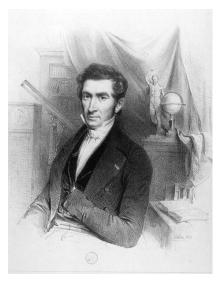
Structural Equation Modeling: models, software and stories

Yves Rosseel Department of Data Analysis Ghent University – Belgium

> useR!2017 – Brussels 5 July 2017

Yves Rosseel?


- last year at useR!2016, the opening keynote speaker was Rick Becker ('Forty years of S')
- this year, you have me ('7 years of lavaan')
- who am I anyway?
 - training: experimental psychology
 - phd/postdoc: mathematical psychology
 - job: professor at Ghent University, Faculty of Psychology and Education Sciences, Department of Data Analysis
 - teaching: psychometrics, analysis of repeated measures, applied statistics, ...
 - (current) research: structural equation modeling
- I wrote an R package ('lavaan')
- I am a Belgian

my social media details:

Ghent University?

- established in 1817 by King William I of the Netherlands
 - 200 years old!
 - in 1930: the first Dutch-speaking university in Belgium
 - state university, 41000 students, 9000 staff members
- rankings?
 - Shanghai ranking (62), Leiden ranking (94), Times Higher Eduction (118), QS World University rankings (125)
 - QS World Rankings by subject: 'Veterinary Science' (20), 'Psychology': (34), 'Sports-related' (41), 'Agriculture & Forestry' (46)
- Nobel prizes: Heymans (1938, Medicine); Maeterlinck (1911, Literature)
- famous people? Leo Baekeland (bakelite), Joseph Guislain, Walter Fiers, Marc Van Montagu, Peter Piot, ... and Adolphe Quetelet
- the best thing about Ghent university? it is in Ghent

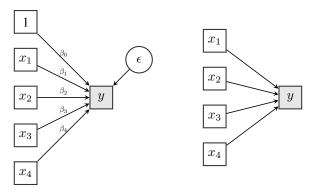
Adolphe Quetelet (Gent, 1796–1874)

- PhD at Ghent University in 1819
- astronomer, mathematician, statistician and sociologist
- introduced the 'Body Mass Index' (BMI)
- founded and directed the Brussels Observatory (KMI)
- introduced statistical methods to the social sciences
- "average man" (l'homme moyen): the mean of many 'normally distributed' variables

structure of this talk

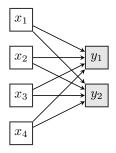
- what is SEM?
- software for SEM (1970 now)
- the R package 'lavaan'
 - how did it start? (the origin of the = operator)
 - the years after the first public release (2010)
 - lavaan today
 - the lavaan ecosystem
 - growing pains
 - why do we keep doing this?
- last slide

What is SEM?


SEM = structural equation modeling

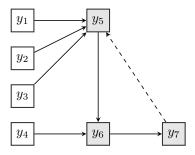
- SEM is a multivariate statistical modeling technique
- SEM allows us to test a hypothesis/model about the data
 - we postulate a data-generating model
 - this model may or may not fit the data
- what is so special about SEM?
 - 1. the model may contain latent variables
 - latent variables can be hypothetical 'constructs' (eg., depression) measured by a set of indicators
 - latent variables can be random effects (eg., random intercepts)

- ...


- 2. SEM allows for indirect effects (mediation), reciprocal effects, ...
- 3. the model is depicted as a diagram

univariate linear regression

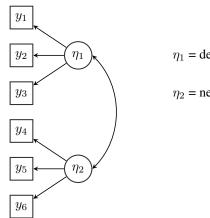
$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \epsilon_i \quad (i = 1, 2, \dots, n)$$


multivariate regression

• strict distinction between 'dependent' variables and 'independent' variables

SEM: path analysis

- all variables are observed (manifest)
- we allow for indirect effects (eg., of y_5 , via y_6 on y_7)
- we allow for cycles (eg. y_7 could influence y_5)

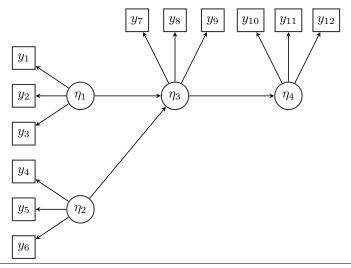


 y_5 = reading motivation

 y_6 = reading frequency

 y_7 = reading ability

• measurement model: representing the relationship between one or more latent variables and their (observed) indicators

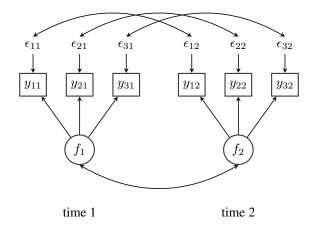

SEM: confirmatory factor analysis (CFA)

$$\eta_1 = depression$$

$$\eta_2 = neuroticism$$

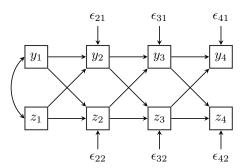
SEM: measurement models + structural part

• path analysis with latent variables

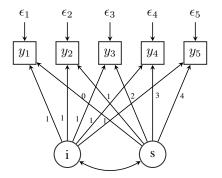

who is using SEM?

- it is widely used in the social sciences
- it is increasingly 'discovered' by other fields:
 - medical sciences
 - neuroimaging
 - biology, ecology (climate change!)
 - operation research
 - ...
- SEM software is also used to perform standard analyses (eg., regression), but where there is need for:
 - dealing with missing data
 - robust standard errors, diagnostics
 - (in)equality constraints

^{- ...}

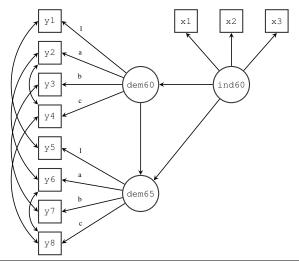

example: paired t-test using latent variables

• example with 2 time points:


example: panel models with crosslagged effects

- what is the directional effect of one variable on the other?
 - do the two variables develop independently of each other?
 - or does Y exert a greater influence on Z, or vice versa?

example: growth curve model


• random intercept and random slope

• $y_t = \text{intercept} + \text{slope}^*\text{time} + \text{error}$

example: political democracy

• influence of 'industrialization ('60)' on 'political democracy' ('60 and '65)

advantages of SEM

- confirmatory approach: test your theory
- goodness-of-fit measures
- flexible statistical modeling approach
- SEM can handle:
 - missing data (fiml, multiple imputation)
 - (in)equality constraints
 - categorical data (binary, ordinal, count, ...)
 - discrete and continuous latent variables
 - clustered (multilevel) data
 - ...
- many other approaches turn out to be special cases (eg., generalized linear mixed models)

disadvantages of SEM

- the modeling flexibility can be overwhelming
- you need dedicated software (not available in, say, SPSS)
- 'specifying' your model (using software) can be challenging
- challenges for SEM as a statistical field:
 - better inference for small samples
 - outlier-robust methods are not part of the standard SEM toolbox
 - semiparametric and nonparametric approaches
 - 'full information' estimation is computationally often too heavy (we need to integrate out the latent variables)
 - ...
- we need to better connect with other branches in statistics (graphical models, causal inference, mixed models, ...)

Software for SEM

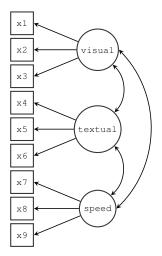
software for SEM: commercial – closed-source

- the big four (and the main developer):
 - LISREL ('70s, Karl Jöreskog)
 - EQS ('80s, Peter Bentler)
 - AMOS ('90s, James Arbuckle)
 - Mplus (Bengt Muthén, 1998-now)
- SAS/Stat: proc CALIS, proc TCALIS
- Statistica (SEPATH), Systat (RAMONA), Stata 12
- Mx (Michael Neale, free, closed-source, '90s)
- what about SPSS?
 - SPSS bought AMOS and sells it as a separate product
 - SPSS is bought by IBM (quote from the AMOS website:) What it can do for your business

software for SEM: non-commercial - open-source

- outside the R ecosystem:
 - Stata module: 'gllamm' (Sophia Rabe-Hesketh, Anders Skrondal, Andrew Pickles, since 2002)
- R packages:
 - sem (John Fox, since 2001)
 - OpenMx (Steven Boker, Michael Neale, ... since 2009)
 - lavaan (Yves Rosseel, since 2010)
 - lava (Klaus Holst, since 2012)
- interfaces between R and commercial packages:
 - REQS (Patrick Mair, Eric Wu, since 2008)
 - MplusAutomation (Michael Hallquist, since 2010)

The R package 'lavaan'

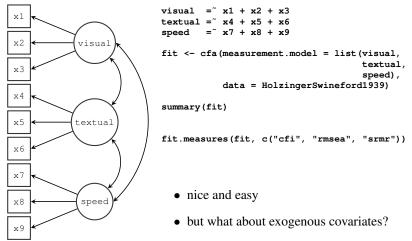

before you start

- many (open-source) statistical software packages (written in R, Julia, Python, ...) implement *new* statistical ideas
 - you can set your own standards
 - no comparison with other (existing) software
 - no community (yet)
- image writing a package for structural equation modeling (SEM)
 - there is a 'tradition', dating back more than 4 decades
 - there are already many (mostly commercial) software packages available
 - there is already a large community

the beginnings ...

- the context:
 - in my statistical consultancy years (2000–2008), I often used LISREL, EQS or Mplus, depending on the experience of the client
 - mostly just confirmatory factor analyses (CFA)
 - often very repetitive (same model, multiple datasets)
 - it would be great if we could do everything in R, but (around 2008–2009) the only option was the sem package, which was too limited for my purposes
- the initial plan:
 - create a small (private) R package to do only 1 thing: CFA
 - do one thing, do it well (cfr. the Unix philosophy)
 - would be great for teaching too
 - first package (March 2009, never published): cfa2000

cfa2000 example: Holzinger & Swineford (1939) 3-factor CFA

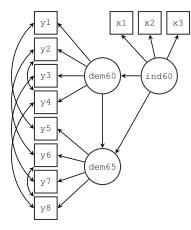

library(cfa2000)

cfa2000 partial output

Model converged normally after 35 iterations (0.146s)

Chi-square test full model Degrees of freedom		85.306 24		
P-value		0.0000		
Factor loadings:	Estimate	S.E.	z value	Pr(> z)
visual x1	1 000			
x1 x2	1.000 0.554	0.100	5.554	0.000
x3	0.729	0.100	6.685	0.000
textual	0.729	0.105	0.005	0.000
x4	1.000			
x 5	1.113	0.065	17.014	0.000
x 6	0.926	0.055	16.703	0.000
speed				
x 7	1.000			
x 8	1.180	0.165	7.152	0.000
x9	1.082	0.151	7.155	0.000
Factor var/cov:	Estimate	S.E.	z value	Pr(> z)
visual	Locimece	0.2.	1 Vulue	(* -)
visual	0.812	0.146	5.564	0.000
textual	0.410	0.074	5.552	0.000
speed	0.263	0.056	4.660	0.000

cfa2000, August 2009, using formula-like expressions



• we need a SEM package after all

second package: 'semplus', September 2009

```
Package: semplus
Type: Package
Title: Structural Equation Modeling
Version: 0.9-9
Date: 2009-09-16
Author: Yves Rosseel <yves.rosseel@ugent.be>
Maintainer: Yves Rosseel <yves.rosseel@ugent.be>
Description: Structural Equation Modeling with a formula-based interface
Depends: methods, MASS
License: GPL version 2 or later
LazyData: yes
Packaged: 2009-10-13 08:18:48 UTC; yves
```

semplus: political democracy example

measurement part mm < - list(ind60 = x1 + x2 + x3)dem 60 = v1 + y2 + y3 + y4, dem65 = y5 + y6 + y7 + y8# correlated errors ce <- list(y1 ~~ y5, y2 ~~ y4 + y6, y3 ~~ y7, y4 ~~ y8, v6 ~~ v8) # structural part eqs <- list(dem60 ~ ind60, $dem65 \sim ind60 + dem60)$ fit <- sem(measurement.model = mm,</pre> eqs = eqs, ce = ce, data = BollenDemocracy)

Jan 2010 – semplus using list() to specify the model

```
model <- list(</pre>
   # latent variable definitions
       ind60 = x1 + x2 + x3,
       dem60 = v1 + y2 + y3 + y4,
       dem65 = v5 + v6 + v7 + v8,
   # regressions
       dem60 ~ ind60,
       dem65 \sim ind60 + dem60,
   # residual (co)variances
       y1 ~~ y5,
       y2 ~~ y4 + y6,
       y3 ~~ y7,
       y4 ~~ y8,
       y6 ~~ y8
```

)

March 2010 – semplus using a string literal

```
model <- '
  # latent variable definitions
     ind60 = x1 + x2 + x3
     dem60 = v1 + y2 + y3 + y4
     dem65 = y5 + y6 + y7 + y8
  # regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
  # residual correlations
       ~~ y5
    v1
    y2 ~~
          y4 + y6
    уЗ ~~
          v7
    y4 ~~
          y8
    y6 ~~ y8
,
fit <- sem(model, data = PoliticalDemocracy)</pre>
```

from semplus to lavaan

- the package was named 'semplus' because it could do 'more' than the sem package
- and it contained the word 'mplus'
- I contacted the Mplus team (24-02-2010), with some technical questions
- and received an email back (03-03-2010) saying:

We own the Mplus trademark. Using the name "semplus" can be construed as a trademark infringement and might also imply our endorsement.

- eventually, I changed the name to 'lavaan' (latent variable analysis)
- lavaan 0.3-1 (about 6470 lines) was released on CRAN on 11 May 2010
 - presented at useR 2010 (NIST, Gaithersburg, Maryland, USA)

the next years

- more and more features were added
- HUGE step: 0.5 added support for categorical data (binary/ordinal)
- more attention for:
 - optimization, scaling, stopping criteria, ...
 - numerical stability, numerical methods
 - what to do if a covariance matrix is not positive-definite?
 - speed
 - ...
- biggest challenge in the early years:
 - the lavaan output was not (always) identical to the output of other (commercial) packages

my program gives (slightly) different results!

• example: Satorra-Bentler scaled test statistic for a 3-factor CFA model using the 'classic' Holzinger and Swineford 1939 data (N=301)

program	SB test statistic
lavaan 0.5-22	80.872
Mplus 7.11	81.908
EQS 6.1	81.141
LISREL 8.72	77.396

- experts (often) can not explain these differences
- users of lavaan complained and believed that lavaan's results could not be trusted

the 'mimic' argument

- all fitting functions in lavaan have a mimic argument:
 - mimic="EQS" to mimic EQS computations
 - mimic="Mplus" to mimic Mplus computations
 - mimic="LISREL" to mimic LISREL computations (in dev)
 - this was originally intended to convince users that lavaan could produce 'identical' results as the (commercial) competition
 - it is now a design goal on its own
- example:

program	SB test stat	lavaan + mimic	SB test stat
lavaan 0.5-22	80.872	mimic="lavaan"	80.872
Mplus 7.11	81.908	mimic="Mplus"	81.908
EQS 6.1	81.141	mimic="EQS"	81.141
LISREL 8.72	77.396	mimic="LISREL"	77.396

studying the black box (closed-source) software

- I spent a ridiculous amount of time trying:
 - 1. to understand (and document) why we observe many subtle (and less subtle) numerical differences in the output of current modern SEM programs
 - 2. to reproduce results computed by older versions of SEM programs (reproducibility)
 - 3. to study and compare these (computational and numerical) differences in order to better understand their characteristics
- this is not unlike software archeology
- I learned a lot, and I am still processing the 'data'
- I discovered the lost art of coding numerical software in an efficient, stable, and elegant way

lavaan today

- current version 0.5-23 (about 43000 lines)
- version 0.6 (including multilevel SEM) is *almost* ready (about 48500 lines)
- the official website:

http://lavaan.org

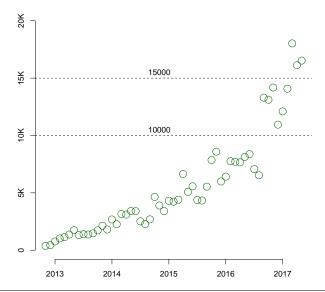
• the lavaan paper:

Rosseel, Y. (2012). lavaan: an R package for structural equation modeling. *Journal of Statistical Software*, 48(2), 1–36.

• github:

https://github.com/yrosseel/lavaan

• discussion group (mailing list)


```
https://groups.google.com/d/forum/lavaan
```

how many people use lavaan?

- I have no idea but it seems like a lot (for a statistical package)
- citations of the lavaan (2012) paper (June 2017):
 - N=1090 (web of science)
 - N=2013 (google scholar)
- lavaan discussion group:
 - N=1502 registered 'members' (registration is only needed to post)
 - about 150 posts per month
- cranlogs 'downloads per months' suggest an increasing trend:

```
https://cranlogs.r-pkg.org/
```

cranlogs 2012-2017 - per month

the lavaan ecosystem

• blavaan (Ed Merkle, Yves Rosseel)

Bayesian SEM (currently using jags) with a lavaan interface

• lavaan.survey (Daniel Oberski)

survey weights, clustering, strata, and finite sampling corrections in SEM

- Onyx (Timo von Oertzen, Andreas M. Brandmaier, Siny Tsang) interactive graphical interface for SEM (written in Java)
- semTools (Sunthud Pornprasertmanit and many others)

collection of useful functions for SEM

• simsem (Sunthud Pornprasertmanit and many others)

simulation of SEM models

the lavaan ecosystem (2)

• semPlot (Sacha Epskamp)

visualizations of SEM models

• EffectLiteR (Axel Mayer, Lisa Dietzfelbinger)

using SEM to estimate average and conditional effects

• nlsem (Nora Umbach and many others)

estimation of structural equation models with nonlinear effects and underlying nonnormal distributions

• many others

bmem, coefficientalpha, eqs2lavaan, fSRM, influence.SEM, MI-IVsem, profileR, RAMpath, regsem, RMediation, RSA, rsem, stremo, faoutlier, gimme, lavaan.shiny, matrixpls, MBESS, NIsyLinks, nonnest2, piecewiseSEM, pscore, psytabs, qgraph, sesem, sirt, TAM, userfriendlyscience, ...

growing pains

- I spend more time 'testing' than coding
- each update is somewhat of a nightmare
 - you shall not break a package that depends on your package!
 - you shall not alter the way the output looks!
 - you shall not change the numbers in the output! (same model, same data)
 - you shall not make any mistakes! (lavaan users have come to expect that everything works perfectly, all the time)

- ...

- change (for the better) becomes increasingly difficult
- if only I could start over, with the knowledge I have today

why do we keep doing this?

- why stop:
 - no funding (in Belgium)
 - no support at the faculty/university level: writing software is not in my job description
 - a few (lavaan) users are not very friendly
- why continue?
 - it is (for me) a way to learn about SEM, numerical techniques, statistics, mathematics, ...
 - it feels more useful than writing yet another paper
 - you meet interesting people
 - open-source (statistical) software is too important
- but at some point (lavaan 1.0?), others will have to take over

last slide: some personal thoughts on R

- lavaan has become a monolithic program, trying to do it all
 - users want consistency
 - essential infrastructure is missing from the core packages
- I find it hard to find 'gems' in the R jungle (pieces of code that solve a particular problem in an elegant way)
 - I often feel like I am re-inventing the wheel
 - in a large package, nobody notices if a small part is particularly well done
 - we need a way to 'mine' those gems
- we can still learn a lot from other languages (Matlab, Julia, Python, ...) and/or statistical packages (SAS, Stata, Mplus, ...)
- I dream of a future language, not unlike Julia, but with a more R-style syntax, called 'Romeo'

Thank you!

http://lavaan.org