Being negative can be good for your test

Leonard Vanbrabant Rens van de Schoot Yves Rosseel

4th Constrained Statistical Inference Meeting March 4, 2016 – Tilburg University

lavaan 0.3-1 (first public version, May 2010)

Minimum Function Chi-square

Model converged normally after 35 iterations using ML

Degrees of freedom		24		
P-value		0.0000		
	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
visual =~				
x1	1.000			
x2	0.554	0.100	5.554	0.000
x 3	0.729	0.109	6.685	0.000
textual =~				
×4	1.000			
x 5	1.113	0.065	17.014	0.000
x 6	0.926	0.055	16.703	0.000
speed =~				
x7	1.000			
x 8	1.180	0.165	7.152	0.000
x 9	1.082	0.151	7.155	0.000
Latent covariances	•			
visual ~~				
textual	0.408	0.074	5.552	0.000
speed	0.262	0.056	4.660	0.000

textual

85.306

speed	0.173	0.049	3.518	0.000
Latent variances:				
visual	0.809	0.145	5.564	0.000
textual	0.979	0.112	8.737	0.000
speed	0.384	0.086	4.451	0.000
Residual variances:				
x 1	0.549	0.114	4.833	0.000
x 2	1.134	0.102	11.146	0.000
x 3	0.844	0.091	9.317	0.000
x4	0.371	0.048	7.778	0.000
x 5	0.446	0.058	7.642	0.000
x 6	0.356	0.043	8.277	0.000
x 7	0.799	0.081	9.823	0.000
x 8	0.488	0.074	6.573	0.000
x 9	0.566	0.071	8.003	0.000

lavaan 0.4-10 (Oct 2011)

Lavaan (0.4-10) converged normally after 41 iterations

301
ML
85.306
24
0.000

Parameter estimates:

Information	Expected
Standard Errors	Standard

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
visual =~				
x 1	1.000			
x 2	0.553	0.100	5.554	0.000
x 3	0.729	0.109	6.685	0.000
textual =~				
x4	1.000			
x 5	1.113	0.065	17.014	0.000
x 6	0.926	0.055	16.703	0.000
speed =~				
×7	1.000			

x8	1.180	0.165	7.152	0.000
x 9	1.082	0.151	7.155	0.000
Covariances:				
visual ~~				
textual	0.408	0.074	5.552	0.000
speed	0.262	0.056	4.660	0.000
textual ~~				
speed	0.173	0.049	3.518	0.000
Variances:				
x1	0.549	0.114		
x 2	1.134	0.102		
x 3	0.844	0.091		
×4	0.371	0.048		
x 5	0.446	0.058		
x 6	0.356	0.043		
x 7	0.799	0.081		
x8	0.488	0.074		
x 9	0.566	0.071		
visual	0.809	0.145		
textual	0.979	0.112		
speed	0.384	0.086		
-1-300	0.001	2.000		

lavaan 0.5-19 (Oct 2015)

lavaan (0.5-19) converged normally after 35 iterations

Number of observations	301
Estimator	ML
Minimum Function Test Statistic	85.306
Degrees of freedom	24
P-value (Chi-square)	0.000

Parameter Estimates:

Information	Expected
Standard Errors	Standard

Latent Variables:

	Estimate	Std.Err	Z-value	P(> z)
visual =~				
x1	1.000			
x 2	0.554	0.100	5.554	0.000
x 3	0.729	0.109	6.685	0.000
textual =~				
x4	1.000			
x 5	1.113	0.065	17.014	0.000
x 6	0.926	0.055	16.703	0.000
speed =~				
x 7	1.000			

x 8	1.180	0.165	7.152	0.000
x 9	1.082	0.151	7.155	0.000
Covariances:				
	Estimate	Std.Err	Z-value	P(> z)
visual ~~				
textual	0.408	0.074	5.552	0.000
speed	0.262	0.056	4.660	0.000
textual ~~				
speed	0.173	0.049	3.518	0.000
Variances:				
	Estimate	Std.Err	Z-value	P(> z)
x1	0.549	0.114	4.833	0.000
x 2	1.134	0.102	11.146	0.000
x 3	0.844	0.091	9.317	0.000
x4	0.371	0.048	7.779	0.000
x 5	0.446	0.058	7.642	0.000
x 6	0.356	0.043	8.277	0.000
x 7	0.799	0.081	9.823	0.000
x 8	0.488	0.074	6.573	0.000
x 9	0.566	0.071	8.003	0.000
visual	0.809	0.145	5.564	0.000
textual	0.979	0.112	8.737	0.000
speed	0.384	0.086	4.451	0.000

asymptotic null distribution of likelihood-based tests

- simple hypothesis: $H_0: \theta = \theta_0$ versus $H_a: \theta \neq \theta_0$
- Wald test, Score test, LR test with test statistic T_W , T_S , T_{LR}
- it can be shown that 'if regularity conditions hold' all three test statistics follow a chi-square distribution under H_0 if $n \to \infty$
- for the LRT, the proof dates back to Wilks 1938
- what are these 'regularity conditions':
 - they are needed to establish the asymptotic normality of ML estimates
 - the one that matters here is:
 - the true parameter θ (scalar or vector) must be an interior point of the parameter space Θ
 - in other words: θ should NOT be a boundary point
- see for example Boos & Stefanski (2013): page 284 (scalar), page 286 (vector), page 291 (discussion)

two nonstandard settings

- the alternative hypothesis is order-restricted
 - for example:

$$H_0: \mu_1 = \mu_2 = \mu_2$$
 versus $H_a: \mu_1 < \mu_2 < \mu_3$

- we need different test statistics; see Silvapulle and Sen (2005)
- the null hypothesis value, θ_0 , lies on the boundary of the parameter space, say $\theta_0 = b$
 - the parameter space is restricted a priori (eg. $\theta \ge b$)
 - we violate the boundary assumption: $\theta_0 = b$ is not an interior point
 - original reference: Chernoff (1954)
 - one-sided tests are a logical choice:

$$H_0: \theta = \theta_0$$
 versus $H_a: \theta > \theta_0$

a typical example: inference on variance components

• consider a random-intercepts model:

$$Y_{ij} = x_{ij}^T \beta + b_i + \epsilon_{ij}$$

where Y_{ij} is the response for member $j=1,\ldots,n_i$ of cluster $i=1,\ldots,N;$ x_{ij} is a vector of known covariate values; β is a vector of unknown regression coefficients; and $b_i \sim N(0,\tau^2)$ is a cluster-specific random effect, independently distributed from the residual-error components $\epsilon_{ij} \sim N(0,\sigma^2)$

• two-sided test:

$$H_0: \tau^2 = 0$$
 versus $H_a: \tau^2 \neq 0$

- if we assume the parameter space is restricted ($\tau^2 \ge 0$), then 0 is on the boundary, and we can not use the classical test statistics
- one-sided test:

$$H_0: \tau^2 = 0$$
 versus $H_a: \tau^2 > 0$

 we can use special one-sided test statistics; Wald, Score and LR type statistics have been available for a while now

interlude

- suppose you are fitting a random-intercept model (or any mixed model) using your favorite (but non-Bayesian) software
- you are interested in inference about variance components
- do you get a proper one-sided test?

question

• what if ... variance components could be negative?

negative variance components

- some of you may reject this immediately on mathematical (or religious, or philosophical) grounds
- but what if we treat those variance components in a more pragmatic way: as model parameters that are just part of a bigger story
- references in the world of SEM:
 - Kolenikov and Bollen (2012). Testing negative error variances: is a Heywood case a symptom of misspecification? Sociological Methods & Research, 41, 124–167
 - Savalei and Kolenikov (2008). Constrained versus unconstrained estimation in structural equation modeling. *Psychological Methods*, 13, 150–170.
- in the world of mixed models, negative variance (components) have been discussed by Nelder (1954), Thompson (1962), Searle, Casella and McCulloh (1992), Verbeke and Molenberghs (2000)

mixed models: hierarchical versus marginal view

• the hierchical model:

$$Y_{ij} = x_{ij}^T \beta + b_i + \epsilon_{ij}$$
, where $b_i \sim N(0, \tau^2)$ and $\epsilon_{ij} \sim N(0, \sigma^2)$

- variances must be positive
- the marginal model:
 - collecting all Y_{ij} from the same cluster into a (long) vector Y_i
 - the marginal dstribution of Y_i is given by

$$Y_i \sim N(X_i\beta, V_i)$$
 where $V_i = \tau^2 J_{n_i} + \sigma^2 I_{n_i}$

- negative values for τ^2 (or σ^2) are allowed, as long as V_i is positive definite
- but in this case, a hierarchical interpretation is no longer possible as there is no random-effects structure that would yield such a marginal model

but there is more

- the hierarchical model can naturally be estimated using Bayesian estimation
- the hierarchical model can not be estimated in a frequentist framework: the random effects are treated as unobserved (latent) variables, and they must be integrated out
- so although we may 'specify' the model, as if it has a hierarchical structure, we always transform it to a marginal model
- consequently, at least from an estimation point of view, we can allow for negative variance components
- if we opt for this unconstrained, marginal approach
 - we may get negative variances
 - but standard tests (Wald, Score, LR) are no problem
 - negative variances can be informative (misspecification? negative intraclass correlation?)

software aspects

- even if you adopt the marginal view, your software package may decide otherwise
- many popular software packages for fitting mixed models enforce strictly positive variance components (by default)
- if you are lucky, you can change the default, and ask for an unconstrained solution
- most SEM packages use unconstrained estimation per default
- as a user, you should be aware of the default options

software defaults (variances)

software	constrained	unconstrained	user-controllable
HLM 6	X		
R lme	X		
R lmer	X		
MLwin	x (>level 1)	x (level 1)	X
SAS proc mixed	X		X
SPSS mixed	X		
Stata (xt)mixed	X		
AMOS		X	
EQS	X		X
LISREL		X	X
lavaan		X	X
Mplus		X	X
Stata sem	X		

empirical example

- Alzheimer data (Hand & Taylor, 1987), but modified to get a negative variance for the random intercept
- 100 patients, 5 repeated measures of a score (number or words that a patient could correctly recall from a list); time is coded as 0,1,2,3,4
- model: linear growth curve with random intercept and random slope
- we can treat this as 2-level data (repeated measures nested within patients)
- to mimic MLM software, we constrained the residual variances of the 5 measures to be the same over time when using SEM software

lavaan syntax

```
library(lavaan); Data <- read.csv("heywood wide.csv")
model <- '
    i = 1*t1 + 1*t2 + 1*t3 + 1*t4 + 1*t5
    s = 0*t1 + 1*t2 + 2*t3 + 3*t4 + 4*t5
    \pm 1 + \pm 2 + \pm 3 + \pm 4 + \pm 5 \sim 0 \pm 1
    # residual variance
    t1~~a*t1
    t2~~a*t2
    t3~~a*t3
    t4~~a*t4
    t5~~a*t5
    # fixed effects
    s ~ 1
    # variance components
      ~ ~
fit <- sem (model, data = Data)
summary(fit)
```

lavaan output

lavaan (0.5-19) converged normally after 42 iterations

Number of observations	100
Estimator	ML
Minimum Function Test Statistic	10.127
Degrees of freedom	14
P-value (Chi-square)	0.753

Parameter Estimates:

Information	Expected	
Standard Errors	Standard	

Latent Variables:

	Estimate	Std.Err	Z-value	P(> z)
i =~				
t1	1.000			
t2	1.000			
t3	1.000			
t4	1.000			
t5	1.000			
s =~				
t1	0.000			
t2	1.000			
t3	2.000			

t4	3.000
t5	4.000

Covariances:

	Estimate	Std.Err	Z-value	P(> z)
i ~~				
s	0.329	0.183	1.796	0.073

Intercepts:

t1	0.000			
t2	0.000			
t3	0.000			
t4	0.000			
t5	0.000			
i	9.761	0.154	63.208	0.000
s	3.076	0.093	33.000	0.000

Variances:

		Estimate	Std.Err	Z-value	P(> z)
t1	(a)	5.297	0.432	12.247	0.000
t2	(a)	5.297	0.432	12.247	0.000
t3	(a)	5.297	0.432	12.247	0.000
t4	(a)	5.297	0.432	12.247	0.000
t5	(a)	5.297	0.432	12.247	0.000
s		0.339	0.130	2.603	0.009
i		-0.794	0.425	-1.865	0.062

Estimate Std.Err Z-value P(>|z|)

Imer input

```
> library(lme4); Data <- read.table("heywood.dat", header = TRUE)</pre>
> fit <- lmer(v ~ 1 + time + (1 + time | id), data = Data, REML = FALSE)</pre>
> summary(fit)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: y \sim 1 + time + (1 + time | id)
  Data: Data
    AIC
             BIC logLik deviance df.resid
          2393.6 -1178.2 2356.3
 2368.3
Scaled residuals:
    Min
              10 Median
                                30
                                        Max
-2.64050 -0.64722 -0.03457 0.61837 3.01296
Random effects:
         Name
                  Variance Std.Dev. Corr
Groups
        (Intercept) 0.007527 0.08676
 id
         time
                     0.442050 0.66487 1.00
Residual
                     4.962683 2.22771
Number of obs: 500, groups: id, 100
Fixed effects:
           Estimate Std. Error t value
(Intercept) 9.76050
                       0.17278 56.49
time
            3.07582
                       0.09687 31.75
```

overview

	eta_{00}	β_{10}	σ_{ϵ}^2	$ au_0^2$	$ au_1^2$	$ au_{01}^2$
HLM	9.761 (.173)	3.076 (.098)	4.973 (np)	0.015 (np)	.448 (np)	0.057
lme	9.761 (.173)	3.076 (.098)	4.975 (np)	0.008 (np)	.459 (np)	0.043
lmer	9.761 (.173)	3.076 (.097)	4.975 (np)	0.008 (np)	.448 (np)	0.058
MLwin	9.761 (.173)	3.076 (.099)	4.966 (.351)	0.000 (-)	.481 (.092)	0.000
SAS	9.761 (.173)	3.076 (.097)	4.979 (.353)	0.000 (-)	.434 (.134)	0.081
SPSS	9.761 (.173)	3.076 (.096)	4.971 (.352)	0.000 (-)	.433 (.127)	0.083
Stata	9.761 (.173)	3.076 (.097)	4.963 (.353)	0.008 (.005)	.442 (.088)	0.058
AMOS	9.761 (.155)	3.076 (.094)	5.297 (.435)	-0.794 (.428)	0.339 (.131)	0.329
EQS	9.761 (.174)	3.076 (.097)	5.016 (.412)	0.000 (.494)	0.432 (.139)	0.081
lavaan	9.761 (.154)	3.076 (.093)	5.297 (.432)	-0.794 (.425)	0.339 (.130)	0.329
Mplus	9.761 (.154)	3.076 (.093)	5.297 (.432)	-0.794 (.425)	0.339 (.130)	0.329
LISREL	9.761 (.156)	3.076 (.094)	5.350 (.439)	-0.801 (.432)	0.343 (.132)	0.332
Stata	9.761 (.173)	3.076 (.098)	4.963 (.348)	0.001 (.000)	0.465 (.010)	0.026

discussion

- is this old news?
- at least Molenberghs & Verbeke have discussed this in several papers in the (bio)statistics literature
- in the SEM world, we have a few papers (Savalei & Kolenikov, Kolenikov & Bollen)
- the discussion of 'inference for variance components' in handbooks written for applied users in psychology are confusing at best (if not plain wrong)
- should we (read: Leonard) write a paper about this?