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A B S T R A C T   

STEM (Science, Technology, Engineering and Mathematics) enrolments in higher education are 
declining while the STEM gender gap of female underrepresentation seems to widen. The present 
study addresses both issues by exploring how the fit between a student's vocational interests and 
the STEM field contributes to a (non-) STEM study choice. Data was collected in the unique 
setting of an open access and low cost higher education system, which allowed for study of 
vocational interests without unwanted influence of admission conditions. Specifically, we 
assessed the interest fit of N = 9162 first-year Belgian university students with (1) the STEM field 
(i.e., STEM fit) and (2) their specific program of choice (i.e., program fit). Results indicated STEM 
fit indeed predicted STEM study choice, with a stronger effect in female students. Results also 
indicated that female students showed a better specific program fit. In order to promote student 
STEM enrolment and address the gender gap, the present study therefore advocates a gender- 
specific approach to attract more students with appropriate interest profiles.   

1. Introduction 

STEM (Science, Technology, Engineering and Mathematics) study choice has become an important topic in vocational and 
educational literature as study choice is the primary gateway to the STEM work field (Unesco, 2016). Reports have shown that keeping 
this STEM work field well-staffed can be crucial to the economy of industrialized countries (World Economic Forum, 2016). However, 
this primary STEM gateway of higher education enrolment faces two major challenges. First, literature reports a decline in the number 
of students choosing a STEM program in higher education (Ainley et al., 2008; Perera & McIlveen, 2018). Second, literature also 
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reports a widening gender gap in enrolments, indicating a still growing female underrepresentation (Stoet & Geary, 2018; Xu, 2008). 
For instance, according to numbers from the United Nations Educational Scientific and Cultural Organization (UNESCO), female 
students only represent 35% of all students enrolled in higher education STEM programs and female researchers only account for 28% 
of all researchers active in the field (Unesco, 2016). 

One approach to addressing these issues consists in determining how a student that chooses a STEM program differs from a student 
that chooses a non-STEM program. Comparing both options can render more information on which (future) students would have a 
suited profile for a career in the STEM field. Such information can then be used in future studies or interventions on how to guide these 
students towards the STEM field. In order to facilitate such a distinction, vocational interests are a valid option, as interests are 
arguably considered the strongest predictors of study choice (Stoll et al., 2017). For instance, a good fit between a student's vocational 
interests and a student's study environment has predictive validity towards study choice, persistence and results (Burns, 2014; Donnay, 
1997; Nye et al., 2012; Rounds & Su, 2014; Schelfhout et al., 2019; Schelfhout et al., 2021). However, literature does not yet report on 
the effect of this person-environment interest fit (PE interest fit) towards STEM study choice. Moreover, gender differences regarding 
this PE interest fit also have yet to be investigated. Such gender differences could prove important as literature shows that known 
predictors of STEM study choice do interact with gender (Yazilitas et al., 2013). For instance, a STEM study choice in female students is 
less determined by performing well in specific STEM preparation courses like mathematics, as women evaluate their cognitive ca
pabilities much more modestly compared to men (Nix et al., 2015). 

The present study has two research goals. First, we want to investigate how PE interest fit contributes to the prediction of STEM 
study choice by comparing a STEM choice versus a non-STEM choice. Particular consideration is hereby given to interaction effects 
with gender. Second, we want to investigate whether and to which extent male and female students differ regarding PE interest fit with 
their specific STEM program. With the answers to our questions, STEM study orientation can act upon this knowledge to increase 
(female) student STEM enrolments by focusing their efforts on recruiting students with appropriate profiles through means of policy 
and counseling. 

1.1. The RIASEC model of vocational interests 

Today, the RIASEC model by Holland (1997) is still one of the most influential models in vocational literature, describing the 
interest profiles of students and their study programs through six RIASEC dimensions (realistic, investigative, artistic, social, enter
prising and conventional). This model also displays an empirically verified circular structure: the dimensions are arranged in clockwise 
RIASEC order (Tracey & Rounds, 1995). To obtain an individual student's RIASEC profile, the literature describes a vast number of 
questionnaires, all rendering scores on the six dimensions (for an overview, see Nauta, 2010). For the present study, we used SIMON-I, 
a validated instrument specifically targeting the transition from high school to higher education (Fonteyne, Wille, et al., 2017). To 
obtain an environment program profile, student profiles can function as representatives or incumbents for their program of choice. As 
an example for the present study, we thus established a RIASEC profile for each specific study program by averaging RIASEC scores of 
successful and persistent students enrolled in that specific program (Allen & Robbins, 2010). As the present study also focuses on STEM 
as a separate educational environment, we additionally established a RIASEC interest profile for the entire STEM field by averaging the 
RIASEC scores of all study programs classified as STEM. This operationalization of the STEM field is empirically verified in the present 
study's Method and materials section. 

1.2. Person-environment interest fit 

As the RIASEC model allows for commensurate measurement (i.e., measurement on the same scales) of both individual and pro
gram profiles (Holland, 1997), we can also determine how well an individual (i.e., a student) fits an environment (i.e., a study program 
or the STEM field). This concept of PE interest fit is well-established in literature (Nye et al., 2012), and operationalized using different 
measures with different properties. For an overview and discussion, we refer to Nye et al. (2018). As an example, Euclidean distance 
operationalizes PE interest fit in terms of the distance between the person and the environment profile in two-dimensional space. 
Specifically, this approach relies on the Prediger dimensions of People/Things (P/T) and Data/Ideas (D/I) to define the person and 
environment profiles (Prediger, 1982; Prediger, 2000). In practice, coordinates are determined using the following formulae, 

P/T = 2R+ I − A − 2S − E+C (1)  

D/I = 1.73E+ 1.73C − 1.73I − 1.73A (2)  

and Euclidean distance (ED) is calculated as 

ED =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(student P/T − study program P/T )
2
+ (student D/I − study program D/I)2

√

(3)  

with P/T, D/I and ED as a function of the scores on the RIASEC dimensions (Wille et al., 2014). 
Although other PE interest fit metrics are also available, we have selected Euclidean distance as measure of PE interest fit for the 

present study as the measure's properties facilitate our research goals. First, evidence has shown that a low Euclidean distance indeed 
predicts study degree attainment (end of the third year of higher education) from as early as the first year of higher education (Tracey 
et al., 2012). Degree attainment also forms the primary gateway towards the STEM work field (Unesco, 2016). As our data were 
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gathered in a student population making the transition from secondary education to the first year of higher education, Euclidean 
distance is an appropriate measure to investigate the effect of PE interest fit on a (non-) STEM choice. 

And second, Euclidean distance also allows to locate not only students, but also study programs in two-dimensional Euclidean 
space. For the present study, locating programs allows us to empirically verify the difference between STEM programs and non – STEM 
programs as a function of their position in Euclidean interest space. This empirically verified distinction between a STEM choice and a 
non – STEM choice adds to literature as previous studies primarily focused on differences within the STEM field to characterize STEM 
profiles. Indeed, what was considered a typical STEM profile was determined by comparing that profile to the STEM field exclusively 
(Su et al., 2009; Su & Rounds, 2015). For instance, Perera and McIlveen (2018) reported that students with specific latent interest 
profiles (i.e., high realistic dominant and conventional dominant) have a higher chance of making a STEM choice in higher education. 
Perera and McIlveen (2018) operationalized their study by describing typical latent profiles that are present in the STEM field, without 
reporting how vocational interests directly contribute to making a STEM choice over a non-STEM one. In contrast, the present study 
actively profiles how a STEM student differs from a non – STEM student in terms of individual RIASEC scores and PE interest fit by 
regressing STEM study choice on vocational interest variables. For these purposes, we consider two applications of PE interest fit to 
address the contribution of interest fit to a STEM study choice over a non - STEM study choice: STEM fit and program fit. STEM fit 
measures the Euclidean distance between a student's RIASEC profile and the broader STEM field profile. This index thus allows to 
investigate how the interest profile of a student choosing a STEM program differs from the profile of a student choosing a non-STEM 
program. In contrast, program fit measures the Euclidean distance between a student's RIASEC profile and the RIASEC profile of the 
specific study program that was chosen, which can be either within or outside of the broader STEM field. This program fit is used to 
compare PE interest fit between male and female students in specific programs. 

1.3. Vocational interests and STEM study choice 

Meta-analytic research by Low et al. (2005) has shown that vocational interests are quite stable from early adolescence (i.e., about 
age 12) to middle adulthood (i.e., about age 40). This early stability in the lifespan makes vocational interests a good candidate for 
(study) career orientation as one's interests as a student have a good chance to persist into adulthood. Indeed, literature shows 
vocational interests can predict up to 70% of the variance in study choice across students (Burns, 2014; Donnay, 1997; Nye et al., 2012; 
Päßler & Hell, 2012; Rounds & Su, 2014; Stoll et al., 2017). For instance, high realistic and investigative interests in incoming students 
are predictive of becoming a civil engineer (Fonteyne, Wille, et al., 2017). Apart from individual student vocational interests, study 
environment characteristics regarding vocational interests are arguably equally important in the process of study choice. Specifically, 
these characteristics codetermine the level of PE interest fit between student and study program, contributing to study choice above 
and beyond the effects of individual student vocational interests. To give one example, Schelfhout et al. (2019) found an average 
similarity of about 49% (r = 0.70) between the RIASEC profile of an individual student and the RIASEC profile of the chosen study 
program (based on the RIASEC profiles of students who successfully completed that program). In other words, a higher level of PE 
interest fit between the RIASEC profiles of students and their study programs enlarges the chance that the student will choose the 
program eventually. 

Analogous to the previous example, the present study uses the RIASEC profiles of successful STEM students to determine the 
RIASEC profile of STEM study programs and the broader STEM field as a whole. We thus expect that students making a STEM study 
choice will have similar RIASEC profiles that have a better fit with the STEM field compared to the RIASEC profiles of students who do 
not make a STEM study choice. This similarity assumption also seems plausible as students making a STEM study choice should have a 
profound and stable interest in science, technology, engineering and mathematics, similar to graduated students that have finished 
their STEM education and are ready to enter the STEM work field. We thus hypothesize that a student's PE interest fit with the STEM 
field should have predictive value towards a STEM study choice, 

Hypothesis 1. STEM fit predicts STEM study choice. 

Moreover, literature already shows that predictors of STEM study choice often interact with gender (Germeijs & Verschueren, 
2006; Nix et al., 2015; Yazilitas et al., 2013). As such, the present study also gives particular consideration to the interaction effect 
between gender and PE interest fit on STEM study choice, as such an effect can shed new light on existing issues like the female 
underrepresentation in the STEM field (Xu, 2008) and a decline in enrolments (Ainley et al., 2008). To investigate this interaction 
effect, we consider the leveled framework by Yazilitas et al. (2013). This framework reviews the relevant literature regarding STEM1 

study choice using an institutional level focus, a macro-level focus and a micro-level focus. The institutional level explains gender 
choice patterns as a result of education policies. The macro-level explains these patterns as a result of societal patterns. And the micro- 
level explains these patterns as the result of psychological constructs. Yazilitas et al. (2013) stress that these three foci are not operating 
within a vacuum but instead interact with each other. 

1.3.1. Gendered choice patterns at the institutional level 
The effect of PE interest fit on STEM study choice may vary depending on educational policy of institutions or regions. For example, 

the present study is conducted in an open access and low cost higher education system, where anyone with a high school degree can 

1 This early review did not consider Engineering as a separate academic field. 
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enroll for almost any study program. Such a context provides a unique opportunity to assess the effect of PE interest fit on study choice 
without risk of unwanted bias from high stakes testing or GPA (grade point average) requirements. As a consequence, not only do 
students have to make a choice regarding a bachelor program (i.e., 39 programs in the present study), but students also need to make a 
choice of university or college (Fonteyne, 2017; Schelfhout, 2019). Such a stressful event can even induce a paradox of choice, as too 
much choice can have negative consequences (Schwartz, 2015). For example, Abbiss (2009) reported that more options actually 
reinforce gender stereotypes in an information and communication technology program. As such, a broad choice does not seem likely 
to drive female STEM study choice. However, such a stressful event also creates opportunities for female students. In a neurocognitive 
study, Preston et al. (2007) examined decision-making of males and females in stressful situations. Results showed that females make 
better decisions, while also making better use of explicit knowledge. As such, a stressful study choice could lead to a better interest fit in 
female students as females make better decisions in stressful situations. However, we have to consider the macro- and micro-level of 
the framework to investigate which explicit knowledge female students use and how this knowledge can lead to better decisions 
(Yazilitas et al., 2013). 

1.3.2. Gendered choice patterns at the macro-level 
Gendered choice patterns have also been attributed to social or cultural determinants. For instance, a large international study by 

Stoet and Geary (2018) shows that in developed, progressive and gender-aware countries the need to choose STEM education for 
instrumental reasons like job prospects and salary is smaller. As a consequence, women are more likely to choose non-STEM programs, 
effectively increasing the gender gap in these more gender-aware countries. This gender gap originates as early as primary school, and 
is strongly tied to STEM preparation (Bagiati et al., 2010; Bybee & Fuchs, 2006). Such early STEM preparation takes the form of 
exposure to science and mathematics and has a large positive impact on the pupil's disposition towards STEM (Blackburn, 2017; 
Dejarnette, 2012). The gender gap from primary school is then further consolidated into secondary education. For instance, girls 
remain underrepresented in STEM preparing high school programs that focus on mathematics (Sadler et al., 2012; Unesco, 2016). 
Wang (2013a, 2013b) also reports that such an exposure to mathematics in secondary education leads to an intent to major in aca
demic STEM programs and thus predicts a choice for STEM in higher education. Because better high school performance is associated 
with more STEM study choice (Vaarmets, 2018), and because women outperform men in high school (Buchmann et al., 2008), one 
would expect that the minority of women that are still represented in STEM preparing programs should have a higher chance of 
choosing STEM. However, Nix et al. (2015) report the opposite: female students in STEM preparing programs have a lower chance of 
choosing STEM. According to Nix et al. (2015), this discrepancy originates from the fact that women estimate their cognitive capa
bilities much more modestly. As such, explicit knowledge of STEM preparation has less impact on female STEM choice. STEM 
preparation is therefore not an answer to our question which explicit knowledge would lead to a better decision and a better PE interest 
fit in female students. Considering the importance of the effect of STEM preparation on STEM study choice, we have included STEM 
preparation in our analyses of the present study as a control variable. 

1.3.3. Gendered choice patterns at the micro-level 
Besides these macro – level environmental influences, making a study choice is an important life decision that also involves micro – 

level individual cognitive decision processes (e.g., What do I want to do in my future professional life?) (Fonteyne, 2017; Schelfhout, 
2019). Social cognitive theory (SCT) is a theory on human behavior that considers both the influence of the social environment as well 
as the influence of individual cognition (Bandura, 2001; Lent et al., 1994). According to SCT, human behavior can be explained 
through three psychological determinants: self-efficacy beliefs (i.e., can I do it?), outcome expectations (i.e., what will happen?) and 
goal representations (i.e., what will I gain?). Self-efficacy is regarded as the most important one, as it determines if an individual has 
sufficient self-belief to start a specific task to begin with (Stajkovic & Luthans, 1998a; Stajkovic & Luthans, 1998b). In social cognitive 
career theory (SCCT), self-efficacy is also considered an important precursor of the effect of vocational interests on STEM-study choice 
(Lent & Brown, 2019). For instance, in a series of studies on choice goals towards computing majors (a STEM choice), the total SCCT 
model explains about 40% of the variance in vocational interests, with self-efficacy forming the most important determinant (Lent 
et al., 2008; Lent et al., 2011). In their own right, vocational interests also had a significant influence on the goal of choosing a major in 
computing, alongside the direct effect of self-efficacy, social support and social barriers. 

For the present study, student self-belief that a study choice is a good fit with personal vocational interests is a necessary condition 
to make an appropriate STEM study choice. Such a self-belief does assume that a student has sufficient explicit knowledge about his or 
her own interests and STEM study choice to begin with. To facilitate such knowledge, Germeijs and Verschueren (2006) validated a 
study choice task inventory (SCTI) based on existing instruments and newly introduced items. In an open access environment, the SCTI 
measured the orientation, exploration and commitment of 946 high school students towards study choice. Results indicated that girls 
scored higher on orientation (e.g., “I often think about what I will study”), exploratory behavior of environment (e.g., “I thoroughly 
read a brochure about these studies”), self-exploratory behavior (e.g., “I have talked with my friends about my interests”) and 
commitment (e.g., “Are you uncertain about this study?”). In sum, future female students seem to have more explicit knowledge about 
their interests and possible study choices, while also making more and better use of that explicit knowledge (Germeijs & Verschueren, 
2006). As such, we consider that female students could ponder more explicitly over the question whether a STEM choice fits their 
personal interests. If a female student believes she has a good interest fit with the STEM field, chances are she will make more use of this 
explicit information compared to her male colleagues. As such, we hypothesize that 

Hypothesis 2. The effect of STEM fit on STEM study choice is moderated by gender, with a stronger effect in female students. 

For the present study, study choice is more than just a choice for STEM or non-STEM. Students primarily have to make a choice for a 
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specific topic, that is implemented in a specific study program (i.e., somewhat comparable to a major). As such, future STEM students 
can choose programs like chemistry and computer sciences, while future non-STEM students can choose programs like philosophy or 
law. Analogous to hypothesis 2, we again consider that female students could ponder more explicitly over the question whether the 
specific program choice fits their personal interests. If a female student believes she has a good interest fit with the specific STEM 
program, chances are she will make more use of this explicit information compared to her male colleagues. As such, we hypothesize 
that 

Hypothesis 3. Female STEM students have a better program fit with their program of choice compared to male students. 

Moreover, if a better program fit for female students is indeed the result of more explicit knowledge regarding their own interests 
and their program choice, this gender effect should also be found in non-STEM study programs in addition to STEM programs. To test 
this assumption, we will also investigate Hypothesis 3 in the general student population, across all 39 (STEM and non-STEM) programs. 
The results of this test will allow us to answer our second research question whether and to which extent male and female students 
differ regarding PE interest fit with their specific STEM program. 

2. Method and materials 

2.1. STEM field, stream and approach 

STEM does not have an unequivocal definition in literature. For the present study, we have thus operationalized STEM as defined by 
UNESCO. UNESCO defines the STEM concept through the perspectives of field, stream and approach (Unesco, 2016). As a field, STEM 
incorporates life sciences, physical sciences, technology, engineering and mathematics. As a stream, the STEM field enrolls students 
from secondary education into a program in higher education. Finally, as an approach, the STEM field aims at an application of the 
studied knowledge, skills and values to help solve problems in the real world. 

The present study focuses on the first two elements of the UNESCO definition. First, we applied the field definition of STEM to the 
present data, effectively distinguishing a STEM study choice from a non-STEM one. Second, the STEM stream takes the form of student 
data gathered within the context of study orientation. The transition from high school to a higher education is indeed considered as a 
crucial timing to recruit future employees as students enroll for STEM oriented programs in higher education. 

Fig. 1. Scatterplot of 39 Programs using the People/Things (X-axis) and Data/Ideas (Y-axis) Dimensions. 
Note. The programs included are (in random order): 1 = Psychology (0), 2 = Communication Sciences (0), 3 = Mathematics (1), 4 = Educational 
Sciences (0), 5 = Political Sciences (0), 6 = Law (0), 7 = Sociology (0), 8 = Criminological Sciences (0), 9 = Speech Language and Hearing Sciences 
(0), 10 = Physical Education and Movement Sciences (0), 11 = Philosophy (0), 12 = Linguistics and Literature (0), 13 = East European Languages 
and Cultures (0), 14 = History (0), 15 = Oriental Languages and Cultures (0), 16 = Moral Sciences (0), 17 = Art History (0), 18 = Archaeology (0), 
19 = African Studies (0), 20 = Veterinary Medicine (0), 21 = Physical Therapy and Motor Rehabilitation (0), 22 = Pharmaceutical Sciences (0), 23 
= Bioscience Engineering (1), 24 = Economics (0), 25 = Biomedical Sciences (1), 26 = Engineering – Architecture (1), 27 = Engineering (1), 28 =
Business Economics (0), 29 = Bioscience Engineering Technology (1), 30 = Engineering Technology (1), 31 = Applied Language Studies (0), 32 =
Biochemistry and Biotechnology (1), 33 = Biology (1), 34 = Chemistry (1), 35 = Physics and Astronomy (1), 36 = Geology (1), 37 = Geography and 
Geomatics (1), 38 = Computer Sciences (1), 39 = Public Administration and Management (0). All STEM programs are located in the right lower 
corner (things/data quadrant). The reference line, y = 0.53x − 62.20, indicates the relation between the P/T and D/I coordinates of the STEM 
programs, with an explained variance of 31%. 
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2.2. Data and procedure 

We applied the UNESCO definition to student data collected within all faculties and all programs (STEM and non-STEM) of a 
Belgian university (Shanghai Top 100, which ranks the world's top 1500 universities and colleges based on objective measures). The 
data are part of the university's longitudinal project for study orientation (Fonteyne, 2017; Schelfhout, 2019). This orientation project 
focuses on the transition of individuals from high school to higher education by guiding these future students towards appropriate 
study programs, based on their skills (i.e., which programs are obtainable?) and also their vocational interests (i.e., which programs are 
interesting to me?). Orientation for these students is needed, as they are enrolling in unconstrained, open access and low cost higher 
education, with nearly limitless options in programs to choose from. Indeed, barring the exceptions of Medicine, Dentistry or Per
forming Arts (music), all academic higher education programs are open to everyone with a high school degree. Moreover, the tuition 
fees do not exceed € 1000 or about $ 1150, and almost half of the students receive funding through scholarships, based on economic 
(income-related) criteria. Also, the orientation instrument does not show bias towards social economic status or towards people with a 
different nationality (4% of the student population) or towards Belgians with a foreign origin (1% of the student population had at least 
two grandparents that were not Belgian) (Fonteyne, 2017). About 20% of all students did not want to disclose whether they had a 
foreign origin. 

For the present dataset, it is important to point out that students starting the same study program have identical curricula, resulting 
in a highly comparable study choice. Moreover, once students have made their choice for a specific program, they cannot interchange 
elements of their curriculum in later years of the program. As an example, students do not have the possibility of “changing major” 
after a successful first or second year, as is more custom in British or American systems. A first year STEM study choice thus becomes 
highly predictive towards future employment in the STEM field. Taken together, the present study's educational setting allows for 
study of vocational interests without unwanted effects from high stakes testing, GPA requirements or financial attainability. 

At the start of the academic years 2016–2017 and 2017–2018, two cohorts of newly enrolled students participated in this online 
study (September–October 2016 and 2017). Participation was not mandatory, but promoted through professors, email and the online 
learning platform used in all university programs. The student data from the programs Medicine and Dentistry were excluded from the 
present study as students had to pass an exam to enroll for the program and thus formed the only exception regarding open access study 
context. The overall response rate was 68% (N = 9162, 60% female), with 3389 students choosing a program in the STEM field. 

We also assessed the interest profiles of 39 study programs (see also Fig. 1), using the interest RIASEC profiles of former successful 
and persistent senior students, who indicated they would enroll again for the same program when given the opportunity (N0 = 6572). 
These senior students met the conditions of perseverance and academic success and the procedure of establishing the program profiles 
was identical to the procedure used by Allen and Robbins (2010). For each program, the RIASEC scores of all students were averaged 
for each dimension, resulting in a RIASEC profile for each program. 

2.3. Measures 

2.3.1. STEM or non-STEM study choice 
UNESCO operationalizes the STEM field as a field that incorporates life sciences, physical sciences, technology, engineering and 

mathematics (Unesco, 2016). Importantly, this UNESCO operationalization does not include social sciences, in contrast to some studies 
(Su & Rounds, 2015). As such, all 39 programs are divided into STEM and non-STEM programs based on the UNESCO definition 
(Unesco, 2016) so that students in a (non-) STEM program are considered to have made a (non-) STEM study choice. Fig. 1 shows a 
scatterplot of all program profiles, by representing each profile as a single point in Euclidean two-dimensional space. We proceed by 
defining the general STEM field profile by averaging interest dimension scores across all STEM programs to correct for student numbers 
in the programs. This calculation results in a STEM field RIASEC profile with the following dimension scores, R = 31.88, I = 46.25, A =
28.99, S = 24.54, E = 26.32 and C = 21.15. Fig. 1 shows that programs categorized as STEM according to the UNESCO definition are 
centered alongside a regression line, in the things/data quadrant. Fig. 1 also shows that the social sciences are distanced from this 
cluster, warranting their exclusion from the STEM field. Fig. 1 thus provides empirical support for our UNESCO operationalization of 
the STEM field. 

2.3.2. Vocational interest 
We used the SIMON-I questionnaire to obtain vocational interest scores on the six RIASEC dimensions (see Appendix A; Fonteyne, 

Wille, et al., 2017). The RIASEC dimension scales showed a reliability (Cronbach's α) of 0.92, 0.88, 0.92, 0.92, 0.93 and 0.90 
respectively. To test the assumed circular structure of the RIASEC dimensions, we first performed a confirmatory factor analysis (CFA), 
using the CirCe package in R (Browne, 1992; Grassi et al., 2010). The analysis confirmed the circular structure (SRMR = 0.05, NFI =
0.97, CFI = 0.97, GFI = 0.99) and the parsimony (Schwarz's Bayesian Criterion of 0.03) of the RIASEC dimensions. Second, we also 
performed a randomization test of hypothesized order relations (RTOR) using the RANDALL package to confirm the circular structure and 
order of the RIASEC dimensions (Tracey, 1997). Results of this RTOR analysis revealed a correspondence index of CI = 0.92, p = .02, 
indicating an excellent fit. Both CFA and RTOR analysis thus support the circular structure of the RIASEC data. 

2.3.3. STEM fit and program fit 
STEM fit indicates the PE interest fit between a student (i.e., individual RIASEC profile) and the general STEM field (i.e., STEM field 

RIASEC profile) and is measured in Euclidean distance. Program fit indicates the PE interest fit between a student and her/his specific 
program (i.e., RIASEC program profile) and is also measured in Euclidean distance. We calculated Euclidean distance as described in 
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the introduction (Wille et al., 2014). 

2.3.4. STEM preparation 
Wang (2013a, 2013b) already reported that exposure to mathematics predicts the choice of a STEM program in higher education 

and thus prepares students for the STEM field. As such, for the present study, we have operationalized STEM preparation as weekly 
hours of high school mathematics prior to higher education enrolment. This variable has already been used for various other purposes 
in literature. For instance, several open access studies have found that weekly hours of mathematics in high school also predicts higher 
education study success (Fonteyne, Duyck, & De Fruyt, 2017; Pinxten et al., 2017). 

2.4. Analyses 

To test hypotheses 1 and 2 (H1 and H2 respectively), we constructed a STEM study choice model, which is a logistic regression of 
STEM study choice on the main effects and gender interactions of STEM preparation, PE interest fit and all six individual RIASEC 
interest dimensions. Though the logistic model is tailored towards STEM study choice, the model also represents a non-STEM study 
choice as the outcome is binary (i.e., 1 or 0). As STEM is the focus of this study, we formulated the results in terms of STEM study 
choice. The model was built in two stages by first adding all main effects, followed by all gender interactions. Individual RIASEC 
dimension effects and their interactive effects with gender were included as control variables in this analysis in order to obtain a 
conservative and more precise estimate of the PE interest fit effect. As our distinctive model has to deal with a fairly large number of 
predictors, we used Akaike's Information Criterion (AIC) in a stepwise selection procedure to select the best fitting model, dis
tinguishing students that chose STEM from those that chose another (non-STEM) program. For a full discussion on the AIC method, we 
refer to Burnham and Anderson (2002). From a set of all possible models with all possible predictors, the stepwise procedure selected 
the best fitting one with the lowest AIC. This procedure rewards models with the least chance of information loss, but penalizes models 
that use too many predictors. The AIC stepwise methodology has a number of advantages over classic stepwise regression. AIC does not 
use statistical testing as a criterion for model selection and does not depend on when variables enter the equation as all possible models 
are considered. Through a leave-one-out, prediction-focused mechanism, this methodology also benefits from cross-validation. Cross- 
validation allows us to make validated predictions on cross-sectional data, by splitting datasets into independent training data and test 
data. After selecting the best fitting model, we performed a logistic regression with STEM study choice as dependent variable and the 
variables from the selected model as predictors. We also reported two additional measures of pseudo - explained variance (deviance) 
concerning the individual main effects to estimate their specific contribution towards STEM study choice prediction and as control 
variables for the effects of interest fit. First, individual explained variance indicates how much variance the predictor explains if there 
are no other predictors present in the model. Second, unique explained variance indicates how much explained variance is lost if the 
predictor is removed from the model. To conclude, we constructed a ROC curve (receiver operating characteristic curve) indicating 
how well our model succeeds in profiling STEM students and distinguishing them from their non-STEM colleagues. A ROC curve 
balances sensitivity and specificity. Sensitivity indicates the proportion of STEM students that were actually classified as STEM stu
dents by our STEM choice model, while specificity indicates the non-STEM students that were indeed classified as non-STEM students. 
A rising sensitivity results in a falling specificity and vice versa. Finally, the Area Under the Curve (AUC) indicates how well the model 
can make the distinction between STEM and non-STEM students. An AUC of 1 indicates perfect accuracy (i.e., a full distinction between 
STEM and non-STEM choice), while an AUC of 0.5 indicates a model that cannot make the distinction above chance level. As a rule of 
thumb, Hosmer and Lemeshow (2000) suggest that AUC coefficients of 0.70 to 0.80 are acceptable, 0.80 to 0.90 are excellent and 0.9 
or above are outstanding. For a full discussion on AUC, we refer to Fawcett (2006). 

To test Hypothesis 3 (H3), we used a Welch two-sample, two-tailed t-test. Effect sizes are calculated using a Cohen's d (Sawilowsky, 
2009) and a relative percentage (relative d). Cohen's d effect size indications are interpreted as follows: 0.01 – very small effect, 0.20 – 
small effect, 0.50 – medium effect, 0.80 – large effect, 1.20 – very large effect, 2.00 – huge effect (Sawilowsky, 2009). The relative 
d percentage is calculated through dividing the highest value by the lowest value, subtracting 1 from that result and then multiplying 
by 100. Negative effect sizes indicate a higher value for female students. H3 is tested in both the STEM population and the general 
student population. Apart from this hypothesis, we also analyzed the gender differences in all RIASEC dimensions and STEM prep
aration to be able to integrate our findings into literature. 

Table 1 
Student gender and STEM choice cross-tabulation.   

STEM choice total 

0 1  

Males Nm  1879  1828  3707 
% within student gender  51  49  100 
% within STEM choice  33  54  40 

Females Nf  3894  1561  5455 
% within student gender  71  29  100 
% within STEM choice  67  46  60 

Total N  5773  3389  9162 

Note. STEM = Science, Technology, Engineering, Mathematics. 0 = non-STEM choice, 1 = STEM choice. 
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3. Results 

3.1. Preliminary analyses 

Table 1 shows the proportions of male and female students in the total population, the population of STEM students, and the 
population of non-STEM students. The chi-squared test on these proportions was significant, χ2 (1) = 405.62, p < .001, rejecting the 
null hypothesis and indicating male overrepresentation in STEM study fields. Indeed, 54% of all STEM students was male, with only 
29% of the female students making a STEM choice, compared to 51% of the male students. 

Tables 2 (STEM student population) and 3 (general student population) report the descriptive statistics and the gender differences 
for the RIASEC interest scores and STEM preparation. Female students show higher social and artistic interests, while male students 
show higher realistic, enterprising and conventional interests. Female students also show lower investigative interests in the general 
population, but higher investigative interests in the STEM population. Finally, Tables 2 and 3 also show that female students have a less 
thorough STEM preparation in secondary education. 

We performed a logistic regression on the final STEM study choice model after the AIC procedure to estimate the main and 
interactive effects of the remaining predictors. Note that adding the main effect of gender to the regression rendered a positive effect 
for female students towards STEM study choice (β = 0.78, p < .001), in contrast to the main negative effect of gender on STEM study 
choice without any other predictors present (β = − .53, p < .001). Three gender-interest interactions (student gender × realistic 
dimension, student gender × artistic dimension and student gender × enterprising dimension) were removed by the AIC stepwise 
regression as they did not add to the prediction of STEM study choice. The student gender main effect does not reach significance any 
more (p = .15), indicating that the gender effect in making a STEM study choice is fully explained through the included interaction 
effects of gender. This null result also indicates that all relevant gender interactions have been added to the regression, providing a 
conservative control for the effects present. 

As the validity of the hypothesis testing is highly dependent on the ability of our STEM study choice model to distinguish STEM and 
non-STEM students, we plotted the balance between sensitivity and specificity of the model on a ROC curve in Fig. 2. Our STEM study 
choice model manages to correctly identify 87% of the students that indeed chose a STEM program (sensitivity), while it also manages 
to correctly identify 87% of the students that chose a non-STEM program (specificity). Finally, analyses also revealed an AUC of 0.94 
with an asymptotic 95% CI of [0.938, 0.947], indicating an outstanding fit. 

3.2. Hypothesis testing 

H1 stated that STEM fit predicts STEM study choice. The final STEM study choice model in Table 4 shows that STEM fit indeed has a 
significant effect on STEM study choice, even when controlling for the significant effects of gender, STEM preparation and the indi
vidual RIASEC dimensions. As an indication of effect size, Table 5 shows that STEM fit has a high individual explained variance, second 
to STEM preparation only. STEM fit also shows a minor unique explained variance. As STEM fit is a composite measure including all 
RIASEC dimensions, the unique explained variance thus indicates that STEM fit still has incremental validity above and beyond the 
effects of individual RIASEC dimensions. 

H2 stated that the effect of STEM fit on STEM study choice is moderated by gender, with a stronger effect in female students. Table 4 
shows a significant negative parameter estimate for the interaction between STEM fit and gender, while controlling for all other gender 
interactions. In other words, a better STEM fit will lead to a higher chance for a STEM study choice in female students. Table 4 further 
shows that female STEM choice is also less determined by STEM preparation, while showing an even more pronounced positive effect 
of higher investigative interests and a less negative effect of higher social and conventional interests. 

H3 stated that female STEM students have a better program fit with their program of choice compared to male students. As such, we 
tested the difference in specific program fit between male students (M = 85.95, SD = 49.54) and female students (M = 79.88, SD =
50.91) in the STEM population. The result showed a significant effect, t (3387) = 3.51, p < .001, Cohen's d = 0.12, relative d = 8%. 

Table 2 
Student gender differences in the STEM student population.  

Student interests and STEM preparation n M Mm Mf SD Cohen's d Relative d 

Realistic dimension  3389  33.79  45.94  19.56  26.96  1.13 135% 
Investigative dimension  3389  44.88  41.94  48.33  20.96  − 0.31 − 15% 
Artistic dimension  3389  23.38  20.46  26.80  22.52  − 0.28 − 24% 
Social dimension  3389  22.67  15.21  31.40  21.50  − 0.80 − 106% 
Enterprising dimension  3389  23.32  25.95  20.23  22.47  0.26 28% 
Conventional dimension  3389  17.49  18.49  16.32  19.24  0.11 13% 
STEM preparation  3377  6.11  6.42  5.75  1.51  0.45 12% 

Note. STEM = Science, Technology, Engineering, Mathematics. Mm = male student average and Mf = female student average. STEM preparation was 
operationalized through the hours of mathematics students chose in the final two years of high school up to a maximum of eight. The RIASEC di
mensions were measured on a scale from 1 to 100. Cohen's d effect size rules of thumb (Sawilowsky, 2009): 0.01 – very small effect, 0.20 – small effect, 
0.50 – medium effect, 0.80 – large effect, 1.20 – very large effect, 2.00 – huge effect. The relative d percentage is calculated through dividing the 
highest value by the lowest value, subtracting 1 from that result and then multiplying by 100. Negative effect sizes indicate a higher value for female 
students. All gender differences were significant at the level p < .001. 
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Female students indeed showed a better fit with their STEM program compared to male students. To explore if this gender effect 
generalized to non-STEM programs, we also tested the difference in program fit between male students (M = 90.37, SD = 49.09) and 
female students (M = 82.00, SD = 47.54) in the full dataset (STEM and non-STEM programs). The result again showed a significantly 
better program fit for females, t (7786.83) = 8.12, p < .001, Cohen's d = 0.17, relative d = 10%. 

4. Discussion 

Industrialized regions around the globe have experienced increasing difficulty to fill STEM vacancies due to a decline in students 
who actively enroll for a STEM program in higher education (Ainley et al., 2008; Perera & McIlveen, 2018). Also, there seems to exist a 
widening gender gap, indicating that women are becoming even more underrepresented in the STEM field (Unesco, 2016; Xu, 2008). 
To ensure a steady stream of (female) students into higher education, literature benefits from identifying determinants of STEM study 
choice, so that education policy and counseling can act upon this knowledge to attract more (female) students. In this context, the 

Table 3 
Student gender differences in the general student population.  

Student interests and STEM preparation N M Mm Mf SD Cohen’s d Relative d 

Realistic dimension  9162  18.86  32.00  9.93  23.61  1.00 222% 
Investigative dimension  9162  33.5  34.48  32.83  21.29  0.08 5% 
Artistic dimension  9162  29.95  24.62  33.57  25.59  − 0.36 − 36% 
Social dimension  9162  34.93  22.7  43.23  25.9  − 0.88 − 90% 
Enterprising dimension  9162  33.45  37.23  30.87  28.17  0.23 21% 
Conventional dimension  9162  21.08  25.08  18.36  22.86  0.29 37% 
STEM preparation  9135  4.95  5.41  4.59  2.88  0.47 18% 

Note. STEM = Science, Technology, Engineering, Mathematics. Mm = male student average and Mf = female student average. STEM preparation was 
operationalized through the hours of mathematics students chose in the final two years of high school up to a maximum of eight. The RIASEC di
mensions were measured on a scale from 1 to 100. Cohen's d effect size rules of thumb (Sawilowsky, 2009): 0.01 – very small effect, 0.20 – small effect, 
0.50 – medium effect, 0.80 – large effect, 1.20 – very large effect, 2.00 – huge effect. A negative effect size indicates higher female student scores. The 
relative d percentage is calculated through dividing the highest value by the lowest value, subtracting 1 from that result and then multiplying by 100. 
Negative effect sizes indicate a higher value for female students. All gender differences were significant at the level p < .001. 

Fig. 2. The ROC Curve of STEM Study Choice versus non-STEM Study Choice. 
Note. Sensitivity indicates the proportion of STEM students that were actually classified as STEM students by our STEM choice model. Specificity 
indicates the non-STEM students that were indeed classified as non-STEM students. A rising sensitivity results in a falling specificity and vice versa. 
The blue ROC curve delineates the Area Under the Curve (AUC = 0.94) and indicates how well the model distinguishes STEM and non-STEM students. 
The reference line is indicated in red and represents the 50% chance level benchmark of distinction. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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present study focused on two research goals. First, we investigated how PE interest fit contributes to the prediction of STEM study 
choice, with particular consideration towards gender interaction effects. And second, we also investigated whether and to which extent 
male and female students differed regarding PE interest fit with their specific STEM program. To integrate our findings into literature, 
we again make use of the leveled framework of differential gender patterns in STEM study choice by Yazilitas et al. (2013). 

4.1. Findings and theoretical implications 

Regarding our first research question, the present study found that PE interest fit indeed predicted a STEM study choice as STEM 
students had a better PE interest fit with the STEM field compared to non-STEM students. This effect of PE interest fit is quite robust as 
the effect is found while controlling for the six individual RIASEC dimensions and STEM preparation. In addition, a STEM student also 
showed higher realistic and investigative interests and lower artistic, social, enterprising and conventional interests. Finally, a STEM 
student also enjoyed a more thorough STEM preparation in high school. These findings are commonly observed in literature. First, 
interest fit is already known to predict study choice (Schelfhout et al., 2019). Second, literature already shows that a student choosing 

Table 4 
STEM study choice model: coefficients.  

Coefficients Estimate z-Statistic 

(Intercept)  − 3.13  − 13.38*** 
Student gender  0.44  1.43 
STEM fit  − 0.0068  − 5.65*** 
STEM preparation  0.59  16.78*** 
Realistic dimension  0.049  22.39*** 
Investigative dimension  0.039  12.70*** 
Artistic dimension  − 0.014  − 7.60*** 
Social dimension  − 0.038  − 11.26*** 
Enterprising dimension  − 0.013  − 6.13*** 
Conventional dimension  − 0.028  − 8.09*** 
Student gender × STEM fit  − 0.0053  − 3.19** 
Student gender × STEM preparation  − 0.14  − 3.71** 
Student gender × investigative dimension  0.022  5.28*** 
Student gender × social dimension  0.015  3.29** 
Student gender × conventional dimension  0.021  5.03*** 

Note. STEM = Science, Technology, Engineering, Mathematics. The table displays the final model 
estimate of the logistic regression of STEM study choice (1 = STEM, 0 = non-STEM) on the six 
RIASEC dimensions of vocational interests, STEM preparation (weekly hours of mathematics in high 
school) and STEM (interest) fit, with addition of all relevant gender interactions. Student gender is 
coded 1 for female students and 0 for male students. The model explains about 71% of the (pseudo-) 
variance through a Nagelkerke’s R2. Note that the sign of the parameter estimate for STEM fit is 
negative. This negative estimate is due to the nature of Euclidean distance in which a lower score 
indicates a better fit. * p < .05, ** p < .01, *** p < .001. 

Table 5 
STEM study choice model: individual and unique explained variance.  

Predictors Individual explained variance Unique explained variance 

Student gender  0.06  0.01 
STEM fit  0.32  0.01 
STEM preparation  0.34  0.05 
Realistic dimension  0.30  0.05 
Investigative dimension  0.22  0.05 
Artistic dimension  0.05  0.01 
Social dimension  0.19  0.02 
Enterprising dimension  0.11  <0.01 
Conventional dimension  0.02  <0.01 

Note. STEM = Science, Technology, Engineering, Mathematics. The table displays the explained pseudo – variance (deviance) for 
each predictor of the logistic regression of STEM study choice (1 = STEM, 0 = non-STEM) on the six RIASEC dimensions of 
vocational interests, STEM preparation, STEM (interest) fit and gender. Individual explained variance indicates how much variance 
the predictor explains if there are no other predictors present in the model. Unique explained variance indicates how much 
explained variance is lost if the predictor is removed from the model. Individual and unique explained variance were measured 
using a Nagelkerke’s R2. All predictors have a somewhat low and thus similar unique explained variance. This result indicates that 
the model is quite robust. Indeed, information loss remains limited when removing one predictor from the model. In contrast, the 
individual explained variance over all predictors shows a much wider range. Important to note, the variance measures for gender 
provide an additional indication of the effect of student gender on STEM study choice. About one to six percent of STEM study 
choice can be explained through student gender (without gender interactions), while controlling for the other predictors. 
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STEM has a high realistic and investigative interest (Su et al., 2009; Su & Rounds, 2015). And finally, literature also shows that a 
student choosing STEM has had a more thorough STEM preparation, especially through an extensive exposure to mathematics and 
science (Bagiati et al., 2010; Blackburn, 2017; Bybee & Fuchs, 2006; Dejarnette, 2012; Wang, 2013a; Wang, 2013b). 

Also regarding our first research question, the present study found that this predictive effect of interest fit on STEM study choice 
was stronger in female students, again while controlling for other possible gender interaction effects. In addition, STEM study choice in 
female students showed a more pronounced positive effect of high investigative interests and a less negative effect of high social and 
conventional interests compared to male students. These results are in line with S(C)CT and self-efficacy theory at the micro-level of 
psychological constructs (Bandura, 2001; Lent et al., 1994; Lent et al., 2008; Lent et al., 2011; Lent & Brown, 2019; Stajkovic & 
Luthans, 1998a; Stajkovic & Luthans, 1998b). According to these theories, student self-belief that a study choice is a good fit with 
personal vocational interests is a necessary condition to make an appropriate STEM study choice. Such a self-belief assumes that a 
student has sufficient explicit knowledge about his or her own interests and the STEM field to begin with. Literature already shows that 
female students thus seem to make more and better use of explicit knowledge about their vocational interests and how these interests 
fit their study choice (Germeijs & Verschueren, 2006; Preston et al., 2007). As the present study shows, female students with a good 
STEM fit should therefore also have an even higher chance of ultimately choosing a STEM program as female students explicitly use 
more interest information in their study choice process. 

As an answer to our second research question, this stronger female interest fit effect manifests itself also at the more specific 
program level. Indeed, female STEM students had an 8% better fit with their specific program compared to their male colleagues. 
Moreover, this effect was also present in the general student population, where female students demonstrated a 10% better interest fit 
with their specific programs compared to their male colleagues. The present study thus suggests that this gender difference in PE 
interest fit is not unique to the STEM environment, as it generalizes across all study programs. This generalization further corroborates 
the reports in literature that female students make more and better use of explicit knowledge like vocational interests in the process of 
study choice (Germeijs & Verschueren, 2006; Preston et al., 2007). 

Previous to the present study, literature primarily determined a good STEM field fit by looking at RIASEC profiles within the STEM 
field (Perera & McIlveen, 2018; Su et al., 2009; Su & Rounds, 2015). In the present study we have added to literature by determining 
how an individual's vocational interests can explain making a STEM choice over a non-STEM choice. For this purpose, study programs 
were marked as either a STEM choice or a non-STEM choice using the UNESCO (2016) definition. Interestingly, the mapping of all 
study programs in two-dimensional interest space clearly showed an empirical difference in orientation between STEM programs and 
non-STEM programs, with STEM programs all showing a things/data quadrant orientation. When predicting STEM study choice 
specifically, the constructed model further integrated the main and gender interaction effects of the individual RIASEC dimensions, 
STEM fit and STEM preparation. The model performed adequately, by explaining up to 71% of the variance in (non-) STEM study 
choice. Only 5% of the variance was uniquely explained by specific STEM preparation (i.e., mathematics). These findings indicate that 
STEM study choice can be largely understood through a vocational interests perspective, without inclusion of cognitive variables. The 
model also succeeded in profiling STEM and non-STEM students by correctly identifying their (non-) STEM study choice in 87% of all 
cases. These numbers are on the very high end when compared to known (vocational) literature on study choice (Burns, 2014; Donnay, 
1997; Päßler & Hell, 2012). Moreover, the model seemed quite robust against information loss. Indeed, all predictors had low unique 
explained variance, ranging from about 1 to 5%. As such, little information is lost when a single predictor is removed. Also important, a 
STEM study choice is predicted by both strong interests (i.e., realistic and investigative dimensions) as well as the relative absence of 
interests (i.e., artistic, social, enterprising and conventional dimensions). These findings are in line with Holland's theory, as Holland 
himself always advocated the use of the full profile (Holland, 1997). 

At the societal macro-level, we have replicated the result that a STEM study choice in female students is less determined by STEM 
preparation (Buchmann et al., 2008; Nix et al., 2015, Vaarmets, 2018; Wang, 2013a; Wang, 2013b). As a plausible explanation and in 
line with literature, we suspect that this gender interaction is an emanation of a societal effect, installed as early as childhood (Bagiati 
et al., 2010; Blackburn, 2017; Bybee & Fuchs, 2006; Dejarnette, 2012) and endorsed up until the end of secondary education (Nix et al., 
2015; Sadler et al., 2012; Unesco, 2016). Indeed, the present study indicated that the minority of female students who still benefit from 
a thorough STEM preparation at the end of secondary education, seem less inclined to choose a STEM study program in higher ed
ucation than their male colleagues. 

At the institutional level, we thus observe a STEM gender gap in our data, characterized by a male overrepresentation. Only a 
minority of female students made a STEM study choice (29%), in contrast to about half of the male students. Gender explained up to 
6% of student (non-) STEM choice. As a result, the STEM study field consisted of 46% female students. However, our study did include 
60% female students to begin with, somewhat creating a more balanced population composition compared to literature (Unesco, 2016; 
Xu, 2008). Taken together, the relatively small proportion of female students choosing STEM seems to be in line with the results from 
the broader STEM gender gap presented by Stoet and Geary (2018) for developed, progressive and gender-aware countries. As a 
possible explanation, our open access higher education environment in a developed, progressive and gender-aware country invites 
students to choose according to their interests. This explanation is endorsed by the good fit of our STEM study choice model, as 
vocational interests can explain about two-thirds of the variance in STEM study choice for both male and female students, with only a 
very minor incremental gender-specific effect of about 1%. 

4.2. Practical implications 

In higher education, a good interest fit predicts study success and persistence (Burns, 2014; Donnay, 1997; Nye et al., 2012; Päßler 
& Hell, 2012; Rounds & Su, 2014; Schelfhout et al., 2019; Schelfhout et al., 2021). In other words, students that fit their study choice 

S. Schelfhout et al.                                                                                                                                                                                                     



Journal of Vocational Behavior 129 (2021) 103614

12

have a higher chance of graduating. As interests are stable constructs (Low et al., 2005), graduated STEM students that have a good fit 
with the STEM field should have a greater chance to stay in the STEM field for longer periods of time. However, more research is 
needed to explore this assumption. For instance, longitudinal research should investigate how a good PE interest fit with the STEM field 
in higher education affects important variables like performance and retention in future STEM work careers. Such longitudinal 
research should also take special care towards female workers as the determinants of persistence and performance could be different 
for male and female STEM workers, somewhat similar to higher education STEM study choice (Yazilitas et al., 2013). 

Interest fit and STEM preparation are also related to other important predictors of (study) choice such as self-efficacy (Bandura, 
2001; Germeijs & Verschueren, 2006; Lent & Brown, 2019). Orientation efforts and research could therefore be directed at further 
enhancing female awareness of STEM interests and strengthening female self-belief in STEM talent from as early as primary school 
(Bagiati et al., 2010; Blackburn, 2017; Bybee & Fuchs, 2006; Dejarnette, 2012). These efforts of boosting self-efficacy beliefs regarding 
vocational interests and STEM talent should be continued, monitored and stimulated throughout high school (Buchmann et al., 2008; 
Nix et al., 2015, Vaarmets, 2018; Wang, 2013a; Wang, 2013b). Towards higher education specifically, education policy can facilitate 
an active search for female students with an overall STEM fitting interest profile. Study counseling can also make these students 
explicitly aware of their own interests and the program specific possibilities towards a STEM career. Especially for female students, 
study orientation focusing on interest fit with the STEM field can widen the pipeline towards the STEM work field. The benefit from this 
more consistent work force influx can prove important to the economy of industrialized countries (World Economic Forum, 2016). 

4.3. Limitations 

There are two limitations to our study that have to be acknowledged. First, we acknowledge the cross-sectional nature of the 
present study's data on first year students. Data with a cross-sectional nature are usually less optimal to investigate research questions 
that touch upon prediction of future behavior like study choice as causality becomes harder to infer. As interests are stable constructs 
(Low et al., 2005) and literature already presents strong evidence regarding the predictive properties of vocational interests towards 
study choice (Fonteyne, 2017; Nauta, 2010; Nye et al., 2012), we do not consider the use of cross-sectional data a threat to the validity 
of the present study's results. Strictly speaking however, predicting study choice in a regression still does not coincide with predicting 
study choice in actual behavior if both predictors as well as the criterion are questioned at roughly the same time. We therefore opted 
to use a second, independent data set of former successful and persistent students to construct the program RIASEC profiles by using 
these former students as incumbents (Allen & Robbins, 2010; Schelfhout et al., 2019; Schelfhout et al., 2021). For the present study, 
student PE interest fit is therefore determined by comparing the data of incoming students to the data of former senior students. As 
these datasets were obtained independently of each other at different times, the interest profiles of former successful students within 
and beyond the STEM field predict which profiles the incoming students will exhibit as similar environments attract similar students 
(Schelfhout et al., 2019). The results of the present study again confirmed this effect as incoming STEM students had a better fit with 
the STEM field (i.e., more similarity to former STEM students) than incoming non-STEM students. Additionally, the present study was 
also conducted on quite a large data sample, across all faculties and programs of a large university (Shanghai top 100), thus covering a 
wide range of (non-) STEM study topics. The use of 39 largely independent subsamples (i.e., study programs) with different student 
populations can further overcome the limitations of a cross-sectional design towards prediction, especially because the AIC procedure 
uses a built-in, leave-one-out cross-validation mechanism. Such a mechanism allows us to make predictions on cross-sectional data by 
splitting the data into independent training and test samples. The already discussed robustness of our STEM prediction model further 
corroborates the validity of this methodology. 

Second, we also acknowledge the uniqueness of Belgian open access higher education compared to the more closed access edu
cation systems elsewhere in the world. However, such an open access context with less options for customization (e.g., changing majors 
is not possible) does allow assessing the effects of vocational interests without additional constraints that are imposed in systems that 
use high stakes tests or entrance requirements. Future research therefore has to investigate if the effects found in the present study can 
be replicated in other educational systems, with more restricted access. 

5. Conclusion 

A student making a STEM choice in an open access study environment has a good interest fit with the STEM field, has a specific 
RIASEC profile (i.e., with higher realistic and investigative interest and lower artistic, social, enterprising and conventional interests) 
and has enjoyed a more thorough STEM preparation in high school. For female students specifically, the effect of this good PE interest 
fit is even more pronounced, while the effect of STEM preparation diminishes. Female STEM choice also shows more pronounced 
positive effects of investigative interests and less negative effects of high social and conventional interests. Finally, following a (non-) 
STEM choice, female students fit their specific (STEM) study program better than their male colleagues. In order to promote STEM 
enrolment and address the gender gap, education policy can facilitate the search for female students with an overall STEM fitting 
interest profile. Study counseling can make these students explicitly aware of their own interests and the (program specific) possi
bilities towards a STEM career. 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jvb.2021.103614. 
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