*Age
M ˜ -0.30*X1 + 1.1*X2

'
> set.seed(1234)
> Data <- simulateData(pop.model, sample.nobs = 200L, empirical = TRUE)
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diagram
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fitting the model using traditional SEM
> model <- '

# measurement part
Y =˜ y1 + y2 + y3 + y4
M =˜ m1 + m2 + m3 + m4
X1 =˜ x1 + x2 + x3 + x4
X2 =˜ x5 + x6 + x7 + x8
X3 =˜ x9 + x10 + x11 + x12

# structural part
Y ˜ X3 + M + Age
M ˜ X1 + X2
Age ˜˜ X1 + X2 + X3

'
> fit.sem <- sem(model, data = Data, estimator = "ML")
> parameterEstimates(fit.sem, ci = FALSE, output = "text")[21:25,]

Regressions:
Estimate Std.Err z-value P(>|z|)

Y ˜
X3 0.250 0.108 2.307 0.021
M 0.400 0.086 4.676 0.000
Age -0.100 0.094 -1.060 0.289

M ˜
X1 -0.300 0.133 -2.262 0.024
X2 1.100 0.160 6.885 0.000
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upgrading Age to a latent variable (for convenience only)
> model2 <- '

# measurement part
Y =˜ y1 + y2 + y3 + y4
M =˜ m1 + m2 + m3 + m4
X1 =˜ x1 + x2 + x3 + x4
X2 =˜ x5 + x6 + x7 + x8
X3 =˜ x9 + x10 + x11 + x12
fAge =˜ 1*Age; Age ˜˜ 0*Age

# structural part
Y ˜ X3 + M + fAge
M ˜ X1 + X2

'
> fit.sem2 <- sem(model2, data = Data, estimator = "ML")
> parameterEstimates(fit.sem2, ci = FALSE, output = "text")[23:27,]

Regressions:
Estimate Std.Err z-value P(>|z|)

Y ˜
X3 0.250 0.108 2.307 0.021
M 0.400 0.086 4.676 0.000
fAge -0.100 0.094 -1.060 0.289

M ˜
X1 -0.300 0.133 -2.262 0.024
X2 1.100 0.160 6.885 0.000
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model-implied variance-covariance matrix latent variables

• the standard way (in lavaan) to extract the (co)variance matrix of the latent
variables:

> lavInspect(fit.sem, "cov.lv")

Y M X1 X2 X3
Y 1.441
M 0.880 2.036
X1 -0.054 0.140 1.000
X2 0.422 0.980 0.400 1.000
X3 0.430 0.500 -0.200 0.400 1.000

• unfortunately, this matrix only contains the latent variables, not the observed
covariate ‘Age’

• that is why (in fit.sem2) we ‘upgraded’ Age to a latent variable (fAge);
lavaan now thinks it is a latent variable, and includes it in the (co)variance
matrix of the latent variables

> Var.eta <- lavInspect(fit.sem2, "cov.lv")
> Var.eta
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Y M X1 X2 X3 fAge
Y 1.441
M 0.880 2.036
X1 -0.054 0.140 1.000
X2 0.422 0.980 0.400 1.000
X3 0.430 0.500 -0.200 0.400 1.000
fAge 0.186 0.590 0.600 0.700 0.200 1.000

• fact: if we could somehow compute this matrix, then we can obtain all the
regression coefficients using two regressions (one for ‘Y’, and one for ‘M’)

• recall the well known formula to estimate the regression coefficients in a
linear model:

β̂ = (X′X)−1X′y

• an equivalent formula based on the sample covariance matrix (S):

β̂ = (Sxx)
−1Sxy

where Sxx is the part of S where the rows and columns correspond to the
predictors (‘x’), while Sxy is the part of S where the rows correspond to the
predictors and the (single) column corresponds to the outcome (‘y’)
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• regression for ‘Y’:

> # compute regression coefficients for Y
> beta.Y <- ( solve(Var.eta[c("X3", "M", "fAge"), c("X3", "M", "fAge")]) %*%

Var.eta[c("X3", "M", "fAge"), "Y", drop = FALSE] )
> round(beta.Y, 3)

Y
X3 0.25
M 0.40
fAge -0.10

• regression for ‘M’:

> # compute regression coefficients for M
> beta.M <- ( solve(Var.eta[c("X1", "X2"), c("X1", "X2")]) %*%

Var.eta[c("X1", "X2"), "M", drop = FALSE] )
> round(beta.M, 3)

M
X1 -0.3
X2 1.1
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2 Structural-after-measurement (SAM) approaches

2.1 Introduction
• SAM is an umbrella term to describe many different (estimation) approaches

that have the following in common:

1. first step: we estimate the parameters related to the measurement part

2. second step: we estimate the parameters related to the structural part

• SAM is an estimation approach, not a model-building approach; the main
goal is to find (good quality) point estimates for the structural (i.e., regres-
sion) parameters in the model

• ideally, we also wish to obtain (good quality) standard errors and test statis-
tics for these structural parameters (for statistical inference)

• the term SAM was used by Rosseel & Loh (2024), to avoid the overloaded
terms ‘two-step’, ‘two-stage’, . . . (and was first used during a presentation I
gave at WWU Münster, Jan 2020)
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2.2 Early SAM approaches
• some early references:

– Burt (1976)
– Hunter & Gerbing (1982)
– Lance, Cornwell & Mulaik (1988)

• SAM approaches never received much attention in the SEM literature

• but SAM is the default approach in many other fields

– ‘measurement error models’ in statistics
– item response theory (IRT) (e.g., plausible values)
– partial least squares (PLS)

• many applied researchers in psychology, educational sciences, . . . replace
latent variables by sum scores (or factor scores); this is a SAM approach

• imagine an applied researcher that is in doubt whether to use SEM or not
and visits a statistical consultant:
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applied researcher talking to a statistical consultant

(researcher:) I was thinking of computing factor scores, and then do a
regression in SPSS.
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applied researcher talking to a statistical consultant

(researcher:) I was thinking of computing factor scores, and then do a
regression in SPSS.

(consultant:) Oh come on! You should use SEM. SEM is the gold
standard.
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applied researcher talking to a statistical consultant

(researcher:) I was thinking of computing factor scores, and then do a
regression in SPSS.

(consultant:) Oh come on! You should use SEM. SEM is the gold
standard.

(researcher:) Yes, I know. You have told me many times. But this is a
really big model. And I am only interested in the regression part.
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applied researcher talking to a statistical consultant

(researcher:) I was thinking of computing factor scores, and then do a
regression in SPSS.

(consultant:) Oh come on! You should use SEM. SEM is the gold
standard.

(researcher:) Yes, I know. You have told me many times. But this is a
really big model. And I am only interested in the regression part.

(consultant:) If you ignore the measurement error, your results will be
biased. This is really bad. You should use SEM.
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applied researcher talking to a statistical consultant

(researcher:) I was thinking of computing factor scores, and then do a
regression in SPSS.

(consultant:) Oh come on! You should use SEM. SEM is the gold
standard.

(researcher:) Yes, I know. You have told me many times. But this is a
really big model. And I am only interested in the regression part.

(consultant:) If you ignore the measurement error, your results will be
biased. This is really bad. You should use SEM.

(researcher:) So using factor scores followed by regression is really a
silly idea? I have seen it in many journals.
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applied researcher talking to a statistical consultant

(researcher:) I was thinking of computing factor scores, and then do a
regression in SPSS.

(consultant:) Oh come on! You should use SEM. SEM is the gold
standard.

(researcher:) Yes, I know. You have told me many times. But this is a
really big model. And I am only interested in the regression part.

(consultant:) If you ignore the measurement error, your results will be
biased. This is really bad. You should use SEM.

(researcher:) So using factor scores followed by regression is really a
silly idea? I have seen it in many journals.

(consultant:) Yeah, idiots are everywhere. You may get away with it
in some journals, but not in a good journal. You must use SEM.
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2.3 Overview of SAM approaches (for SEM)
• replacing the latent variables by (‘factor’) scores

– (uncorrected) factor score regression (UFSR)

– correlation-preserving factor scores

– sum scores

– instrumental variables

• computing (‘corrected’) summary statistics for the latent variables

– Wall & Amemiya (2000), Croon (2001), Devlieger et al. (2016, 2017)

– local SAM (Rosseel & Loh, 2024)

• the single-indicator (SI) approach

• global SAM
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2.4 Potential advantages of a SAM approach
• reduced model complexity: the ‘structural’ model is often just a regression

model, or a path analysis

• if the model is correctly specified, many SAM approaches (but not all) give
identical results as SEM (for the structural part)

• (almost) no convergence issues, increased stability (in particular in small
samples)

• less variability (lower MSE) for structural parameters

• in certain cases (but not always): more robust against local (structural) model
misspecifications

• no interpretational confounding

• very flexible: the decoupling of ‘measurement’ and ‘structural’ allows for
tackling much more complicated models (even with modest sample sizes)

• . . .
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2.5 Critique on the SAM approach
• the (naive) standard errors in the second step are wrong (because they ignore

the uncertainty that stems from the first step)

• in general: inference (e.g., standard errors, confidence intervals, test statis-
tics) is (more) complicated

• multiple step methods are less efficient (more sampling variability)

• Fornell and Yi (1992) gave an example where a misspecified (but well-
fitting) measurement model was embedded in a correctly specified structural
model; but the (global) model fit of the full model suggested that the model
did not fit well, thus incorrectly implying a misspecified structural model

• do (latent) constructs ‘exist’ on their own? or are they only meaningful when
embedded in a context (i.e., a structural model)?

• software packages only allow for joint estimation
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2.6 Related techniques
• latent class analysis:

Bakk, Z., & Kuha, J. (2021). Relating latent class membership to exter-
nal variables: An overview. British Journal of Mathematical and Statis-
tical Psychology, 74(2), 340–362.
https://doi.org/10.1111/bmsp.12227 (Open Access)

• item response theory (IRT):

Kuha, J., & Bakk, Z. (arxiv.org). Two-step estimation of latent trait mod-
els.
https://arxiv.org/pdf/2303.16101.pdf

• Bayesian SAM:

Levy, R. (2023). Precluding interpretational confounding in factor anal-
ysis with a covariate or outcome via measurement and uncertainty pre-
serving parametric modeling. Structural Equation Modeling: A Multi-
disciplinary Journal.
https://doi.org/10.1080/10705511.2022.2154214
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3 Replacing the latent variables by (‘factor’) scores
• general idea: we try to compute individual scores for each latent variable

that is involved in the structural part of the model

• once we have these scores, we treat them as if they were observed

• we then perform an observed-only procedure (e.g., regression or path-analysis)
using these scores (and perhaps other observed covariates)

• there are various ways to compute these scores:

– we compute so-called ‘factor scores’ (e.g., Bartlett or regression factor
scores) for all the latent variables

– we compute the sum or the mean of the latent variable indicators

– we just take the observed scores of the first (‘marker’) indicator of the
latent variable
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3.1 Factor scores
• the standard factor model:

y = Λη + ϵ

– y and ϵ are P -dimensional continuous random vectors
– Λ is a P ×M matrix of factor loadings
– η is a M -dimensional random vector of latent variables
– we denote Var(ϵ) = Θ

• we can use CFA to estimate all the model parameters

• here, we only consider linear factor scores of the form

f = η̂ = Ay

• different types of factor scores can be constructed by choosing a different
way to compute the M × P ‘factor score matrix’ A

• three important types: 1) ‘regression’ factor scores, 2) Bartlett factor scores,
and 3) correlation-preserving factor scores
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regression factor scores (Thomson, 1934)

• Thomson regarded the quest for factor scores as a (multivariate) regression
problem: we wish to ‘predict’ η as a (linear) function of the observed vari-
ables y:

η = Ay + r

• it is well known that the OLS solution is given by

A = Cov(η,y)Var(y)−1

• because Var(y) = Σ and Cov(η,y) = Var(η)Λ′, this results in the follow-
ing well known expression for A:

Areg = Var(η)Λ′Σ−1

• an equivalent expression is

Areg = (Var(η)−1 +Λ′Θ−1Λ)−1Λ′Θ−1
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• properties:

– regression factor scores are ‘best’ in the sense that they minimize the
MSE

– but they are not (conditionally) unbiased: E(f |η) ̸= η

– Var(f) is not equal to Var(η) (i.e., not correlation-preserving)

• computing regression factor scores in lavaan:

> fs.reg <- lavPredict(fit.sem)
> head(fs.reg)

Y M X1 X2 X3
[1,] -0.028224721 -0.8846010 -0.17290284 -0.9824259 0.08455516
[2,] -1.240496204 -1.3514714 -0.74127499 -0.7529585 -0.96667911
[3,] -0.971195982 -0.5307034 0.60926672 -0.2105924 -0.49018971
[4,] 1.595272994 1.3306954 -0.65291235 0.7840847 2.05366756
[5,] -0.700829697 -1.3379027 0.03224246 -0.9103079 -1.03610866
[6,] -0.006359753 0.1922130 1.11774632 0.5307825 -0.69236171

• very popular; default in many software packages
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Bartlett (1937, 1938) factor scores

• Bartlett used the principle of maximum likelihood to find ‘good’ factor scores

• given y, Λ and Θ, we need to find η that maximizes the following function:

f(η) = const − 1

2
(y −Λη)TΘ−1(y −Λη)

• equivalently, we can minimize the weighted least squares (WLS) criterion

f(η) = (y −Λη)TΘ−1(y −Λη)

• it is well known that the WLS solution for η is given by

η̂ = f = (ΛTΘ−1Λ)−1ΛTΘ−1 y

• therefore, the factor score matrix used for Bartlett factor scores is given by

Abar = (ΛTΘ−1Λ)−1ΛTΘ−1
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• properties:

– the MSE is (slightly) larger than the MSE for regression factor scores

– Bartlett factor scores are conditionally unbiased, that is E(f |η) = η

– Var(f) is not equal to Var(η) (i.e., not correlation-preserving)

• computing Bartlett factor scores in lavaan:

> fs.bar <- lavPredict(fit.sem, method = "Bartlett")
> head(fs.bar)

Y M X1 X2 X3
[1,] 0.15144396 -0.5282003 0.3864508 -1.2292747 0.4506464
[2,] -1.26183316 -1.1792206 -0.7200066 0.1304861 -1.1825560
[3,] -1.18282373 -0.5415109 0.7580129 -0.4356033 -0.5191142
[4,] 1.71834988 1.1929370 -0.8850225 0.5464266 2.5861810
[5,] -0.59019076 -1.1978196 0.3701585 -0.6595145 -1.1726745
[6,] -0.08347654 -0.2613428 0.9606375 0.2891287 -1.0844284
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correlation-preserving factor scores

• correlation-preserving factor scores have the property that Var(f) = Var(η)

• a better name would have been ‘covariance-preserving’ or ‘structure-preserving’
factor scores

• first introduced by Anderson & Rubin (1956) for orthogonal factors

• general case: Green (1969), McDonald (1981), Krijnen, Wansbeek and ten
Berge (1996)

• the ‘regression’ version (Green 1969):

Agreen = Var(η)1/2 (Var(η)3/2ΛTΣ−1ΛVar(η)3/2)−1/2 Var(η)3/2Λ′Σ−1/2 Σ−1/2

• the ‘Bartlett’ version (Krijnen’s determinant best version):

Adet = Var(η)1/2 (Var(η)1/2ΛTΣ−1ΛVar(η)1/2)−1/2 Var(η)1/2Λ′Σ−1/2 Σ−1/2

• it turns out that we can also compute them by ‘transforming’ the regression
or Bartlett factor scores
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• properties:

– MSE is the largest of the three types

– not conditionally unbiased; E(f |η) ̸= η

– but of course correlation-preserving: Var(f) = Var(η)

• computing correlation-preserving (Bartlett) factor scores in lavaan:

> fs.cpbar <- lavPredict(fit.sem, method = "Bartlett", transform = TRUE)
> head(fs.cpbar)

Y M X1 X2 X3
[1,] 0.08678644 -0.6752758 0.06857263 -1.0310056 0.2480118
[2,] -1.22439381 -1.1956105 -0.71204975 -0.3687312 -1.0373245
[3,] -1.08359990 -0.5730704 0.64651277 -0.3319827 -0.5211020
[4,] 1.65398192 1.2619023 -0.74443267 0.7049411 2.2981337
[5,] -0.63420336 -1.2348187 0.18017539 -0.7944636 -1.0937451
[6,] -0.08924933 -0.1018241 1.02362855 0.3531652 -0.8931581

• (unfortunately) almost never used in practice
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factor indeterminacy

• there is not a single way to compute factor scores; there are many ways,
some of them have ‘good’ properties

• this is called ‘factor indeterminacy’

• in particular when the interest is in individual factor scores, this is problem-
atic (different factor scores may result in a different ordering of the individ-
uals)

• but we will only be concerned with the ‘relation’ between factor scores

• therefore, all we care about is the variance-covariance matrix of the factor
scores Var(f)

• the fact that Var(f) ̸= Var(η) for regression and Bartlett factor scores has
important consequences

• reference: Steiger (1996)
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3.2 (Uncorrected) factor score regression (UFSR)
• the idea of factor score regression is simple: we replace all latent variables

by factor scores

• then, in a follow up analysis, we treat these factor scores as if they were
observed

• traditionally, only regression (or Bartlett) factor scores have been used in
FSR

• but this is problematic, because for these factor scores, we have that Var(f) ̸=
Var(η)

• as a result, uncorrected FSR is not ‘consistent’: the regression coefficients
that we obtain in the follow-up analysis will not match the population values,
even if the model is correct and the sample size goes to infinity

• this has been well documented in the (SEM) literature, and has contributed
to the widely spread opinion that FSR is not a good practice
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example uncorrected FSR with regression factor scores

• first step: compute factor scores (and add observed covariates)

> # compute regression factor scores
> FS.reg <- as.data.frame(lavPredict(fit.sem2, method = "regression"))

• regression for ‘Y’:

> fit.y <- lm(Y ˜ X3 + M + fAge, data = FS.reg)
> round(coef(fit.y), 3)

(Intercept) X3 M fAge
0.000 0.275 0.473 -0.148

• regression for ’M’:

> fit.m <- lm(M ˜ X1 + X2, data = FS.reg)
> round(coef(fit.m), 3)

(Intercept) X1 X2
0.000 -0.450 1.327

• not the same as the population values
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example uncorrected FSR with Bartlett factor scores

• first step: compute factor scores (and add observed covariates)

> # compute regression factor scores
> FS.bar <- as.data.frame(lavPredict(fit.sem2, method = "Bartlett"))

• regression for ‘Y’:

> fit.y <- lm(Y ˜ X3 + M + fAge, data = FS.bar)
> round(coef(fit.y), 3)

(Intercept) X3 M fAge
0.000 0.212 0.315 -0.042

• regression for ’M’:

> fit.m <- lm(M ˜ X1 + X2, data = FS.bar)
> round(coef(fit.m), 3)

(Intercept) X1 X2
0.000 -0.120 0.747

• not the same as the population values
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the fundamental problem with FSR

• for regression and Bartlett regression scores, we have Var(f) ̸= Var(η); as a
result, all regressions based on Var(f) will result in bias

• this is true even if the sample size goes to infinity

• recall that the ‘correct’ Var(η) equals

> round(Var.eta, 3)

Y M X1 X2 X3 fAge
Y 1.441
M 0.880 2.036
X1 -0.054 0.140 1.000
X2 0.422 0.980 0.400 1.000
X3 0.430 0.500 -0.200 0.400 1.000
fAge 0.186 0.590 0.600 0.700 0.200 1.000

• Var(f) for regression factor scores:

> N <- nrow(FS.reg)
> FS.reg.cov <- cov(FS.reg) * (N - 1) / N
> round(FS.reg.cov, 3)
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Y M X1 X2 X3 fAge
Y 1.206 0.848 -0.051 0.415 0.416 0.186
M 0.848 1.692 0.154 0.920 0.494 0.590
X1 -0.051 0.154 0.796 0.385 -0.171 0.600
X2 0.415 0.920 0.385 0.823 0.375 0.700
X3 0.416 0.494 -0.171 0.375 0.773 0.200
fAge 0.186 0.590 0.600 0.700 0.200 1.000

• Var(f) for Bartlett factor scores:

> FS.bar.cov <- cov(FS.bar) * (N - 1) / N
> round(FS.bar.cov, 3)

Y M X1 X2 X3 fAge
Y 1.741 0.880 -0.054 0.422 0.430 0.186
M 0.880 2.539 0.140 0.980 0.500 0.590
X1 -0.054 0.140 1.327 0.400 -0.200 0.600
X2 0.422 0.980 0.400 1.376 0.400 0.700
X3 0.430 0.500 -0.200 0.400 1.327 0.200
fAge 0.186 0.590 0.600 0.700 0.200 1.000

• note: the Bartlett based variance-covariance matrix is very close, except for
the variances of the latent variables
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3.3 Skrondal & Laake (2001)
• Skrondal & Laake (2001) noticed a remarkable result: if we use (blockwise)

‘Bartlett’ factor scores for the ‘dependent’ variable(s), and (blockwise) re-
gression factor scores for the ‘independent’ variable(s), the resulting regres-
sion coefficients are consistent again

• the regression for ‘Y’:

> model.y.indep <- '
X3 =˜ x9 + x10 + x11 + x12
M =˜ m1 + m2 + m3 + m4
fAge =˜ Age; Age ˜˜ 0*Age

'
> fit.y.indep <- cfa(model.y.indep, data = Data)
> SL.y.indep <- lavPredict(fit.y.indep, method = "regression")
> model.y.dep <- ' Y =˜ y1 + y2 + y3 + y4 '
> fit.y.dep <- cfa(model.y.dep, data = Data)
> SL.y.dep <- lavPredict(fit.y.dep, method = "Bartlett")
> FS.y <- as.data.frame(cbind(SL.y.dep, SL.y.indep))
> fit.y <- lm(Y ˜ X3 + M + fAge, data = FS.y)
> round(coef(fit.y), 3)

(Intercept) X3 M fAge
0.00 0.25 0.40 -0.10
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• the regression for ‘M’:

> model.m.indep <- '
X1 =˜ x1 + x2 + x3 + x4
X2 =˜ x5 + x6 + x7 + x8

'
> fit.m.indep <- cfa(model.m.indep, data = Data)
> SL.m.indep <- lavPredict(fit.m.indep, method = "regression")
> model.m.dep <- ' M =˜ m1 + m2 + m3 + m4 '
> fit.m.dep <- cfa(model.m.dep, data = Data)
> SL.m.dep <- lavPredict(fit.m.dep, method = "Bartlett")
> FS.m <- as.data.frame(cbind(SL.m.dep, SL.m.indep))
> fit.m <- lm(M ˜ X1 + X2, data = FS.m)
> round(coef(fit.m), 3)

(Intercept) X1 X2
0.0 -0.3 1.1

• this works for all recursive models, but a separate analysis is needed for each
endogenous latent variable

• but only for the unstandardized solution; the ‘standardized’ solution is still
biased, because we have no (consistent) estimate for the total variance of the
outcome variable (recall: βz = sx

sy
β)
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3.4 Correlation-preserving factor scores
• what if we use correlation-preserving factor scores (instead of regression or

Bartlett factor scores)?

• the regression for ‘Y’:

> fs.cpreg <- lavPredict(fit.sem2, method = "regression", transform = TRUE)
> FS.cpreg <- as.data.frame(fs.cpreg)
> fit.y <- lm(Y ˜ X3 + M + fAge, data = FS.cpreg)
> round(coef(fit.y), 3)

(Intercept) X3 M fAge
0.00 0.25 0.40 -0.10

• the regression for ‘M’:

> fit.m <- lm(M ˜ X1 + X2, data = FS.cpreg)
> round(coef(fit.m), 3)

(Intercept) X1 X2
0.0 -0.3 1.1

• it works equally well with the ‘Bartlett’ version
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• that we obtain the correct results is of course due to the fact that for correlation-
preserving factor scores, we have that Var(f) = Var(η)

• it is remarkable that these correlation-preserving factor scores are almost
never used in the applied literature

• in fact, it turns out that correlation-preserving factor scores work really well,
as shown in an extensive simulation study reported in Chapter 4 of the PhD
thesis of Jasper Bogaert (a paper is under preparation)

• they are a good alternative for other (consistent) approaches that we will
discuss in the next section

• but (as with all FSR methods), it is not easy to obtain ‘corrected’ standard
errors (for the regression coefficients) for valid inference
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3.5 Sum scores
• sum scores are a special type of factor scores

• they (implicitly) assume that:

1. all factor loadings are the same (say, equal to 1.0)

2. all residual variances of the indicators are equal to each other

• if this is approximately true, they can easily replace factor scores

• as an additional benefit, no CFA model needs to be fitted in order to obtain
the sum scores

• there is a renewed interested (and respect) in the recent SEM literature

• in the example below, we will use mean scores (instead of sum scores), so
that the scale of the regression coefficients is more in line with the population
values
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> Ymean <- rowSums(Data[, c("y1", "y2", "y3" ,"y4")])/4
> Mmean <- rowSums(Data[, c("m1", "m2", "m3" ,"m4")])/4
> X1mean <- rowSums(Data[, c("x1", "x2", "x3" ,"x4")])/4
> X2mean <- rowSums(Data[, c("x5", "x6", "x7" ,"x8")])/4
> X3mean <- rowSums(Data[, c("x9", "x10", "x11" ,"x12")])/4
> Age <- Data$Age

• regression for ‘Y’:

> fit.y <- lm(Ymean ˜ X3mean + Mmean + Age)
> round(coef(fit.y), 3)

(Intercept) X3mean Mmean Age
0.000 0.217 0.400 -0.033

• regression for ‘M’:

> fit.m <- lm(Mmean ˜ X1mean + X2mean)
> round(coef(fit.m), 3)

(Intercept) X1mean X2mean
0.000 -0.092 0.623
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sum scores (for Y) via CFA
> model.ysum <- '

Y =˜ 1*y1 + 1*y2 + 1*y3 + 1*y4
# equal residual variances per factor
y1 ˜˜ vy*y1; y2 ˜˜ vy*y2; y3 ˜˜ vy*y3; y4 ˜˜ vy*y4

'
> fit.ysum <- sem(model.ysum, data = Data, estimator = "ML")
> ysum.reg <- lavPredict(fit.ysum)[,1]
> cor(ysum.reg, Ymean)

[1] 1

> ysum.bar <- lavPredict(fit.ysum, method = "Bartlett")[,1]
> cor(ysum.bar, Ymean)

[1] 1

> head(cbind(ysum.reg, Ymean)) # regression: different scale

ysum.reg Ymean
[1,] 0.2289396 0.2892364
[2,] -0.9078576 -1.1469642
[3,] -0.8036490 -1.0153097
[4,] 1.0639416 1.3441567
[5,] -0.2207324 -0.2788677
[6,] 0.1059182 0.1338144
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> head(cbind(ysum.bar, Ymean)) # Bartlett: same scale

ysum.bar Ymean
[1,] 0.2892364 0.2892364
[2,] -1.1469642 -1.1469642
[3,] -1.0153097 -1.0153097
[4,] 1.3441567 1.3441567
[5,] -0.2788677 -0.2788677
[6,] 0.1338144 0.1338144

Reference:

Sijtsma K., Ellis J.L., Borsboom D. (2024). Recognize the Value
of the Sum Score, Psychometrics’ Greatest Accomplishment. Psy-
chometrika, 89(1), 84–117
https://doi.org/10.1007/s11336-024-09964-7
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3.6 Instrumental variables
• Bollen (1996) suggested to use the method of ‘instrumental variables’ (IVs)

in combination with two-stage least-squares (2SLS) to estimate the ‘regres-
sion’ coefficients in all the ‘equations’ in a SEM, one at a time

• this includes all the structural relations, but (optionally) also the factor load-
ings in the measurement blocks

• IV-2SLS is a commonly used estimation technique in econometrics

• Mandansky (1964) proposed IV-2SLS estimators for factor analysis models

• Hägglund (1982) and Jöreskog (1983) developed this further

• lavaan includes the FABIN2 and FABIN3 estimators for CFAs

• here, we will discuss only the estimation of the regression coefficients in the
structural part, as described in Bollen (1996)
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the IV-2SLS procedure

• key idea: replace each latent variable by its marker indicator

• then, everything is observed, and we can apply regression methods

• but because the error term is no longer independent from the predictors, we
cannot use OLS

• but we can use 2SLS: first we regress the predictor (‘x’) indicators on their
instruments; then we regress the outcome (‘y’) indicator on the predicted
values of the predictor indicators

• the problem is to find ‘good’ instruments: they must be correlated with the
predictor indicators, but uncorrelated with the error term of the equation

• Bollen showed that we can use the other indicators of the predictors (except
those that are involved in the equation) as instruments; as this is determined
by the model, this is referred to as ‘model implied instrumental variables’ or
MIIVs

• this is implemented in the R package ‘MIIVsem’
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R code for the IV-2SLS procedure
> # regress 'x' variables on IVs (for Y)
> fit.IV <- lm(cbind(x9, m1, Age) ˜ x1 + x2 + x3 + x4 + # X1

x5 + x6 + x7 + x8 + # X2
x10 + x11 + x12 + # X3
m2 + m3 + m4 + Age, data = Data) # M and Age

> # regress 'y' on predicted values 'x'
> fit.y <- lm(Data$y1 ˜ predict(fit.IV))
> round(coef(fit.y), 3)

(Intercept) predict(fit.IV)x9 predict(fit.IV)m1 predict(fit.IV)Age
0.00 0.25 0.40 -0.10

> # regress 'x' variables on IVs (for M)
> fit.IV <- lm(cbind(x1, x5) ˜ x2 + x3 + x4 + # X1

x6 + x7 + x8 + # X2
x10 + x11 + x12 + Age, data = Data) # X3 and Age

> # regress 'y' on predicted values 'x'
> fit.m <- lm(Data$m1 ˜ predict(fit.IV))
> round(coef(fit.m), 3)

(Intercept) predict(fit.IV)x1 predict(fit.IV)x5
0.0 -0.3 1.1
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3.7 Two-step standard errors
• so far, we only discussed point estimation

• some procedures are consistent, some are not

• but what about standard errors?

• the ‘naive’ standard errors that we obtain in the regression step in FSR are
(usually) not correct

• they fail to take the uncertainty of the first step into account

• analytic standard errors are (currently) only available for the IV-2SLS ap-
proach (see Bollen 1996)

• we can always use the bootstrap to obtain ‘correct’ standard errors for the
final regression coefficients (but this can be time consuming)

• analytic standard errors for FSR may also be possible with the ‘local’ method
as used in local SAM (work in progress)
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4 Computing summary statistics for latent variables

4.1 Introduction
• if our goal is (only) to compute the regression coefficients of the structural

relations, then we do not need the individual factor scores

• we only need the variance–covariance matrix Var(f) (and perhaps the mean
vector)

• let S = Var(y) be the sample covariance matrix of the observed data

• let A be the factor score matrix

• it is easy to show that:

Var(f) = Var(Ay) = AVar(y)AT = ASAT

• with the exception of correlation-preserving factor scores, the main reason
why uncorrected FSR is not consistent is because Var(f) ̸= Var(η)
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from Var(f) to Var(η)

• several authors have suggested to ‘correct’ Var(f) so that it coincides with
Var(η)

– Dijkstra (1981), Dijkstra & Henseler (2015): consistent PLS
– Fuller (1987): measurement error models
– Wall & Amemiya (2000, 2003): 2 stage method of moments (2SMM)

for polynomial SEM
– Croon (2002): ‘(Croon’s) corrections’ for latent variable models
– Rosseel & Loh (2024): local SAM

• instead of focusing on individual factor scores, these methods try to compute
a consistent estimate for Var(η) (and perhaps E(η) if needed)

• once we have these ‘summary statistics’, we can proceed in a second step
with a regression (or path analysis) and obtain consistent results for the struc-
tural relations (just like SEM)

• in addition, many of them provide ‘two-step corrected’ standard errors
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4.2 The method of Croon (2001)
• Croon (2001) considered a very general framework, including discrete latent

variables, and discrete observed indicators

• here, we only consider his approach for the continuous case (continuous
latent variables, continuous observed indicators)

• Croon’s corrections were originally expressed in scalar form; here, we will
present them in a more general form (although for simplicity, we will ignore
the meanstructure)

• we assume that we fitted all the measurement blocks, either one by one, in
subsets, or all together in one joint CFA

• therefore, we have estimates for Λ and Θ

• we also compute the factor score matrix A (either the regression or the
Bartlett version)

• furthermore, we define the matrices D = AΛ and E = AΘAT
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• Croon’s corrections can then be expressed as follows:

Var(η) = D−1 [Var(f)−E]D−T

= D−1
[
ASAT −E

]
D−T

= D−1
[
ASAT −AΘAT

]
D−T

= D−1 A [S−Θ] AT D−T

= (AΛ)−1A [S−Θ] AT (AΛ)−T

• if we use Bartlett factor scores, we have that D = AΛ = I and the last
expression simplifies to

Var(η) = Abar [S−Θ] AT
bar

• several papers showed that the ‘Method of Croon’ worked remarkably well,
and sometimes even better than SEM

• we will not provide an example here, because the ‘Method of Croon’ turns
out to be a special case of local SAM
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some references on the method of Croon

Devlieger, I., Mayer, A., & Rosseel, Y. (2016). Hypothesis testing using factor
score regression: A comparison of four methods. Educational and Psychological
Measurement, 76, 741–770.

Devlieger, I., & Rosseel, Y. (2017). Factor Score Path Analysis. Methodology, 13,
31–38.

Takane, Y., & Hwang, H. (2017). Comparisons among several consistent estima-
tors of structural equation models. Behaviormetrika, 45, 157–188.

Kelcey, B. (2019). A robust alternative estimator for small to moderate sample
SEM: Bias-corrected factor score path analysis. Addictive Behaviors, 94, 83–98.

Bogaert, J., Loh, W.W., & Rosseel, Y. (2023). A small sample correction for factor
score regression. Educational and Psychological Measurement, 83(3), 495–519.
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4.3 Local SAM
• the measurement model:

y = ν +Λη + ϵ

• to solve this for η, we proceed as follows:

ν +Λη + ϵ = y

Λη = y − ν − ϵ

MΛη = M [y − ν − ϵ]

η = M [y − ν − ϵ]

where M is M × P mapping matrix such that MΛ = IM

• we assume E(ϵ) = 0 and write Var(ϵ) = Θ; it follows that

E(η) = M [E(y)− ν]

Var(η) = M [Var(y)−Θ]MT
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local SAM: first stage

• first stage: estimation of the measurement part of the model (only)

• M is the number of latent variables; B is the number of measurement ‘blocks’

• three options:

1. B = 1: single CFA

2. B = M : as many ‘blocks’ as we have latent variables

3. B < M : if some blocks are ‘linked’ together

• we recommend B = M whenever possible (except if the reliabilites are very
low, and the number of indicators is small)

• measurement models that are ‘linked’ (due to cross-loadings, correlated resid-
uals, or equality constraints) should be fitted together, leading to B < M

• for each block, we can use ML, GLS, . . . , or we can we use noniterative
estimators
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local SAM: creating the mapping matrix M

• recall, the mapping matrix must chosen such that MΛ = IM

• three possible solutions for the mapping matrix M:

M = (ΛTΘ−1Λ)−1 ΛTΘ−1 (ML)

M = (ΛTS−1Λ)−1 ΛTS−1 (GLS)

M = (ΛTΛ)−1 ΛT (ULS)

• we then estimate E(η) and Var(η) as follows:

Ê(η) = M̂ [ȳ − ν̂]̂Var(η) = M̂ [S− Θ̂] M̂T

• M is called a mapping matrix because it ‘maps’ the (centered and error-
corrected) observed data to the latent space
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local SAM: second stage

• second stage: Ê(η) and ̂Var(η) are used to estimate the parameters in the
structural part of the model

• this can be done using ‘path analysis’, where we treat everything as ob-
served, and the data is presented via summary statistics

• we can use ML, GLS, . . .

• or we can use noniterative estimators: OLS (if the model is recursive) or
TSLS (if the model is not recursive)
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local SAM: further comments

• two-step corrected standard errors are available (see Appendix C in the SAM
paper); recently, we added ‘local’ standard errors

• local fit measures only (for each measurement block, for the structural part)

• the (co)variance matrix of the latent variables is always positive definite

• we can handle missing data (fiml or two-stage), categorical indicators, two-
level data (random intercepts only), latent interactions, higher-order mea-
surement models, . . .

• but still some limitations (we plan to address these limitations in future
work):

– the factor loading matrix (Λ) must have full column rank

– no support for (e.g., variance components) models where zeroes in the
variance-covariance matrix of the latent variables are needed in order
to identify the model
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example: fit measurement blocks, using B = M

> fit.Y <- sem('Y =˜ y1 + y2 + y3 + y4', data = Data)
> fit.M <- sem('M =˜ m1 + m2 + m3 + m4', data = Data)
> fit.X1 <- sem('X1 =˜ x1 + x2 + x3 + x4', data = Data)
> fit.X2 <- sem('X2 =˜ x5 + x6 + x7 + x8', data = Data)
> fit.X3 <- sem('X3 =˜ x9 + x10 + x11 + x12', data = Data)

> # assemble Lambda and Theta
> Lambda <- matrix(0, 20, 5)
> Lambda[ 1:4, 1] <- lavInspect(fit.Y, "est")$lambda
> Lambda[ 5:8, 2] <- lavInspect(fit.M, "est")$lambda
> Lambda[ 9:12, 3] <- lavInspect(fit.X1, "est")$lambda
> Lambda[13:16, 4] <- lavInspect(fit.X2, "est")$lambda
> Lambda[17:20, 5] <- lavInspect(fit.X3, "est")$lambda

> Theta <- lav_matrix_bdiag(lavInspect(fit.Y, "est")$theta,
lavInspect(fit.M, "est")$theta,
lavInspect(fit.X1, "est")$theta,
lavInspect(fit.X2, "est")$theta,
lavInspect(fit.X3, "est")$theta)
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example: compute ML version of the mapping matrix M
> Theta.inv <- solve(Theta)
> M <- solve(t(Lambda) %*% Theta.inv %*% Lambda) %*% t(Lambda) %*% Theta.inv

> # add age
> M <- lav_matrix_bdiag(M, matrix(1, nrow = 1L, ncol = 1L))
> Theta <- lav_matrix_bdiag(Theta, matrix(0, nrow = 1L, ncol = 1L))
> rownames(M) <- c("Y", "M", "X1", "X2", "X3", "Age")

> # compute (biased) sample covariance matrix 'S'
> N <- nrow(Data)
> S <- cov(Data) * (N - 1L)/N

> # compute Var(Eta)
> Var.eta <- M %*% (S - Theta) %*% t(M)
> round(Var.eta, 3)

Y M X1 X2 X3 Age
Y 1.441 0.880 -0.054 0.422 0.43 0.186
M 0.880 2.036 0.140 0.980 0.50 0.590
X1 -0.054 0.140 1.000 0.400 -0.20 0.600
X2 0.422 0.980 0.400 1.000 0.40 0.700
X3 0.430 0.500 -0.200 0.400 1.00 0.200
Age 0.186 0.590 0.600 0.700 0.20 1.000
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example: second stage – using OLS
> # compute regression coefficients for M
> beta.M <- ( solve(Var.eta[c("X1", "X2"), c("X1", "X2")]) %*%

Var.eta[c("X1", "X2"), "M", drop = FALSE] )
> round(beta.M, 3)

M
X1 -0.3
X2 1.1

> # compute regression coefficients for Y
> beta.Y <- ( solve(Var.eta[c("X3", "M", "Age"), c("X3", "M", "Age")]) %*%

Var.eta[c("X3", "M", "Age"), "Y", drop = FALSE] )
> round(beta.Y, 3)

Y
X3 0.25
M 0.40
Age -0.10
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example: using the sam() function
> fit.lsam <- sam(model = model, data = Data)
> parameterEstimates(fit.lsam, ci = FALSE, output = "text")[1:5,]

Regressions:
Estimate Std.Err z-value P(>|z|)

Y ˜
X3 0.250 0.109 2.299 0.021
M 0.400 0.087 4.581 0.000
Age -0.100 0.094 -1.060 0.289

M ˜
X1 -0.300 0.133 -2.249 0.025
X2 1.100 0.173 6.347 0.000
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4.4 Application 1: adding latent quadratic and interaction terms

y1

y2

y3

y4

y5

y6

η1

η2

y7 y8 y9 y10 y11 y12

η3 η4

η1η2 η21 η22

structural part
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• in the joint setting, adding latent quadratic/interaction terms is not trivial

• two popular methods are the product-indicator (PI) approach, and the so-
called ‘Latent Moderated Structural Equations’ (LMS) approach

• none of these scale well: they cannot handle many quadratic and latent in-
teraction terms simultaneously

• but if you can decouple the measurement and structural part, this becomes
feasible

• a very general SAM solution (allowing for polynomial relations between
latent variables) was already described in Wall & Amemiya (2000)

• the local SAM approach: find an explicit expression for

E(η ⊗ η) and Var(η ⊗ η)

where ⊗ denotes the tensor (or Kronecker) product
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local SAM and interaction/quadratic terms

• creating the ‘augmented’ vector η ⊗ η:

• several elements are duplicated

• based on the model, we select what we need

η =


1

η1

η2

η3

 η ⊗ η =



1

η1

η2

η3

η11

η1η1

η1η2

η1η3

η21

η2η1

η2η2

η2η3

η31

η3η1

η3η2

η3η3



=



1

η1

η2

η3

η1

η21
η1η2

η1η3

η2η1

η2

η22
η2η3

η3

η3η1

η3η2

η23
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the augmented (latent) sample statistics

• augmented mean vector:

E(η ⊗ η) = vec[Var(η)] + E(η)⊗ E(η)

• augmented variance-covariance matrix (simple version, assuming normality
for the measurement error):

Var(η⊗η) ≈ Var(f⊗f)−
[
Q+KmQ+QKT

m +KmQKT
m + Γ

⋆(NT )
22 (r)

]
where

Q = Var(η)⊗ Var(r) + E(η)E(η)T ⊗ Var(r)

and
Γ
⋆(NT )
22 (r) = (Im2 +Km) (Var(r)⊗ Var(r))

• Km is the commutation matrix

• Γ
⋆(NT )
22 (r) is the ‘Gamma’ matrix of the measurement error (r)
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implementation in lavaan
> model <- '

# measurement part
f1 =˜ y1 + y2 + y3
f2 =˜ y4 + y5 + y6
f3 =˜ y7 + y8 + y9

# structural part
f3 ˜ f1 + f2 + f1:f1 + f2:f2 + f1:f2

'
> fit <- sam(model, data = Data, se = "none") # or se = "bootstrap"

• two-step analytic standard errors can be obtained using the ‘local’ approach
(work in progress)

• recent paper:

Rosseel, Y., Burghgraeve, E., Loh, W.W., Schermelleh-Engel, K. (2025).
Structural after Measurement (SAM) approaches for accommodating la-
tent quadratic and interaction effects. Behavior Research Methods.
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4.5 Application 2: noniterative SEM
• for CFA, many noniterative estimators are available; some (i.e., the multiple

group method) perform better than ML in terms of mean squared error

Dhaene, S. & Rosseel, Y. (2023). An Evaluation of Non-Iterative Esti-
mators in Confirmatory Factor Analysis. Structural Equation Modeling:
A Multidisciplinary Journal.

• we can use these noniterative estimators for the measurement part in SAM

Dhaene, S., & Rosseel, Y. (2023). An Evaluation of Non-Iterative Esti-
mators in the Structural after Measurement (SAM) Approach to Struc-
tural Equation Modeling (SEM). Structural Equation Modeling: A Mul-
tidisciplinary Journal, 30(6), 926–940

• “[the] local SAM approach outperforms traditional SEM in small to mod-
erate samples (both in terms of convergence and MSE values), especially
when reliability drops. ”
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4.6 Application 3: comparing structural relations across many
groups

• reference (open access):

Perez Alonso, A.F., Rosseel, Y., Vermunt, J.K., & De Roover, K. (in
press). Mixture Multigroup Structural Equation Modeling: A Novel
Method for Comparing Structural Relations Across Many Groups. Psy-
chological Methods. https://doi.org/10.1037/met0000667

• relationships between latent variables are often different across groups (e.g.,
countries); but some groups may be similar in the sense that they have sim-
ilar values for the regression coefficients; we like to ‘discover’ these hidden
clusters of similar groups

• in a first step, we estimated the measurement part across all groups (fixing
the factor loadings to be the same across groups); this resulted in (model-
implied) latent (co)variance matrices for all the groups

• in a second step, a mixture modeling approach is used to find homogeneous
clusters that share similar regression coefficients
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5 SAM: other approaches

5.1 The single-indicator (SI) approach
• a good reference:

Savalei, V. (2019). A comparison of several approaches for con-
trolling measurement error in small samples. Psychological meth-
ods, 24(3), 352–370.

• if a first step, we estimate the measurement blocks, typically one by one, and
we compute factor scores for each latent variable

• alternatively, we could also directly compute sum (or mean) scores, without
fitting a measurement model

• in the second step, we fit the structural part; we keep the latent variables, but
we replace their indicators by a single indicator (either the factor scores or
the sum scores)
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setting the reliability of the single indicator

• the (single) factor loading is set to one

• the residual variance of the single indicator is fixed to a constant; let Yj be
the single indicator of the j-th latent variable; we set the residual variance
of Yj as follows:

Var(ϵj) = (1− RELj)Var(Yj)

• RELj reflects the ‘reliability’ of Yj

• there are (at least) three ways to choose the reliability:

1. we can estimate RELj based on the measurement model (‘model-based’)

2. we can provide a fixed guess (say, 0.7 or 0.8)

3. we can estimate the reliability using, for example, coefficient alpha

• therefore, several variants of this single indicator approach are possible
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SI + sum scores + fixed reliability (0.8)
> Ymean <- rowSums(Data[, c("y1", "y2", "y3" ,"y4")])/4
> Mmean <- rowSums(Data[, c("m1", "m2", "m3" ,"m4")])/4
> X1mean <- rowSums(Data[, c("x1", "x2", "x3" ,"x4")])/4
> X2mean <- rowSums(Data[, c("x5", "x6", "x7" ,"x8")])/4
> X3mean <- rowSums(Data[, c("x9", "x10", "x11" ,"x12")])/4
> CS <- data.frame(Y=Ymean, M=Mmean, X1=X1mean, X2=X2mean,

X3=X3mean, Age = Data$Age)

> res.Y <- (1 - 0.8)*var(Ymean)
> res.M <- (1 - 0.8)*var(Mmean)
> res.X1 <- (1 - 0.8)*var(X1mean)
> res.X2 <- (1 - 0.8)*var(X2mean)
> res.X3 <- (1 - 0.8)*var(X3mean)
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> # create model syntax
> model.si <- c("fY =˜ 1*Y", paste0("Y ˜˜ ", res.Y, "*Y"),

"fM =˜ 1*M", paste0("M ˜˜ ", res.M, "*M"),
"fX1 =˜ 1*X1", paste0("X1 ˜˜ ", res.X1, "*X1"),
"fX2 =˜ 1*X2", paste0("X2 ˜˜ ", res.X2, "*X2"),
"fX3 =˜ 1*X3", paste0("X3 ˜˜ ", res.X3, "*X3"),
"fAge =˜ 1*Age", "Age ˜˜ 0*Age")

> model.struc <- '
fY ˜ fX3 + fM + fAge
fM ˜ fX1 + fX2

'
> fit.si <- sem(c(model.si, model.struc), data = CS)
> parameterEstimates(fit.si, ci = FALSE, output = "text")[13:17,]

Regressions:
Estimate Std.Err z-value P(>|z|)

fY ˜
fX3 0.246 0.100 2.460 0.014
fM 0.513 0.098 5.216 0.000
fAge -0.080 0.082 -0.974 0.330

fM ˜
fX1 -0.186 0.092 -2.024 0.043
fX2 0.832 0.097 8.578 0.000
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SI + factor scores + model-based reliability
> fit.Y <- sem('Y =˜ y1 + y2 + y3 + y4', data = Data)
> fit.M <- sem('M =˜ m1 + m2 + m3 + m4', data = Data)
> fit.X1 <- sem('X1 =˜ x1 + x2 + x3 + x4', data = Data)
> fit.X2 <- sem('X2 =˜ x5 + x6 + x7 + x8', data = Data)
> fit.X3 <- sem('X3 =˜ x9 + x10 + x11 + x12', data = Data)

> fs.Y <- lavPredict(fit.Y, method = "Bartlett", fsm = TRUE)
> fs.M <- lavPredict(fit.M, method = "Bartlett", fsm = TRUE)
> fs.X1 <- lavPredict(fit.X1, method = "Bartlett", fsm = TRUE)
> fs.X2 <- lavPredict(fit.X2, method = "Bartlett", fsm = TRUE)
> fs.X3 <- lavPredict(fit.X3, method = "Bartlett", fsm = TRUE)
> FS <- data.frame(Y=fs.Y, M=fs.M, X1=fs.X1, X2=fs.X2,

X3=fs.X3, Age = Data$Age)

> A <- attr(fs.Y, "fsm")[[1]]; THETA <- lavInspect(fit.Y, "est")$theta
> res.Y <- drop(A %*% THETA %*% t(A))
> A <- attr(fs.M, "fsm")[[1]]; THETA <- lavInspect(fit.M, "est")$theta
> res.M <- drop(A %*% THETA %*% t(A))
> A <- attr(fs.X1, "fsm")[[1]]; THETA <- lavInspect(fit.X1, "est")$theta
> res.X1 <- drop(A %*% THETA %*% t(A))
> A <- attr(fs.X2, "fsm")[[1]]; THETA <- lavInspect(fit.X2, "est")$theta
> res.X2 <- drop(A %*% THETA %*% t(A))
> A <- attr(fs.X3, "fsm")[[1]]; THETA <- lavInspect(fit.X3, "est")$theta
> res.X3 <- drop(A %*% THETA %*% t(A))
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> # create model syntax
> model.si <- c("fY =˜ 1*Y", paste0("Y ˜˜ ", res.Y, "*Y"),

"fM =˜ 1*M", paste0("M ˜˜ ", res.M, "*M"),
"fX1 =˜ 1*X1", paste0("X1 ˜˜ ", res.X1, "*X1"),
"fX2 =˜ 1*X2", paste0("X2 ˜˜ ", res.X2, "*X2"),
"fX3 =˜ 1*X3", paste0("X3 ˜˜ ", res.X3, "*X3"),
"fAge =˜ 1*Age", "Age ˜˜ 0*Age")

> model.struc <- '
fY ˜ fX3 + fM + fAge
fM ˜ fX1 + fX2

'
> fit.si <- sem(c(model.si, model.struc), data = FS)
> parameterEstimates(fit.si, ci = FALSE, output = "text")[13:17,]

Regressions:
Estimate Std.Err z-value P(>|z|)

fY ˜
fX3 0.250 0.105 2.374 0.018
fM 0.400 0.079 5.088 0.000
fAge -0.100 0.094 -1.064 0.287

fM ˜
fX1 -0.300 0.130 -2.314 0.021
fX2 1.100 0.132 8.355 0.000

• note: when using Bartlett factor scores, the diagonal elements of E =
AΘAT contain the needed residual variances
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5.2 Global SAM
• global SAM is very close to regular SEM

• in a first step, we estimate the parameters of the measurement blocks (either
one by one, or in a single CFA)

• in a second step, we fit the full SEM, but we fix the values of the measure-
ment parameters to the values we obtained in the first step; they are no longer
free parameters

• this is the approach that was advocated in the early literature (e.g., Burt
1976), and many people associate ‘SAM’ (or ‘two-step’) with this approach

• because the second step ‘sees’ the full model (measurement and structural),
Rosseel & Loh (2024) called this ‘global’ SAM

• two-step corrected standard errors are available

• when the model is correctly specified, global SAM usually provides identical
results as local SAM
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global SAM using the sam() function
> model <- '

# measurement part
Y =˜ y1 + y2 + y3 + y4
M =˜ m1 + m2 + m3 + m4
X1 =˜ x1 + x2 + x3 + x4
X2 =˜ x5 + x6 + x7 + x8
X3 =˜ x9 + x10 + x11 + x12
fAge =˜ 1*Age; Age ˜˜ 0*Age

# structural part
Y ˜ X3 + M + fAge
M ˜ X1 + X2

'
> fit.gsam <- sam(model, data = Data, sam.method = "global")
> parameterEstimates(fit.gsam, ci = FALSE, output = "text")[1:5,]

Regressions:
Estimate Std.Err z-value P(>|z|)

Y ˜
X3 0.250 0.109 2.299 0.021
M 0.400 0.087 4.581 0.000
fAge -0.100 0.094 -1.060 0.289

M ˜
X1 -0.300 0.133 -2.249 0.025
X2 1.100 0.173 6.347 0.000
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6 Consistency versus MSE

6.1 Consistency
• (informally:) an estimator is said to be consistent if the estimates (produced

by the estimator) “converge” to the true value of the parameter being esti-
mated, as the sample size increases (to infinity)

• in statistics, consistency is considered to be a fundamental property of esti-
mators; if an estimator is not consistent, it is often disregarded immediately

• which SAM approaches are consistent:

– FSR with Skrondal & Laake (2001) factor scores

– FSR with correlation-preserving factor scores

– instrumental variables with 2SLS

– the method of Croon, local SAM

– single-indicator + Bartlett factor scores + model-based reliability

– global SAM
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• which SAM approaches are NOT consistent:

– uncorrected FSR (with Bartlett or regression factor scores)
– sum (or mean) scores
– single-indicator + fixed/alpha reliability

• (ML/GLS/WLS as used in SEM are also consistent estimators)

• consistency is not the same as unbiasedness

• (informally:) an estimator is unbiased if the average estimate across a very
large (infinite) number of samples approaches the true value

• example: the sample variance
∑

i(Xi − X̄)2/N divided by N (instead of
N − 1) is biased but consistent

• example: if you always take the first observation (X1) as the estimate of a
mean, then this is unbiased, but not consistent

• in a simulation study, we usually study the bias of an estimator (given a
specific sample size)
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6.2 Bias, variability and mean squared error (MSE)
• unbiasedness is nice, but there is a price to be paid: unbiased estimators

often exhibit increased variability

• on the other hand, a biased estimator may exhibit less variability (in com-
parison)

• this is known as the bias–variance trade–off

• one way to capture both bias and variance in a single quantity is to use the
mean squared error (MSE)

• MSE = bias2 + variance

• in statistics, when comparing estimators, we often prefer estimators that have
the lowest MSE

• in the SEM literature, MSE has been mostly neglected (in favor of unbiased-
ness)
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low bias versus low MSE

• suppose you are playing darts; which player would you like to be?

• left panel: biased, but low variability

• right panel: unbiased, but high variability
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MSE for SAM approaches

• ‘consistent’ approaches typically have the lowest MSE . . . if the sample size
is large enough

• however, for small to medium sample sizes, it may very well be that incon-
sistent approaches (for example: uncorrected FSR) have a lower MSE

• the next two figures are taken from:

Bogaert, J., Loh, W.W., & Rosseel, Y. (2023). A small sample
correction for factor score regression. Educational and Psycho-
logical Measurement, 83(3), 495–519.

• similar results regarding single-indicator approaches:

Savalei, V. (2019). A comparison of several approaches for con-
trolling measurement error in small samples. Psychological meth-
ods, 24(3), 352–370.

• in the Savalei paper, SI + sum scores + fixed reliability (0.8) had the lowest
MSE when the sample size was small (N=30 to N=200)
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reliative bias (figure 3)
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mean squared error (figure 7)
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the alpha correction

• local SAM is consistent, because it useŝVar(η) = Var(f)− V̂ar(r)

where V̂ar(r) is the correction (for measurement error) term

• uncorrected FSR (with Bartlett factor scores) is not consistent, because it
uses ̂Var(η) = Var(f)

• Bogaert, Loh, & Rosseel (2023) discuss the so-called ‘alpha’ correction̂Var(η) = Var(f)− α⋆V̂ar(r)

where α⋆ is (here) a value between 0 and 1

• if α⋆ = 1, we have local SAM; if α⋆ = 0, we have uncorrected FSR

• future research: for a given model, a given sample size: find the sweet spot:
the value for α⋆ that results (on average) in the lowest MSE
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coverage probability

• low MSE is good, but . . .

• for valid inference, we also need good ‘coverage’

• the coverage is the probability that a confidence interval will include the true
value of the parameter of interest

• for example, set the nominal coverage probability at 0.95; for a large num-
ber of replications, the proportion of replications that produce a confidence
interval (for the parameter of interest) that includes the true value should
approximate 0.95

• ideally, we have it all: almost no bias, not much variability, and good cover-
age

• so which SAM method is best? (it will depend on many factors, including
sample size)

• as always, more research is needed
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7 SAM: software implementation
• some of the SAM approaches have been implemented in the sam() function

in the R package lavaan:

– sam.method = "local" (default)

– sam.method = "global"

– sam.method = "fsr" (using Bartlett factor scores)

• typical call:

> fit.sam <- sam(model, data = Data, sam.method = "local",
local.options = list(M.method = "ML",

alpha.correction = 0L), # range: 0 -- N-1
# optionally link measurement blocks
mm.list = list(block1 = c("Y", "M"),

block2 = c("X1","X2","X3")),
# measurement options
mm.args = list(estimator = "ML"),
# structural options
struc.args = list(estimator = "GLS"),
# global options
meanstructure = FALSE)
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example: the Political Democracy model

y1

y2

y3

y4

y5

y6

y7

y8

x1 x2 x3

dem60

dem65

ind60

1

a

b

c

1

a

b

c
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R code (with a misspecification in the structural part)
> model <- '

# latent variable definitions
ind60 =˜ x1 + x2 + x3
dem60 =˜ y1 + a*y2 + b*y3 + c*y4
dem65 =˜ y5 + a*y6 + b*y7 + c*y8

# regressions
dem60 ˜ ind60
dem65 ˜ ind60 + 0*dem60 # misspecified: fixed-to-zero

# residual correlations
y1 ˜˜ y5
y2 ˜˜ y4 + y6
y3 ˜˜ y7
y4 ˜˜ y8
y6 ˜˜ y8

'

> fit.sam <- sam(model, data = PoliticalDemocracy,
# link measurement blocks
mm.list = list(ind = "ind60", dem = c("dem60", "dem65")),
struc.args = list(estimator = "GLS")) # just for fun
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standard sam() output: only structural part
> # standard sam output
> summary(fit.sam)

This is lavaan 0.6-20.2277 -- using the SAM approach to SEM

SAM method LOCAL
Mapping matrix M method ML
Number of measurement blocks 2
Estimator measurement part ML
Estimator structural part GLS

Number of observations 75

Summary Information Measurement + Structural:

Block Latent Nind Chisq Df
1 ind60 3 0.00 0
2 dem60,dem65 8 15.32 16

Model-based reliability latent variables:

ind60 dem60 dem65
0.966 0.868 0.87

Summary Information Structural part:

Yves Rosseel The ‘Structural After Measurement’ (SAM) approach to SEM 106 / 118



Department of Data Analysis Ghent University

chisq df cfi rmsea srmr
35.817 1 0.287 0.686 0.505

Parameter Estimates:

Standard errors Twostep
Information Expected
Information saturated (h1) model Structured

Regressions:
Estimate Std.Err z-value P(>|z|)

dem60 ˜
ind60 1.454 0.195 7.452 0.000

dem65 ˜
ind60 1.824 0.214 8.506 0.000
dem60 0.000

Variances:
Estimate Std.Err z-value P(>|z|)

ind60 0.446 0.087 5.135 0.000
.dem60 0.120 0.161 0.749 0.454
.dem65 0.097 0.153 0.636 0.525
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sam() output, including measurement part
> # just for illustration, we also show the estimated parameters
> # of the measurement blocks
> #
> summary(fit.sam, remove.step1 = FALSE)

This is lavaan 0.6-20.2277 -- using the SAM approach to SEM

SAM method LOCAL
Mapping matrix M method ML
Number of measurement blocks 2
Estimator measurement part ML
Estimator structural part GLS

Number of observations 75

Summary Information Measurement + Structural:

Block Latent Nind Chisq Df
1 ind60 3 0.00 0
2 dem60,dem65 8 15.32 16

Model-based reliability latent variables:

ind60 dem60 dem65
0.966 0.868 0.87
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Summary Information Structural part:

chisq df cfi rmsea srmr
35.817 1 0.287 0.686 0.505

Parameter Estimates:

Standard errors Twostep
Information Expected
Information saturated (h1) model Structured

Latent Variables:
Step Estimate Std.Err z-value P(>|z|)

ind60 =˜
x1 1 1.000
x2 1 2.193 0.142 15.403 0.000
x3 1 1.824 0.153 11.883 0.000

dem60 =˜
y1 1 1.000
y2 (a) 1 1.213 0.143 8.483 0.000
y3 (b) 1 1.210 0.125 9.690 0.000
y4 (c) 1 1.273 0.122 10.453 0.000

dem65 =˜
y5 1 1.000
y6 (a) 1 1.213 0.143 8.483 0.000
y7 (b) 1 1.210 0.125 9.690 0.000
y8 (c) 1 1.273 0.122 10.453 0.000
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Regressions:
Step Estimate Std.Err z-value P(>|z|)

dem60 ˜
ind60 2 1.454 0.195 7.452 0.000

dem65 ˜
ind60 2 1.824 0.214 8.506 0.000
dem60 2 0.000

Covariances:
Step Estimate Std.Err z-value P(>|z|)

.y1 ˜˜
.y5 1 0.577 0.364 1.585 0.113

.y2 ˜˜
.y4 1 1.390 0.685 2.030 0.042
.y6 1 2.068 0.733 2.822 0.005

.y3 ˜˜
.y7 1 0.727 0.611 1.190 0.234

.y4 ˜˜
.y8 1 0.476 0.453 1.049 0.294

.y6 ˜˜
.y8 1 1.257 0.583 2.156 0.031

Variances:
Step Estimate Std.Err z-value P(>|z|)

.x1 1 0.084 0.020 4.140 0.000

.x2 1 0.108 0.074 1.455 0.146

.x3 1 0.468 0.091 5.124 0.000

.y1 1 1.879 0.431 4.355 0.000
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.y2 1 7.530 1.363 5.523 0.000

.y3 1 4.966 0.966 5.141 0.000

.y4 1 3.214 0.722 4.449 0.000

.y5 1 2.499 0.518 4.824 0.000

.y6 1 4.809 0.924 5.202 0.000

.y7 1 3.302 0.699 4.722 0.000

.y8 1 3.227 0.720 4.482 0.000
ind60 2 0.446 0.087 5.135 0.000
.dem60 2 0.120 0.161 0.749 0.454
.dem65 2 0.097 0.153 0.636 0.525
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(optional) extract the various components
> out <- sam(model, data = PoliticalDemocracy,

mm.list = list(ind = "ind60", dem = c("dem60", "dem65")),
struc.args = list(estimator = "GLS"),
output = "list")

> names(out)

[1] "MM.FIT" "Sigma.11" "step1.free.idx" "block.mm.idx"
[5] "block.ptm.idx" "PT.free" "mm.list" "PT"
[9] "COV" "YBAR" "LAMBDA" "THETA"
[13] "VETA" "REL" "M" "lambda"
[17] "alpha" "MSM" "MTM" "FS.mean"
[21] "LV.NAMES" "sam.method" "local.options" "FIT.PA"
[25] "PT" "reg.idx" "step2.free.idx" "extra.id"
[29] "pt.idx" "pts.idx" "V2" "V1"
[33] "VCOV"

> out$MM.FIT[[1]]

lavaan 0.6-20.2277 ended normally after 21 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 6
Row rank of the constraints matrix 6
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Number of observations 75

Model Test User Model:

Test statistic 0.000
Degrees of freedom 0

> out$FIT.PA

lavaan 0.6-20.2277 ended normally after 28 iterations

Estimator GLS
Optimization method NLMINB
Number of model parameters 5

Number of observations 75

Model Test User Model:

Test statistic 35.817
Degrees of freedom 1
P-value (Chi-square) 0.000
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Thank you for attending this workshop!

https://lavaan.org

https://lavaan.ugent.be/about/donate.html
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