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Abstract 31 

Human learning is supported by multiple neural mechanisms that maturate at different rates 32 
and interact in mostly cooperative, but also sometimes competitive ways. We tested the 33 
hypothesis that the mature cognitive mechanisms constrain implicit statistical learning 34 
mechanisms that contribute to early language acquisition. Specifically, we tested the 35 
prediction that depleting cognitive-control mechanisms in adults enhances their implicit, 36 
auditory word-segmentation abilities. Young adults were exposed to continuous streams of 37 
syllables that repeated into hidden novel words, while watching a silent film. Afterwards, 38 
learning was measured in a forced-choice test that contrasted hidden words versus non-39 
words. The participants also had to indicate whether they explicitly recalled the word or not, in 40 
order to dissociate explicit versus implicit knowledge. We additionally measured 41 
electroencephalography during exposure to measure neural entrainment to the repeating 42 
words. Engagement of the cognitive mechanisms was manipulated by using two methods. In 43 
Experiment 1 (n = 36), inhibitory continuous theta-burst stimulation (TBS) was applied to the 44 
left dorsolateral prefrontal cortex or a control region. In Experiment 2 (n = 60), participants 45 
performed a dual working-memory task that induced high or low levels of cognitive fatigue. In 46 
both experiments, cognitive depletion enhanced word recognition - especially when 47 
participants reported low confidence in remembering the words, i.e., when their knowledge 48 
was implicit. TBS additionally modulated neural entrainment to the words and syllables. These 49 
findings suggest that cognitive depletion improves the acquisition of linguistic knowledge in adults 50 
by unlocking implicit statistical learning mechanisms and support the hypothesis that adult 51 
language learning is antagonized by higher cognitive mechanisms. 52 

Significance Statement 53 

Statistical learning mechanisms enable extraction of patterns in the environment from infancy to 54 
adulthood. For example, they enable segmentation of continuous speech streams into novel 55 
words. Adults typically become aware of the hidden words even when passively listening to 56 
speech streams. It remains poorly understood how cognitive development and brain maturation 57 
affect implicit statistical learning, i.e., infant-like learning without awareness. Here we show that 58 
the depletion of the cognitive control system by non-invasive brain stimulation or by demanding 59 
cognitive tasks, boosts adults’ implicit, but not explicit, word-segmentation abilities. These 60 
findings suggest that the adult cognitive architecture constrains statistical learning mechanisms 61 
that are likely to contribute to early language acquisition, and open new avenues to enhance 62 
language learning abilities in adults. 63 

 64 
Introduction 65 
 66 
Human learning is thought to be supported by the interactions between two basic memory 67 
systems of the brain, namely declarative and non-declarative memory (1). Declarative memory is 68 
characterized by voluntary, explicit, attention-based processes, such as recall and recognition of 69 
facts/events, and is mediated by medial-temporal lobe and prefrontal cortex structures (2). Non-70 
declarative memory, also referred to as procedural memory, on the other hand is part of implicit 71 
memory and includes the acquisition of a heterogeneity of skills, habits, and procedures. It is 72 
mediated by basal ganglia, cerebellar and neocortical structures, as well as parts of the prefrontal 73 
cortex (e.g., Broca's area, 3-5). 74 

Accumulating evidence supports a competitive relationship between these two memory systems 75 
during human skill learning. Suppression of the declarative memory system by interventions like 76 
repetitive transcranial magnetic stimulation (TMS), distraction tasks, alcohol consumption, 77 
hypnosis, intake of benzodiazepines or cognitive fatigue, can actually enhance performance in 78 
implicit, perceptual-motor learning tasks such as the Serial-Reaction Time Task (6-11), or intuitive 79 
reasoning tasks (12). These findings suggest that higher-level cognitive functions associated with 80 
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declarative memory and supported by the prefrontal cortex can interfere with behaviour that is 81 
naturally driven by implicit learning processes (13). However, it remains unresolved whether 82 
competing memory systems also affect implicit statistical learning abilities that are critical for the 83 
early, rapid acquisition of language in infants (14). This is an important question as it could 84 
explain why infants and children pick up languages with less effort than adults (cf. ‘Why are there 85 
critical periods for language learning?) (15).  86 

Language acquisition involves many different memory and learning processes that are dependent 87 
on both procedural and declarative memory (2, 16). The first step for infants acquiring language is 88 
to gain knowledge about the phonological structure in one’s spoken language system, the 89 
probabilistic constraints on how speech sounds combine (i.e., phonotactic learning), and the 90 
segments of continuous speech (i.e., word-forms) (17). Word-form learning takes place already in 91 
the first 12 months of life and is an important precursor to vocabulary acquisition (i.e., mapping 92 
form to meaning) and more complex language acquisition (e.g., grammar) later in development 93 
(18). In the present study, we focus on statistical learning mechanisms that contribute to word-94 
segmentation and thus novel word-form learning in the early stages of language acquisition. 95 
 96 
Statistical learning is generally known as the ability to pick up on patterns in the environment 97 
through extraction of frequent regularities and distributional properties. The term was first 98 
introduced in the field of cognitive psychology by the work of Saffran, Aslin, and Newport (1996) 99 
(19), who demonstrated that infants of only eight months old can extract word boundaries and 100 
segment novel word-forms from a continuous stream of speech sounds with no other cue than 101 
the transitional probabilities between syllables. Later, this learning was also demonstrated in older 102 
children and adults (20, 21), and across different domains (e.g., music, grammar) or modalities 103 
(e.g., auditory, visual, motor) (22, 23), indicating that statistical learning is a largely continuous 104 
and domain-general learning mechanism for skill acquisition across the human life span.  105 
  106 
In a typical statistical learning experiment, participants are repeatedly exposed to patterned 107 
stimuli such as consonant strings from an artificial grammar, or recurrent syllable triplets. 108 
Learning is then typically assessed post-exposure by using a two-alternative forced-choice 109 
recognition task in which triplets from the exposure stream are pitted against foils. Participants 110 
have to indicate which of the two triplets sounded most familiar, and above-chance accuracy is 111 
taken as indication of learning. Since statistical learning occurs without any instruction or intention 112 
to learn, it is often assumed to result in implicit memory representations (24). This view is also 113 
supported by the evidence that statistical learning occurs in infants and even in sleeping 114 
neonates (25). However, in recent work, Batterink and colleagues demonstrated that even without 115 
intention to learn, adults acquire mainly explicit knowledge of the novel word-forms during 116 
statistical learning (26-29). This can be derived from the observation that participants’ 117 
performance was above chance when they were confident remembering the triplet, but at chance 118 
when they were unconfident. Knowledge is implicit when participants lack awareness of what they 119 
have learned. This means that if participants perform also above chance when they are 120 
unconfident, knowledge is inferred to be implicit (30). In contrast, if they perform at chance level 121 
when confidence is low, no implicit knowledge is gained. Although statistical learning may 122 
produce additional implicit knowledge that cannot be assessed by the recognition and memory 123 
judgement tasks (e.g., 28), Batterink’s earlier findings show that adults store the acquired word 124 
knowledge mainly in the explicit memory system.  125 

We and others have proposed that cognitive development and maturation of the prefrontal areas 126 
negatively affect language acquisition, such as word-form or grammar learning (31-35). For 127 
instance, we showed that children outperform adults on the Hebb repetition learning paradigm 128 
(32-33), a memory paradigm in which participants are asked to immediately recall syllable 129 
sequences that consist of hidden repeated word-forms. Interestingly, in a follow-up study, we 130 
found that cognitive depletion by Transcranial Magnetic Stimulation (TMS) to the left dorso-lateral 131 
prefrontal cortex (DLPFC), an area closely related to declarative memory and cognitive control, 132 
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enhanced Hebb performance in adult participants (34). This suggests that late-developing 133 
prefrontal cognitive mechanisms can induce changes in efficiently acquiring sequential language 134 
information from the environment, a finding that is largely in line with previously reported evidence 135 
in skill learning (13). Recently, we corroborated this idea further by showing enhanced 136 
phonotactic constraint learning in adults under cognitive fatigue (35). Based on these findings, we 137 
hypothesize that the higher cognitive control system could reduce access to implicit memory 138 
processes in adults, thereby making them less efficient in language acquisition relative to infants 139 
and children. This idea is in line with the well-known less-is-more hypothesis that attributes 140 
developmental changes in language acquisition, such as phonology and grammar, to 141 
maturational changes in attention and memory capacities (36-38). In our previous work, 142 
participants were explicitly asked to memorize (34) or produce (35) syllable sequences and thus 143 
exposure to the novel language was not passive, or “infant-like”. Moreover, we did not separate 144 
implicit and explicit memory representations. Thus it remains unresolved how higher-order 145 
cognitive functions affect acquisition of implicit linguistic knowledge during passive listening to 146 
continuous speech, using statistical learning mechanisms that support infant language acquisition 147 
(23, 39).  148 

The aim of the current study was to directly address this question using the auditory statistical 149 
learning paradigm. In particular, we aimed to determine whether a temporary depletion of the 150 
higher cognitive control system, using two different interventions, can unlock adults’ implicit 151 
statistical learning processes that serve infant word segmentation. To investigate this, we 152 
exposed young adults to continuous streams of syllables with, unknown to them, repeating three-153 
syllable pseudo-words, while watching a silent film. In the first experiment, inhibitory continuous 154 
theta-burst stimulation was used to induce a long-lasting disruption in left DLPFC or a control site, 155 
prior to exposure, similar to the method used in Smalle et al., 2017 (34). In the second 156 
experiment, participants first performed an effortful dual working-memory task under high or low 157 
cognitive load conditions, which induces cognitive fatigue that hampers subsequent cognitive 158 
performance (7, 35, 40), or did not perform a cognitive load task prior to the language exposure 159 
(control or no load condition). Our primary measure of statistical learning was the offline 160 
recognition of the hidden words, which was assessed 15 minutes after exposure. This was 161 
combined with a memory judgement procedure, which measured how confident the participants 162 
were that they remembered the hidden words. This task dissociates explicit versus implicit 163 
memory representations (e.g., 27-29, 41). In both experiments, electroencephalography (EEG) 164 
was also measured during the 20-min language exposure in order to investigate an online 165 
perceptual component, as second independent measure of statistical learning. Research has 166 
shown that the steady state response of the brain shows a decrease at the frequency of individual 167 
syllables and an increase at the rhythm of 3-syllable words while listening to continuous sound 168 
streams that consist of repeating 3-syllable structures. This shift in neural entrainment indicates 169 
online statistical learning of novel words as a function of auditory exposure (29). Overall, we 170 
predicted that TMS-induced disruption of the DLPFC (in Experiment 1) and cognitive fatigue (in 171 
Experiment 2) would enhance statistical language learning and especially strengthen implicit 172 
memory representations for the hidden novel words.  173 

 174 
Results 175 
 176 
The effect of cognitive depletion on recognition of the hidden words  177 

Experiment 1. Participants performed above chance on the forced choice recognition task, 178 
indicating statistical learning, in both groups (i.e., DLPFC: mean = 68.8, SE = 3.5, t17 = 5.4, p < 179 
.001, d = 1.3; Vertex: mean = 57.3, SE = 3.4, t17 = 2.2, p < .05, d = .5). TMS-induced disruption of 180 
the DLPFC improved recognition accuracy of the hidden words [the effect of TMS: β = 0.28, SE = 181 
0.096, Z = 2.87; X

2
(1) = 8.25, p = .004, d = .6, Figure 1]. For the unconfident responses (64% of 182 

all trials; 31% in TMS disrupted group, 33% in control group), accuracy was significantly above 183 
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chance in the disrupted group [mean = 63.9, SE = 3.7, t17 = 3.8, p < .001, d = .9], but not in the 184 
control group [mean = 51.7, SE = 3.8, t < 1, p = .33, d = .1]. The control and disrupted groups 185 
differed significantly from each other [the main effect of TMS: β = 0.23, SE = 0.108, Z = 2.16,  186 
X

2
(1) = 4.68, p = .030, d = .5]. For the confident responses (36% of all trials; 19% in TMS 187 

disrupted group, 17% in control group), all participants showed above-chance accuracy [DLPFC: 188 
mean = 75.9, SE = 6.0, t17 = 4.3, p < .001, d = 1.0; Vertex: mean = 66.3, SE = 7.8, t16 = 2.08, p < 189 
.05, d = .5]. There was no significant difference between groups [the main effect of TMS: β = 190 
0.35, SE = 0.214, Z = 1.62, X

2
(1) = 2.63, p = .11]. 191 

Experiment 2. Participants performed above chance on the forced choice recognition task, 192 
indicating statistical learning, in all groups [High load: mean = 64.7, SE = 2.7, t19 = 5.4, p < .001, d 193 
= 1.2; Low load: mean = 65.6, SE = 3.9, t19 =4.0, p < .001, d = .9; No load: mean = 55.3, SE = 194 
2.7, t19 =1.9, p < .05, d = .4]. Cognitive load improved recognition accuracy of the hidden words 195 
[Effect of cognitive load: High vs Control: β = 0.42, SE = 0.19, Z = 2.23, p = .026, d = .4; Low vs. 196 
Control: β = 0.46, SE = 0.19, Z = 2.47, p = .013, d = .5; X

2
(2) = 7.50, p = .024, Figure 1]. For the 197 

unconfident responses (64% of all trials; 21% in high, 20% in low and 24% in no load group), 198 
accuracy was above chance in the high cognitive load group [mean = 61.8, SE = 3.8, t19 = 3.08, p 199 
< .01, d = .7], and in the low cognitive load group [mean = 57.8, SE = 4.7, t19 = 1.64, p = .05, d = 200 
.4], but not in the no cognitive load group [mean = 51.3, SE = 4.5, t < 1, p = .4, d = .07]. The 201 
cognitive load enhanced accuracy relatively to the control group [High vs Control: β = 0.52, SE = 202 
0.20, Z = 2.57, p = .01, d = .5; Low vs. Control: β = 0.37, SE = 0.20, Z = 1. 81, p = .070, d = .4; 203 
the main effect of cognitive load: X

2
(2) = 7.16, p = .028]. For the confident responses (36% of all 204 

trials; 12% in high, 14% in low and 10% in no load group), all groups showed above-chance 205 
accuracy [High cognitive load: mean = 66.0, SE = 6.5, t19 = 2.5, p = .012, d = .6; Low cognitive 206 
load: mean = 75.1, SE = 6.3, t19 = 4.0, p < .001, d = .9; no cognitive load: mean = 68.7, SE = 5.7, 207 
t19 = 3.3, p < .01, d = .7]. No significant differences were found between the groups [High vs 208 
Control: β = -0.012, SE = 0.45, Z = -0.028, p = .98; Low vs. Control: β = 0.43, SE = 0.46, Z = 0. 209 
94, p = .35; the main effect of cognitive load: X

2
(2) = 1.24, p = .54].  210 

The effect of cognitive depletion on neural entrainment during exposure 211 

Experiment 1. During exposure, neural entrainment to the underlying word patterns was 212 
enhanced during structured exposure relative to random exposure: ITC increased at the word 213 
frequency (p = .01, Cohen’s d = 1.1) but decreased at the syllable frequency (p = .003, d = 1.4) 214 
relative to exposure to the random syllable stream [Frequency x Exposure: F (1, 31) = 16.4, p < 215 
.001, Figure 2]. Disrupting the left DLPFC with TMS increased the neural word-learning index 216 
[Exposure: F (1, 30) = 31.6, p < .001, TMS x Exposure:  F (1, 30) = 5.6, p = .025, random: p = .6, 217 
d = .2, structured: p = .004, d = 1.1, Figure 3].  218 

Experiment 2. During exposure, neural entrainment to the underlying word patterns was 219 
enhanced during structured exposure relative to random exposure: ITC increased at word 220 
frequency (p < .001, d = 1.4) but decreased at syllable frequency (p = .08, Cohen’s d = .5) relative 221 
to exposure to a random syllable sequence [Frequency x Exposure: F (1, 57) = 19.3, p < .001, 222 
Figure 2]. Cognitive load did not affect the neural word learning index [Exposure: F (1, 55) = 40.4, 223 
p < .001, Load x Exposure: F (2, 55) = 1.04, p = .36, Figure 3].  224 

 225 
Discussion  226 
 227 
Overall, our findings provide evidence for a competitive interaction between higher cognitive 228 
control functions and implicit statistical learning mechanisms that contribute to word-segmentation 229 
in the early stages of language acquisition. More specifically, we depleted the cognitive control 230 
mechanisms in young adults by applying TMS to the left DLPFC (Experiment 1) and by inducing 231 
cognitive fatigue (Experiment 2). These interventions with long-lasting effects were applied prior 232 
to exposure to a continuous stream of speech sounds that consisted of tri-syllabic word patterns. 233 
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There were no acoustic cues of the word boundaries in the streams. Both TMS-induced 234 
disruption of the left DLPFC and cognitive fatigue enhanced recognition accuracy for the hidden 235 
words, indicating enhanced statistical learning. Intriguingly, these cognitive manipulations 236 
specifically enhanced recognition accuracy when the participants had low confidence in 237 
remembering the hidden words, indicating enhanced implicit statistical learning. In fact, the 238 
control adults showed chance-level accuracy for the words stored in implicit memory in 239 
agreement with earlier studies in adults (27-29), whereas the cognitively depleted adults showed 240 
above chance-level recognition accuracy. The results therefore suggest that cognitive depletion 241 
unlocks implicit word-segmentation abilities in adults.  242 
 243 
All groups showed above-chance recognition accuracy when confidence in remembering the 244 
hidden words was high, indicating explicit statistical learning. Cognitive manipulations had no 245 
effect on explicit statistical learning. This is important because the cognitive manipulations could 246 
have reduced explicit or declarative learning mechanisms. Our findings suggest that the 247 
enhancement of implicit statistical learning did not occur at the expense of explicit memory 248 
formation and thus does not completely support the idea of a direct competition between implicit 249 
and explicit learning. These observations are more in line with the idea that implicit statistical 250 
learning remains available across development (39), but that the adult brain imposes a 251 
“bottleneck” which prioritizes access to the explicit memory system (42). Disrupting the higher 252 
cognitive control mechanisms abolishes this “bottleneck” and, as a consequence, improves 253 
adults’ capacity to simultaneously store linguistic knowledge in both implicit and explicit memory 254 
systems. This results in overall enhanced word recognition in the disrupted adults. Further 255 
research is needed to test this model and investigate how facilitating the higher-order cognitive 256 
system affects acquisition of implicit versus explicit linguistic knowledge.  257 
 258 
Our experimental paradigm included a break after the exposure to allow participants to recover 259 
from the cognitive manipulations before performing the memory tests in Experiment 1 and 2. It is 260 
possible that this delay strengthened implicit memory consolidation rather than episodic recall so 261 
that participants were less likely to explicitly remember the words from the stream. In fact, in both 262 
experiments, participants were confident in only 36% of the total trials. The memory judgement 263 
(i.e., the proportion of confident versus unconfident responses) was however unaffected by TMS 264 
or cognitive fatigue. Cognitive manipulations specifically affected accuracy of the unconfident, but 265 
not the confident, responses after a 15-min delay. Further research is needed to investigate 266 
whether this effect is dependent on a short consolidation period and whether a longer 267 
consolidation period would further strengthen this effect. 268 
 269 
We additionally measured neural entrainment during statistical learning in order to investigate 270 
perceptual binding of neighbouring syllables into words during passive listening to the structured 271 
syllable streams, as a second, independent marker of learning. As expected, based on recent 272 
findings by Batterink and Paller (2017), neural entrainment decreased at the frequency of 273 
syllables while it increased at the level of the words as a function of the structured exposure (29). 274 
This indicates successful perceptual binding across all participants. Interestingly, however, TMS-275 
induced disruption of the left DLPFC enhanced this perceptual binding (measured with a word-276 
learning index) whereas cognitive fatigue had no effect on it, although both TMS and cognitive 277 
fatigue enhanced memory for the words as measured in the post-exposure recognition task. 278 
These findings are in line with the view that a perceptual binding (also called, ‘processing-based’) 279 
component of statistical learning (as measured here with online EEG) is dissociable from a 280 
memory storage or retrieval component of statistical learning (as measured here with the offline 281 
recognition task) (26, 43, 51). This is further supported by the absence of correlation between the 282 
online and offline measures (see Supplementary Information). Exploratory oscillatory power 283 
analyses (see Supplementary Information) showed that TMS-induced disruption of the DLPFC 284 
marginally enhanced the overall power of theta (4-8 Hz) and alpha oscillations (8-12 Hz), and 285 
significantly enhanced alpha oscillations in the parietal-occipital area specifically. Cognitive 286 
fatigue, in contrast, decreased the overall power of delta (1-4 Hz) oscillations. This suggests that 287 
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the cognitive manipulations had different neural consequences. Theta and lower alpha power are 288 
strong in early childhood and it decreases during cognitive development (e.g., 44-45). Power of 289 
lower frequency oscillations, such as delta and theta, continue to decrease during adulthood (46). 290 
Thus, the pattern of results invites a tentative interpretation that disruption of the left DLPFC 291 
made the young adults to function in the same way as young children do and therefore enhanced 292 
both perceptual binding and implicit memory components of statistical learning. The cognitive 293 
fatigue manipulation, however, possibly mimicked cognitive decline throughout adulthood. 294 
Statistical language learning and implicit motor learning have been shown to be well-preserved in 295 
older adults (20, 47-50).  296 
 297 
The current findings are largely in agreement with previous studies showing that TMS-induced 298 
disruption of the DLPFC and/or cognitive fatigue enhances sequence learning in the motor 299 
system (6-7) and the language system (34-35). To our knowledge, the present study is the first 300 
study to demonstrate the effects of cognitive depletion on implicit versus explicit outcomes of 301 
statistical language learning in the absence of explicit instructions (i.e., passive listening during 302 
exposure) and replicating these effects by using two different methods: TMS-induced disruption 303 
and cognitive fatigue. A previous study found that only high cognitive load induced feelings of 304 
cognitive fatigue and improved motor sequence learning (7). We found that both low and high 305 
load tasks increased feelings of cognitive fatigue in our participant sample, and consequently 306 
statistical language learning was enhanced in both groups (relative to a control condition where 307 
no cognitive load task was performed). 308 
 309 
Statistical language learning relies on multiple brain regions and pathways that work in parallel, 310 
such as hippocampus (51), inferior frontal cortex (52), striatum (53) and auditory-motor pathways 311 
(54). It remains however poorly understood how these brain regions and pathways contribute to 312 
acquisition of implicit vs. explicit memory representations for linguistic knowledge from structured 313 
sound sequences. Another important goal for future research is to determine how the prefrontal 314 
cognitive control mechanisms affect competition and cooperation between various language 315 
learning mechanisms. 316 
 317 
This experimental study provides causal evidence for a hypothesis that the cognitive control 318 
system constrains implicit language learning abilities in adults. Our findings show that depletion of 319 
the mature cognitive system can enhance implicit, statistical learning mechanisms that are used 320 
in early language acquisition. This finding is an important step in science of human language 321 
development as it could help us to understand maturational constraints and inter-individual 322 
differences (e.g., language-related difficulties) in language learning. Importantly, cognitive 323 
depletion could be a key for unlocking infant-like implicit learning mechanisms and, as a result, 324 
enhance foreign language learning in adults. 325 
 326 
 327 
Materials and Methods 328 
 329 
Participants 330 

We decided to test 20 participants in each group based on the large effect sizes in a previous 331 
study by Batterink and colleagues (28), who used similar dependent measures, and in our 332 
previous study in which we used an identical TMS paradigm as in the current study (34). In our 333 
previous study, we obtained a t-test effect size d of 0.88 for the difference in Hebb learning 334 
performance between a DLPFC-disrupted group (n = 14, mean correct recall on the last block of 335 
Hebb trials = 89.3%, SD = 16.04%) and a control group (n = 14, mean correct recall = 72.5%, SD 336 
= 21.9%). After post-collection exclusion of four non-fluent English speaking participants, we 337 
report the data of 36 participants in Experiment 1 who were randomly assigned to either the left 338 
DLPFC stimulation (n = 18, age = 25.3M ± 4.8SD, 9 females) or the control stimulation to Vertex (n 339 
= 18, age = 23.4M ± 5.0SD, 12 females). In three participants (two in the TMS group and one in the 340 
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control group), EEG was not recorded due to technical failures. Data of these participants were 341 
however still included for the behavioural analyses. In Experiment 2, we report the data of 60 342 
participants who were randomly assigned to a high load (n = 20, age = 22.7M ± 3.1SD, 12 343 
females), low load (n = 20, age = 21.8M ± 3.9SD, 16 females), or no load (i.e., control, n = 20, age 344 
= 18.8M ± .81SD, 16 females) condition. We have no EEG recording from two participants (one in 345 
the control group and one in the low load group) due to technical failure, but their behavioral data 346 
were included in the analyses. All included participants were right-handed and native (or non-347 
native but fluent) English speakers. None of the participants had a history of language (learning) 348 
impairments or neurological problems. Participants from all groups were matched on various 349 
cognitive control abilities (see Table 1). Experiments were undertaken with written informed 350 
consent and blind to the purpose of the study. Participants received financial compensation at the 351 
end of the experiment (£10/hour). The study was approved by the Research Ethics Committee of 352 
the School of Psychology at the University of Nottingham (Reference: F1003).  353 

Experimental Design 354 

During a pre-test, individual cognitive control abilities were assessed (Table 1). Participants in 355 
Experiment 2 were additionally pre-tested on their maximal processing speed capacity, i.e., the 356 
shortest processing time interval to simultaneously perform two working memory tasks while 357 
maintaining an accuracy of at least 85%. This assessment was necessary for the experimental 358 
cognitive load manipulation in Experiment 2 (see Methods later). For both experiments, the main 359 
experiment took place on a separate day during which the participants in both experiments were 360 
exposed to a 20-minutes auditory syllable stream while EEG was recorded. After a 15-minute 361 
break, the participants completed a post-exposure recognition test that examined implicit and 362 
explicit memory of the hidden words. The main experimental design is presented in Figure 4. 363 

Transcranial Magnetic Stimulation (Experiment 1) 364 

TMS was delivered using a 70-mm diameter figure-eight coil attached to DuoMAG XT stimulator 365 
(by Deymed, Brainbox Ltd, United Kingdom). We first localized the left DLPFC in each participant 366 
using the BeamF3 algorithm (55, 56). We then identified the left motor cortex as the spot eliciting 367 
reliable twitches in the resting contralateral hand. The active motor threshold (aMT) was defined 368 
as the lowest intensity at which TMS elicited at least five out of ten visible muscle twitches, whilst 369 
the subject sustained a light contraction of their pinch. After defining the participant’s aMT, the 370 
coil was placed over the left DLPFC or a control area (2 cm posterior to vertex), similarly to our 371 
previous TMS study (34). The control area was assumed not to play a role in statistical learning 372 
or cognitive control (57). The location of the coil (i.e., DLPFC or Vertex) was decided randomly 373 
based on the number of participants entering the experiment. The coil was placed tangentially to 374 
the scalp with the handle pointing posterior at a 45° angle with respect to the anterior-posterior 375 
axis for DLPFC and at 0° for the control site. The intensity of the stimulation was set at 80% of 376 
each participant’s aMT, i.e. at 43.7% (SD = 6.3) for the DLPFC group and at 49.3% (SD = 8.3) for 377 
the control group. Similar to Smalle et al (2017), a modified cTBS protocol was used in which 600 378 
pulses were delivered in a continuous train of 200 bursts. Each burst consisted of 3 pulses at 30 379 
Hz, repeated at 6 Hz. The total stimulation duration was 30 seconds. This modified cTBS protocol 380 
is known to inhibit cortical excitability for at least 30 minutes after stimulation over the primary 381 
motor area (58). Importantly, cTBS to the DLPFC does not impair metacognition or conscious 382 
perception processes (59).  383 

Cognitive fatigue (Experiment 2) 384 

Cognitive fatigue was induced with the TloadDback task (40). The script of the TloadDback task 385 
is freely available on Open Science Framework (osf.io/ay6er). The task was run in 386 
Matlab2016b/Psychtoolbox on a Dell laptop (refresh rate 60Hz). The letters were centrally 387 
presented in Arial font size 120 on a 15.6inch screen. For each participant, the shortest time 388 
needed for accurately processing two ongoing task demands, namely n-back letter detection and 389 



 

 

9 

 

parity number decision, was defined during a pre-test on a first assessment day (see 390 
Experimental Design). During the TloadDback task, digits (1, 2, 3, 4, 6, 7, 8 and 9) and letters (A, 391 
C, T, L, N, E, U and P) were presented in alternation on the screen. Participants were instructed 392 
to press the space bar with their left hand every time the displayed letter was the same as the 393 
last-seen letter, and to indicate with their right hand whether the subsequently displayed digit was 394 
odd (pressing “1” on the numeric keypad) or even (pressing “2”). Different levels of cognitive load 395 
were created by presenting the two tasks at different paces based on our participant’s pre-tested 396 
maximum processing speed capacities (no a priori group differences, see Table 1). This is 397 
defined as the fastest stimulus time duration (STD) allowing an accuracy performance of at least 398 
85%. Under High Cognitive Load (HCL) conditions, the task was performed for 16 minutes at the 399 
subject’s max. STD while under Low Cognitive Load (LCL) conditions, the presentation rate was 400 
made 1/3 slower (i.e. STD = max. STD + ½ max. STD). This results in different cognitive 401 
demands, with higher sustained attentional-control requirements for the former condition (despite 402 
the same level of task complexity), eventually leading to a higher state of ‘cognitive depletion or 403 
mental fatigue’ (7, 40). As expected, the low cognitive load participants showed higher dual-task 404 
performance than the high cognitive load participants, who performed around the minimal 85% 405 
accuracy level defined during the pretest: i.e., 93.3M ± 4.3SD vs.81.5M ± 13.1SD, t38 = 23.1, p < .001, 406 
respectively. Participants under the no load condition immediately started with the main 407 
experiment that is visualized in Figure 4. A simple numeric self-report rating scale assessing 408 
fatigue (1: I feel no mental fatigue, to 10: I feel the worst possible mental fatigue) was presented 409 
immediately before the TloadDback task and immediately after (i.e., before exposure), as a quick 410 
manipulation check for the induction of cognitive fatigue. Participants who performed no cognitive 411 
load task reported lower subjective feelings of fatigue prior to exposure (i.e., 4.2M ± 2.01SD) than 412 
participants who performed the cognitive load task (i.e., 5.3M ± 1.9SD; p = 0.001). However, 413 
unexpectedly, there were no reliable differences between the high and low load participants (i.e., 414 
5.6M ± 2.1SD vs. 5.0M ± 2.3SD, p = 0.21). There were no differences in baseline subjective reports 415 
for cognitive fatigue across all groups, tested at the start of the experiment (i.e., all p’s > .23).  416 

Exposure (Experiment 1 and 2) 417 

Twelve unique syllables of a consonant-vowel structure were selected and structured into four 418 
novel word-forms, i.e. /tu:paɪroʊ/, /goʊlɑ:bu:/, /bi:dɑ:ku:/, and /pɑ:di:tɑ:/). The individual syllables 419 
within each word-form occurred at a first, second and third position across participants so that in 420 
each stimulation group the subjects 1-7 were exposed to the word-forms as listed above, while 421 
subjects 8-14 received the word-forms /paɪroʊtu:/, /lɑ:bu:goʊ/, /dɑ:ku:bi:/, /di:tɑ:pɑ:/ and subjects 422 
15-21 the word-forms /roʊtu:paɪ/, /bu:goʊlɑ:/, /ku:bi:dɑ:/, /tɑ:pɑ:di:/. This was done to minimize 423 
any stimulus-driven effects that could be caused by position-preferences for syllables within a 424 
word. Across all language lists, the words were matched on average English phonotactic 425 
probability (ps > .40). The twelve syllables were recorded using an online artificial speech 426 
synthesizer of a female British English voice. The audio files were edited to have a duration of 427 
250 ms and saved with a sampling rate of 44100 Hz using Audacity software.  428 

Participants were informed that they would hear a continuous stream of speech sounds and were 429 
asked to listen carefully to the sounds. No information was given about the hidden structures, nor 430 
about a post-exposure test on segments of the heard syllable sequences, hence language 431 
exposure was implicit. Exposure always started with a random stream, in which all twelve 432 
syllables were concatenated in a pseudorandom order without any higher-order structure; the 433 
only constraint was that syllables did not repeat and that no anagrams of the novel words 434 
appeared. In this stream, 900 syllables were presented (each syllable was repeated 75 times). 435 
After the random stream, the 20-minute structured stream started in which the speech sounds 436 
were grouped into four repeating tri-syllabic words (Figure 4). Here, the transitional probability 437 
between neighbouring syllables within words was 100% and 33% between words. For instance, 438 
for subject 1-3, /tu:/ in the stream is always followed by /paɪ/ while /roʊ/ could be equally followed 439 
by /goʊ/, /bi:/ or /pɑ:/.  440 
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In total, 1200 repeating word-forms (each word was repeated 300 times) and 3600 syllables (plus 441 
the syllables from the random block) were presented. Stimulus onset asynchrony was 320 ms in 442 
Experiment 1 and 310 ms in Experiment 2 (this 10-ms difference between the experiments was 443 
unintended). The speech stream was presented using Presentation® software (Version 18.0, 444 
Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). The syllables were presented 445 
at a comfortable listening level for each participant through inserted earphones attached to a Dell 446 
desktop computer. During exposure, participants watched an episode of Planet Earth in silent 447 
mode (i.e., without subtitles or sound). Every ~5 minutes, a short break (10s) was inserted which 448 
reminded the participants to attend the sounds through a visual instruction on the screen.  449 

EEG recording and analyses (Experiment 1 and 2) 450 

We recorded an electroencephalogram (EEG) with 27 cap-mounted electrodes (Fp1, Fp2, Fz, F3, 451 
F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T3, T4, CP1, CP2, CP5, CP6, Pz, P3, P4, T5, T6, 452 
O1, O2) using a TMS-compatible EEG system (TruScan Research by Deymed, Brainbox Ltd, 453 
United Kingdom). The nose electrode was used as reference, and an electrode attached to the 454 
forehead was used as a ground during recordings. Horizontal and vertical electro-occulograms 455 
(EOGs) were recorded bipolarly with electrodes placed at the outer canthi of the eyes, and above 456 
and below the right eye. Electrode impedance was kept below 10 kΩ. Signals were filtered online 457 
with a 0.1-1000 Hz band-pass filter and recorded at a sampling rate of 3000 Hz.  458 

The EEG data analyses were performed using EEGLAB which is an open-source toolbox 459 
operated in the MATLAB environment (60). The continuous raw data files were re-referenced to 460 
the algebraic mean of the left and right mastoid electrodes, down-sampled to 500 Hz and filtered 461 
at 30-Hz low-pass filter. Bad channels were identified and interpolated when necessary. Mean 462 
number of interpolated channels per participant was 0.18 in Experiment 1, while there were no 463 
interpolated channels in Experiment 2. Periods of EEG signal containing strong muscle artifacts, 464 
electrode drifts, or technical artifacts were removed from further analysis. In Experiment 1 (TMS), 465 
one participant (from the control group) was rejected due to very noisy EEG activities, while no 466 
extra participant was excluded in Experiment 2. Independent component analysis (ICA) was used 467 
for linear decomposition of the continuous data to remove the contributions of artifact sources 468 
(slow drifts, eye blink/movement, and muscle artifacts) on the scalp sensors. The data were 469 
segmented into 5,000-ms epochs (-2000 to 3000 ms relative to the onset of each word in word 470 
condition or every third syllable in the random condition). Amplitude changes exceeding ± 70 μV 471 
(including the EOG channels) were removed from further analysis (less than 20% of the trials). 472 
Selective response averaging was conducted separately for each block. 473 

We quantified neural entrainment at the syllabic and word frequencies by measuring inter-trial 474 
coherence (ITC) within each condition (word vs. syllable / random vs. structured). ITC is known 475 
as phase-locking value and is a measure of event-related phase locking. The higher the ITC 476 
value is, the higher phase coincidence across epochs is. That is, the ITC values range from 0 to 477 
1, from purely non-phase- locked activity to strictly phase-locked activity. ITC was calculated from 478 
0.5 to 5 Hz in 0.1 Hz steps using a continuous Morlet wavelet transformation in which the number 479 
of cycles is increased linearly with frequency from 1 cycle length to obtain better frequency 480 
resolution at higher frequencies. This approach can optimize the trade-off between temporal 481 
resolution at lower frequencies and frequency resolution at high frequencies (60). Then, ITC 482 
values in each epoch were averaged. 483 

The word presentation frequency was 1.0Hz and 1.1Hz and the syllable presentation frequency 484 
was 3.1 and 3.2 Hz in Experiments 1 and 2, respectively.  If participants become more sensitive 485 
to the underlying word structure in the continuous speech stream, we should observe a higher 486 
ITC at the word-frequency but a lower ITC at the syllable frequency during exposure to the 487 
structured sequence relative to exposure to the random sequence. In other words, if participants 488 
learn the novel words, they would show a preferential shift in the entrainment of neural 489 
oscillations to underlying words, relative to individual syllables. This can also be indexed by a 490 
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simple formula, also referred to as the Word Learning Index (WLI = ITC word frequency / ITC syllable 491 
frequency) (29). The WLI was computed across 6 centro-frontal midline electrodes where ITC at the 492 
word and syllable frequencies showed the strongest values (i.e., FC1, FC2, F3, F4, FC5, Fz; 493 
supplementary documentation on ITC across electrodes is available in our open science 494 
repository, https://osf.io/dequ9/).   495 

Forced Choice Recognition Task (Experiment 1 and 2) 496 

After a break of ~15 minutes during which participants could remove the EEG cap and wash their 497 
hair, participants completed the two-alternative forced-choice recognition task. For each trial, a 498 
fixation cross appeared while the auditory presentation of a target 3-syllable string (hidden word) 499 
and a foil 3-syllable string (non-word) were presented, separated by an inter-stimulus interval of 500 
1500ms. The nonword foils were created from the same list of twelve unique syllables that were 501 
structured into word-forms. The only restriction was that the syllables within the foils never 502 
followed each other in the speech stream, not even across word boundaries. All words and 503 
nonword foils were matched on average English phonotactic probability (ps > .70). The task was 504 
1) to indicate which of the two strings sounded more familiar, and 2) to judge on their recall 505 
decision (‘I recalled from exposure’ versus ‘It sounds familiar but I have no clear memory’ or ‘I 506 
guessed’). Strings that were ‘recalled’ are referred to as confident responses and the strings that 507 
were ‘familiar without memory’ or ‘guessed’ are referred to as unconfident responses. The next 508 
trial started 1500 ms after the participant entered his or her response. The syllable strings were 509 
presented at the same rate as during the exposure. Each of the four targets and four foils were 510 
paired exhaustively to a total of 16 trials. In half of the trials, a target was followed by a foil while 511 
in the other half a foil was followed by a target. The order of presentation was counterbalanced 512 
across participants.  513 

Statistical Analyses (Experiment 1 and 2) 514 

To investigate the effect of cognitive depletion on language learning, linear mixed effect analyses 515 
were performed on the EEG data (i.e. ITC values and WLI indexes) and hierarchical logistic 516 
regression analyses were performed on the behavioural data (i.e., recognition accuracy). These 517 
analyses were performed using the lme4 package (61) and the afex package (62) in R (R 518 
Development Core Team, 2011). We always strived for models including maximal random effects 519 
structure justified by the design (61, 62). In case of convergences issues (e.g., singular fits), we 520 
refitted the maximal model by first removing correlations among random slopes, after which the 521 
highest order random slopes with the least estimated variance were removed (62). The p values 522 
were derived using Kenward-Roger approximations for degrees of freedom with the anova 523 
function in the afex package (63). Effects-coding was used for all fixed factors, except for the 524 
Group factor in Experiment 2 where dummy coding was used with No Cognitive Load as 525 
reference level. Bonferroni correction was used for all planned tests. Cohen’s d effect sizes on 526 
the model’s estimates are calculated with the eff_size function from the emmeans package (64). 527 
To allow across-study comparison and facilitate secondary analyses (e.g., power calculations and 528 
meta-analyses), we also provide t-test effect sizes in the Supplementary Information. We 529 
additionally performed one-sample t-tests to test for above-chance performance for the 530 
unconfident and confident responses in the recognition task. One control participant in 531 
Experiment 1 reported low confidence in all trials and so did not have confident responses. The 532 
stimulus materials and data-files, including scripts for analysis are available on an open science 533 
repository: https://osf.io/dequ9/).  534 
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Figures and Tables 695 
 696 
Figure 1. Behavioural results reflecting statistical word-segmentation. The upper panel 697 
shows total recognition accuracy (%) for the hidden words as a function of the cognitive disruption 698 
in Experiment 1 (left) and Experiment 2 (right). The lower panel shows recognition accuracy for 699 
the hidden words when participants indicated low and high confidence in remembering the hidden 700 
word, referred to as unconfident versus confident responses, respectively. Above-chance 701 
performance on confident responses reflects knowledge stored in explicit memory. Above-chance 702 
performance on unconfident responses reflects knowledge stored in implicit memory. Error bars 703 
denote standard errors of the mean. Asterisks denote significance for one-tailed t-tests: *p < 0.05, 704 
**p < 0.01, **p < 0.001. 705 
 706 
Figure 2. EEG results reflecting online statistical learning: Inter-Trial Coherence (ITC) (mean of 6 707 
centro-frontal midline electrodes, FC1, FC2, F3, F4, FC5, and Fz) during exposure to random and 708 
structured sequences in Experiment 1 (TMS) and Experiment 2 (Cognitive Load). Topographical 709 
plot shows distribution of ITC across the scalp, as a function of exposure and frequency. ITC 710 
values were used to calculate the word learning index (WLI) (i.e., ITC word / ITC syllable), see 711 
Figure 3. 712 

Figure 3. EEG results reflecting online statistical learning: Changes in word learning index 713 
(WLI) as a function of exposure (Random vs. Structured sequences) with and without cognitive 714 
disruption (Experiment 1: TMS; Experiment 2: Cognitive load). Error bars denote standard errors 715 
of the mean. 716 

Figure 4. Main procedure in Experiments 1 and 2: In Experiment 1, participants received cTBS 717 
either over DLPFC or vertex prior to exposure. In Experiment 2, participants performed a dual 718 
working-memory task under high or low cognitive load conditions or did not perform a task prior to 719 
exposure. Exposure started with a random stream for 5 minutes, after which a structured stream 720 
was presented for 20 minutes. A short break (10 s) was inserted every ~5 minutes. EEG was 721 
recorded throughout. Participants watched a silent nature documentary during the exposure. After 722 
a 15-minute break, participants completed a post-exposure recognition test that examined implicit 723 
and explicit memory of the hidden words through memory judgement. During the exposure and 724 
the break participants were not aware that the behavioural test would include segments of the 725 
syllable sequences.  726 

Table 1. Participant characteristics: pre-tested individual cognitive-control abilities of the different 727 
groups 728 

 729 









Exposure (EEG)

betarogodikugo ...

10-s break

tupirogolabubedaku paditagolabubedaku tupiropaditagolabu
...

paditatupirobedaku

random (5 min) structured streams (4 x 5 min)

Recognition task and memory judgement

tupiro godatuor

(word) (non-word)

Remember/Familiar/Guess?

Experiment 1: 
TMS over DLPFC or Control site

15-min break

Experiment 2: 
High, Low or No Cognitive load task



 CONTROL DEPLETED 

EXPERIMENT 1 N = 18 N = 18 

DIGIT SPAN (FORWARD + BACKWARD) 18 (11-25) 19 (11-28) 

WCST (N PERSEVERATION ERRORS) 7 (5-17)  7 (5-11) 

EXPERIMENT 2 NNCL = 20 NLCL = 20 NHCL = 20 

DIGIT SPAN (FORWARD + BACKWARD) 18 (10-22) 19 (12-24) 20 (12-29) 

WCST (N PERSEVERATION ERRORS) 8 (5-19) 8 (5-17) 7 (5-11) 

STD .91 (.46-1.3) .87 (.50-1.4) .91 (.46-1.3) 

WCST = Winsconsin Card Sorting Test for cognitive reasoning (Berg, 1948); STD = Stimulus Time 

Duration, i.e., maximum processing speed capacity on the dual working-memory task (Borragan et al., 

2017). All ns according to independent sample t-tests (ps > .05).  
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