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This article reviews the current status of methods available for the analysis of psychological change in
adulthood and aging. Enormous progress has been made in designing statistical models that can capture
key aspects of intraindividual change, as reflected in techniques such as latent growth curve models and
multilevel (random-effects) models. However, the rapid evolution of statistical innovations may have
obscured the critical importance of addressing rival explanations for statistical outcomes, such as cohort
differences or practice effects that could influence estimates of age-related change. Choice of modeling
technique and implementation of a specific modeling approach should be grounded in and reflect both
the theoretical nature of the developmental phenomenon and the features of the sampling design that
selected persons, variables, and contexts for empirical observation.

At the heart of the science of aging is the requirement that one
have appropriate concepts and methods for evaluating how and
why individuals change (or remain stable) as they grow older
(Baltes, Staudinger, & Lindenberger, 1999; Nesselroade, 1991;
Wohlwill, 1973, 1991). The last 40 years has witnessed consider-
able progress in our understanding of how to conceptualize and
measure psychological change, as exemplified by a substantial
number of reviews and books dedicated to the topic (e.g., Baltes &
Nesselroade, 1979; Collins & Horn, 1991; Collins & Sayer, 2001;
Little, Schnabel, & Baumert, 2000). Our review provides a per-
spective on the progress made to date and touches on the prospects
for future advances. We selectively review these technical ad-
vances in terms of their relevance for research on psychological
aging.

First, we briefly cover basic concepts that are important for
understanding the measurement of change. Second, in the bulk of
the article, we review (in conceptual rather than mathematical
terms) aspects of key statistical methods for the measurement of
change in adulthood. Emphasis in the recent literature has been
placed on the problem of statistical methods for assessing intrain-

dividual change (Collins & Horn, 1991; Collins & Sayer, 2001),
resulting in more widespread application of techniques like mul-
tilevel models (MLMs) to longitudinal data. Moreover, new meth-
ods are emerging that, although not yet in widespread use, promise
to radically alter concepts about the dynamics of change in adult-
hood (Boker, 2001; Nesselroade & Molenaar, 2003). Thus, the
field is rapidly developing coherent and sensible approaches to
estimating intraindividual change and individual differences in
rates of change. Third, we consider the relevance of concepts of
adult development and methodological issues about designing
studies to measure development for our thinking about statistical
models for adult development and aging. In our view, a cost of the
emphasis on statistical advances is diverted attention from the
problem of matching theoretical conceptions about adult develop-
ment with design, measurement, and analysis decisions when
modeling change (Alwin & Campbell, 2001). We believe devel-
opmental psychologists can benefit from revisiting issues about
impact of research designs and assumptions on the validity of the
substantive inferences about developmental change (Baltes, Reese,
& Nesselroade, 1988; Hertzog & Dixon, 1996; Horn & Donaldson,
1976; Schaie, 1977).

Measurement of Change

It borders on a truism that without ways to conceptualize and
measure change we cannot have a scientific study of aging. Even
though the representation and measurement of change is a long-
standing topic in behavioral science, there has been a noticeable
lack of agreement among the experts on measuring, representing,
and conceptualizing quantitative change (for divergent perspec-
tives, compare Bereiter, 1963; Cronbach & Furby, 1970; Hummel-
Rossi & Weinberg, 1975; Nesselroade, 1991; and Wohlwill,
1991). Hindsight reveals an interesting bifurcation in the history of
change measurement in social and behavioral science. While the
experts were arguing about whether change could be measured and
just how it should be done, researchers proceeded with the mea-
surement of change, using whatever methods were available, de-
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spite, if not ignoring, the controversies. Perhaps erroneous infer-
ences were generated in the process, but that seems no worse than
sitting back and making no attempt to measure change—especially
when changes are the basic phenomena of one’s field.

Today, fundamental shifts are occurring in the way students of
adult development and aging think about change and process
(Nesselroade & McCollam, 2000). The assessment of behavioral
and psychological change, rather than being a straightforward
measurement problem, is best regarded as requiring a concerted
effort to integrate relevant principles across the domains of mea-
surement, research design, and statistical modeling (Nesselroade &
Ghisletta, 2003).

Measurement Issues

The literature on measurement of change is substantial and
extends over several decades (e.g., Harris, 1963). Several of the
measurement issues that plagued investigators for so long were
summarized and discussed by Bereiter (1963) as “persisting di-
lemmas in the measurement of change.” These included (a) cor-
recting for unreliability in the measurements being studied for
evidence of change; (b) dealing with the fact that as the correlation
increases between scores at two time points, the reliability of
change (difference) scores decreases and vice versa; and (c) coping
with the idea of the meaning of change scores when there is no
objective physical dimension of change to which the former can be
related (Cattell, 1966).

Cronbach and Furby (1970) captured a number of genuine
problems associated with change scores. One consequence of their
critique was the widespread reliance on indirect measurement of
change via the assessment of stability. That is, longitudinal data
were used to compute test–retest correlation coefficients that mea-
sured the stability of individual differences between two points in
time, often referred to as stability coefficients (Bloom, 1964).
Individual differences in change were identified when the stability
coefficient was less than 1.0. There were several problems with
such an approach. First, unreliability was confounded with insta-
bility, and it was impossible to know, without statistical correc-
tions, the actual degree of stability in the variable. Second, the
indirect nature of the stability coefficient and its indifference to the
temporal lag between occasions of measurement made it difficult
to scale rates of change in a meaningful way. Third, stability
coefficients reflected change between two points in time, without
attention to patterns of change over multiple observations.

In hindsight, avoidance of change scores due to the problem of
low reliability was a misguided impediment to progress in devel-
opmental research (Rogosa, Brandt, & Zimowski, 1982). The
critical issue in determining reliability of a change score is whether
there are true individual differences in rates of change in the
psychological construct. When the variance in true change is zero,
one cannot reliably measure individual differences in change—
because there aren’t any. Change scores merely reflect the flux of
random measurement error. When there is substantial variance in
change, difference scores are reliable, valid, and interpretable.
Other, more elegant ways of indexing change may be preferred
(e.g., nonlinear regression slopes), depending on the nature of
developmental change, but that does not invalidate the change
score as a useful description of change between two points in time.

Design Issues

Just as measurement issues need to be confronted directly in
gearing up to assess changes, so must one attend to a variety of
design and modeling issues. Traditionally, measurement of intra-
individual change requires repeated observation of the same indi-
viduals over time, as in (but not restricted to) longitudinal panel
designs that have played a key role in aging research (Baltes &
Nesselroade, 1979; Schaie & Hofer, 2001). To build a useful
picture of changes, it matters a great deal, for example, which
variables are measured, how often and over what intervals they are
measured, and on whom the measurements are obtained.

For instance, the answer to the question Who is measured?
should consider such problems as the confounding of the actual
change with unwanted selection effects such as regression toward
the mean (Campbell & Kenny, 1999; Nesselroade, Stigler, &
Baltes, 1980). Regression due to measurement error produces an
artifactual change that can be confused with true change in the
underlying construct. If we elect to examine the effects of an
intervention only on the people who “need it most” (i.e., the
extreme scoring groups) we run the risk of totally confounding the
effect of the intervention with regression toward the mean effects.

The answer to the question What is measured? also impacts
directly on the level of generality of conclusions regarding change.
Often, the variables that are actually measured are merely proxies
for more theoretically interesting latent variables that cannot be
measured directly. Which empirical variables are chosen, and how
well they represent the latent variables of interest, is critical to the
validity of a developmental design. Little, Lindenberger, and Nes-
selroade (1999) presented a systematic examination of variable
selection on factor analysis results. Their principal conclusion was
that the level of homogeneity in manifest variables (e.g., items)
designed to measure a latent variable could limit validity of out-
comes. In general, it is desirable to have broad nomothetic span
(Embretson, 1983), that is, to select diverse measures of the
construct so as to minimize the likelihood of obtaining factors that
are specific to methods of measurement or reflect narrowly de-
fined, specific sources of variance (Cook & Campbell, 1979).
Depending on the number of indicators and their relationships to
the latent variable, the optimal level of indicator correlations might
be moderate rather than high. Furthermore, indicators validated
with static assessments of construct validity may have unwittingly
been designed so as to be insensitive to change and lability
(Molenaar, Huizenga, & Nesselroade, 2003), as when scale items
are selected for their high test–retest correlations. For example,
trait measures with item stems or instructions that emphasize
responding as one “generally feels” rather than “as one feels at this
moment” are less sensitive to intraindividual variability over re-
peated measurements.

How often? and Over what intervals? the measurements are
taken are also key research design considerations in assessing
change. Measurement intervals that are too short or too long in
relation to the nature of the phenomenon being studied can pro-
duce data that in some cases are overly sensitive to measurement
errors and, in other cases, are insensitive to variability and change
in the system (Boker & Nesselroade, 2002; Nesselroade & Boker,
1994; McArdle & Woodcock, 1997). In order to observe the
dynamics of change, one must select observations temporally in a
way that captures the changing states of variables as they change
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(Nesselroade, 1991). For example, the timing of measurement
occasions in a longitudinal panel design dictates whether one
should model lagged effects (effects from T � 1 to T) or simul-
taneous effects (effects within time T) in autoregressive structural
equation models of the data (Gollob & Reichardt, 1987; Kessler &
Greenberg, 1981). For instance, if the interval between a putative
cause and its putative effect is shorter than the interval between the
repeated observations, simultaneous effects might well be favored
over lagged effects. A further complication is that different assess-
ment intervals may be optimal for different variables. Variables
evincing circadian rhythms and those manifesting monthly cycles
cannot be modeled optimally with the same repeated measurement
intervals.

Studies of intraindividual variability and change (e.g., Cattell,
Cattell, & Rhymer, 1947; Hultsch, MacDonald, & Dixon, 2002;
Nesselroade, 1991) have led to the realization that describing
changes in mean levels of variables is not always adequate for
detecting key features of developmental change. Short-term
change and variation in the organism’s behavior also conveys
important information regarding the phenomenon under investiga-
tion. For example, recent research on aging and cognition suggests
that circadian rhythms can have marked impact on tasks requiring
attention and executive control, thereby influencing estimates of
age differences in cognitive performance (Hasher, Zacks, & May,
1999). Performance can also vary dramatically within a person
over weeks, even when the time of day and day of week of the
testing is held constant (Hampson, 1990; Hertzog, Dixon, &
Hultsch, 1992). Reliable assessment of intraindividual variability
requires multiple measures on the same individuals and requires
design decisions about how to create and administer nonreactive
tests and how often and on what schedule to assess individuals.
Separating intraindividual variability from longer term intraindi-
vidual change requires repetitive measurement over relatively
short time intervals (Nesselroade, 1991). This requirement has led
to the research design proposal that the measurements be con-
ducted in “bursts” rather than as single occasion activities. Here,
again, research design is seen to impinge directly on the measure-
ment of change.

Finally, the notion of “planned missingness” is also a design
matter of considerable import for research on change (McArdle,
1994). The theme of the “planned missingness” perspective is that
not all measures need be given to all participants at all occasions
of measurement. Instead, measures may be selectively given to
individuals in light of an overall plan that still allows estimation of
all parameters of interest, provided this feature can be accommo-
dated by the method of statistical analysis. Recent work by
McArdle and Hamagami (1992, 2001), for example, has helped to
formalize the methods and procedures needed to model change in
such cases.

Modeling and Analysis Issues

A number of key decisions are involved in selecting and spec-
ifying a statistical model—most of which precede attempts to
implement a particular statistical analysis with available data. For
example, data sets often contain more variables than can be in-
cluded in a given model, given the need for an adequate ratio of
cases to model parameters (in order to yield stable estimates; see
Bentler & Chou, 1987). Another key issue is how to handle

nonnormal distributions. Although techniques are available to es-
timate and analyze ordinal rather than interval scales (e.g., by
estimating polychoric correlations), many of these approaches
ignore information about variances (Jöreskog, 1990). This ap-
proach can be problematic for the measurement of change, where
diverging developmental trends lead to changes in variability over
time, and where estimates of change from standardized variables
can be misleading (e.g., Rogosa et al., 1982).

Furthermore, decisions on how to aggregate data across time
(e.g., whether to ignore variation in the length of test–retest inter-
vals in longitudinal panel data) or persons (e.g., whether to include
or exclude specific types of cases from the sample) can have a
profound impact on the validity and interpretation of modeling
outcomes. For decades, the literature has harbored the occasional
plaint that group statistics such as the mean represent every one
and no one (e.g., Lamiell, 1997). This is a critical issue for some
statistical models of developmental change. For instance, latent
growth curve models (LGMs) represent individual differences in
the shape of developmental functions as deviations from the av-
erage developmental function (McArdle, 1988; McArdle & Ander-
son, 1990). An important issue, then, is whether the aggregate
developmental curve captures in a meaningful way the variation in
the individual curves that the scientist is trying to study. Consider
Figure 1, which we have borrowed from Baltes and Labouvie
(1973). The underlying premise of the figure is that each individual
is characterized by a two-limbed developmental function: (a) sta-
bility in function for a substantial period of time, followed by (b)
late-life terminal decline (Berg, 1996; Bosworth, Schaie, & Willis,
1999; Riegel & Riegel, 1972). Because the age of onset of the

Figure 1. The effect of age-related increases in the frequency of terminal
decline patterns on mean age functions. Note that the mean curve reflects
the weighted combination of the invariant developmental function (scaled
in time to death), with variable onset of decline and an increasing hazard
of experiencing terminal decline with advancing age. From “Adult Devel-
opment of Intellectual Performance: Description, Explanation, and Modi-
fication,” by P. B. Baltes and G. V. Labouvie, in The Psychology of Adult
Development and Aging (p. 174), edited by C. Eisdorfer and M. P. Lawton,
1973, Washington, DC: American Psychological Association. Copyright
1973 by the American Psychological Association. Reprinted with permis-
sion of the author.
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terminal decline is a random variable, the average developmental
function, shown in Figure 1, is a curvilinear trend that indirectly
reflects the increasing probability of terminal decline as a function
of increasing age. Although the influences on this aggregate curve
behave lawfully, the curve itself accurately describes the shape of
none of the individual developmental functions in the sample. This
problem is well-known in statistical models for learning, develop-
ment, and growth (Estes, 1956; Wohlwill, 1973) as a type of
aggregation bias. It is a critical issue in the selection of a statistical
model for describing developmental change, although it has actu-
ally received relatively little attention in the literature describing
newer modeling approaches to measuring change.

Of course, the essence of scientific inference is generalization
that will require some forms of data aggregation. Techniques like
latent growth curve analysis, and other available tools for model-
ing change-related phenomena, have advanced our science because
they provide a beneficial and appropriate means to address many
vexing issues regarding measurement of change. The well-known
difficulties of dealing directly with raw difference scores, given
issues of reliability (errors of measurement) and validity, can be
surmounted by structuring and measuring growth and decline
indirectly with structural equation models (McArdle, 1988;
McArdle & Nesselroade, 1994; Raykov, 1999). Because these
statistical models allow explicit specification of how errors of
measurement influence the means and covariance matrices of
variables, these models can, in theory, separate change in latent
variables from errors of measurement and address the unreliabil-
ity—invalidity dilemma (Bereiter, 1963). However, such models
can best achieve the goal of valid measurement in an integrated
approach that selects measures and times of observation with a
statistical modeling approach firmly in mind.

Tests of Measurement Equivalence and Construct
Invariance

A critical goal for researchers is to create measures enabling
valid assessment of qualitative changes in constructs and justifying
the inference of quantitative changes in psychological constructs
(Baltes & Nesselroade, 1970). Measurement equivalence, indicat-
ing that a measure of a psychological construct has equivalent
measurement properties at different ages or times, is a necessary
condition for treating differences in those units of measurement as
reflecting quantitative differences in a given construct (Baltes et
al., 1988; Labouvie, 1980).

Structural modeling techniques have been widely used to model
the empirical behavior of multiple self-report scales in geronto-
logical research (Alwin, 1988; Schaie & Hertzog, 1985). These
techniques have been widely used to evaluate age differences in
the factor structure of self-report items (e.g., Hertzog, Hultsch, &
Dixon, 1989; Hertzog, Van Alstine, Usala, Hultsch, & Dixon,
1990; Liang, 1985; Zautra, Guarnaccia, & Reich, 1988). This
approach can also be extended to longitudinal observations on a set
of items to evaluate the invariance of these measurement proper-
ties over time and to separate the consistency, or reliability, of the
scales from the stability of individual differences in the true scores
(e.g., Alwin & Krosnick, 1989; Hertzog & Nesselroade, 1987). In
longitudinal studies, a valid concern is that the act of measurement
itself will alter the measurement properties of the scales—individ-
uals will react to being measured in ways that alter their responses

on the scales. Alternatively, developmental change may cause
shifts in the ways that questions or tasks are interpreted. For
example, changes in self-rated depression could reflect changes in
actual depression or merely changes in how individuals interpret
and respond to the scale’s items.

Studies evaluating longitudinal measurement equivalence have
typically found relative time-related invariance of scale properties
in adult samples (e.g., Hertzog & Nesselroade, 1987), but such
issues should be evaluated separately and anew for different mea-
sures and/or different populations. Maitland, Dixon, Hultsch, and
Hertzog (2001) rejected the hypothesis of temporal invariance in
scales from the Bradburn Affect Balance Scale (Bradburn, 1969)
in an older population; one item shifted the magnitude of its
loading on the Negative Affect factor over time. Given the longi-
tudinal invariance of other item factor loadings, they recom-
mended use of latent variable analysis to evaluate age changes in
mean negative affect with this instrument. Given the lack of
complete metric invariance, mean scale scores would be influ-
enced both by level of negative affect and shifts in measurement
properties of items over time.

Tests of factorial invariance are not just important tools for
evaluating measurement properties of tests and scales. Evaluation
of developmental changes in the organization of psychological
constructs also relies on comparative factor analysis of an appro-
priate set of indicators (Reinert, 1970). For example, one important
hypothesis about the multidimensional construct of intelligence
(Carroll, 1993) is that basic ability factors, such as inductive
reasoning, spatial relations, or verbal comprehension, become less
differentiated in old age. Here, too, measurement equivalence
issues play a role, because changes in the construct validity of
measures can also alter the factor structure. Changing constructs
must be distinguished from changing construct validity.

Hence, the critical questions are the following: Does the same
construct operate in the same way at different points in the life
span, and if so, are the hypothesized measures of that construct
equally valid (Meredith & Horn, 2001; Schaie & Hertzog, 1985)?
To evaluate these questions, one requires a sampling design on
both persons and measures in a temporal context that enables
comparisons across psychologically meaningful portions of the
adult lifespan. Selection of measures should be achieved through a
priori identification of relevant target constructs of interest and a
set of measures that, according to hypothesis, are determined by
these latent constructs. Ideally, a core set of variables should be
selected to conform to simple structure (i.e., one variable loading
on only one factor; Thurstone, 1947), but this can be difficult to
achieve in practice and should be viewed as a desideratum rather
than a requirement.

Owing in large part to work by Meredith and colleagues (e.g.,
Meredith, 1993; Meredith & Horn, 2001), much is already known
about what should be expected regarding the invariance of factor
structure of a set of variables. Even if a common factor model is
the correct model for an entire population of interest, a partition of
subgroups from that population will not necessarily produce equiv-
alent factor structures in each subpopulation (Little et al., 1999).
Selection, when modeled as a regression filter by selection vari-
ables on the whole population, produces subpopulations that differ
in means of the latent variables (i.e., means of the implied factor
scores) and also produces differing factor variances, factor covari-
ances, factor means, unique (residual) means, and unique variances
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(Meredith, 1993). Clearly, many variables differ as a function of
chronological age, so one cannot generally expect that the factor
structures for different age groups will be completely invariant,
even if the same underlying model aptly captures the structure of
the variables in the aggregate population. However, the general
type of selection studied by Meredith (1993) will still result in an
invariant factor pattern matrix (factor loadings), provided that
these loadings are estimated in raw-score metric (rather than in the
usual standard-score form). In effect, the cosines of the angles of
the dimensional space defining relations among variables remains
invariant, but selection alters the length of the vector needed to
span the observed variances defined by these dimensions. Hence,
tests of measurement equivalence using empirical data require
confirmatory analysis of covariance matrices (and, perhaps, esti-
mation of factor and unique variable means as well; Meredith,
1993).

Some authors have claimed that configural invariance—in
which different age groups have the same pattern of loadings of
variables on factors but in which the numerical values of these
loadings vary—is more likely to be the rule, and metric invariance
the exception (Horn & McArdle, 1992). Actually, metric invari-
ance of ability factor structure across adult age groups has been
found in a number of studies (e.g., Brickley, Keith, & Wolfle,
1995; Hultsch, Hertzog, Dixon, & Small, 1998; Stricker & Rock,
1987). Generally speaking, however, configural invariance of abil-
ity factor structures has been found, even when metric invariance
has not (e.g., Schaie, Maitland, Willis, & Intrieri, 1998; Zelinski &
Lewis, 2003). Candidate explanations for a lack of metric invari-
ance include age-related changes in the structure of the constructs
or age-related changes in measurement properties of the variables
(Schaie & Hertzog, 1985). The latter explanation could involve
contamination of the common factor space by specific sources of
variance, including method variance, that are not the target of the
selected set of measures (Meredith & Horn, 2001). Specific or
unique components can covary, even though the factor model
assumes they are orthogonal to each other and the common factors
specified by the model. Under such circumstances, developmental
change in some specific components of variance, but not others,
may lead to factor loading estimates that vary between age groups
(Hertzog & Bleckley, 2001).

Similar issues apply to the invariance of factors over time in
longitudinal data (e.g., Tisak & Meredith, 1990). The available
evidence suggests that abilities demonstrate unchanging configu-
rations of factors (i.e., the basic pattern of relations of variables to
factors is unchanging). It also appears that metric invariance may
hold, with equivalent unstandardized factor pattern weights (Hert-
zog & Schaie, 1986; Hultsch et al., 1998). Aging appears to alter
the correlations of cognitive ability factors in some but not all data
sets (cf. Zelinski & Lewis, 2003).

Metric invariance was not obtained in one longitudinal study
evaluating the effects of ability training on intellectual factor
structure (Schaie, Willis, Hertzog, & Schulenberg, 1987). Instead,
partial metric invariance was found (see Byrne, Shavelson, &
Muthen, 1989), with the reasoning test used for training purposes
showing changes in its loading on an Inductive Reasoning factor.
This outcome suggested that training on a particular set of induc-
tion test items alters the relationship of the test using that item type
with other tests of inductive reasoning.

Seemingly small variations in the selections of measures can
have an important impact on longitudinal models of individual
differences in change. Hertzog, Dixon, Hultsch, and MacDonald
(2003) showed that merely substituting one measure of working
memory for another in a latent variable model of change produced
substantial shifts in the estimated relationships between changes in
working memory and other cognitive constructs, despite the fact
that the set of working memory measures in question all showed
substantial correlations with one another. They did not, however,
form a stable and coherent latent variable, given divergent rela-
tionships of working memory measures to other constructs. Ex-
plicit evaluation of the factor structure of measures is a necessary
precursor to valid structural regression analysis.

There are a number of important current issues involving as-
sessment of factorial invariance. One potentially controversial
issue is whether assessment of invariance requires simultaneous
analysis of mean and covariance structures (Meredith, 1993). Fac-
tor analysis is predicated on a model of multiple components of
variance that determine test score performance, and such compo-
nents can be divided into common factor variance and sources of
test-specific variance. The distinction is somewhat arbitrary, in
that a specific source of variance can be made a common source of
variance by virtue of selection of variables to mark factors (Little
et al., 1999). Nevertheless, the distinction is valid for any given set
of factors and measures defined by a sampling plan on variables.
Meredith and Horn (2001) argued that age group differences in
specific factor means could bias tests of factorial invariance, unless
these factor means are explicitly modeled.

Although we respect the argument concerning analysis of means
in studies of factorial invariance, we believe its logic is grounded
in a static, psychometric perspective on measurement and tests of
measurement equivalence. As developmentalists interested in the
study of change and process, we do not believe that the processes
that account for covariance structures are necessarily going to be
the same as the processes that determine mean levels of the
component variables (see later section Reconceptualizing Mea-
surement “Error”). Therefore, we would not always expect a
single, restricted measurement model to account adequately for
both means and covariance structures. Consider, for example,
generational differences in mean level of physical stature that
coincide with no detectable generational differences in the covaria-
tion pattern of body parts. Something (diet?) can universally in-
crease or decrease physical stature over time or between genera-
tions without affecting how the sizes of different body parts covary
with each other. We advocate renewed attention to the issue of
whether simultaneous modeling means and covariance structures
ought to be considered a necessary feature of tests of factorial
invariance.

Statistical Models for Measuring Intraindividual Change:
Recent Developments

Autoregressive Structural Equation Models

When structural equation modeling software first became
widely available in the 1970s, the predominant method for mod-
eling change in longitudinal panel data was use of an autoregres-
sive model (e.g., Alwin, 1988; Dwyer, 1983; Jöreskog, 1979;
McArdle & Aber, 1990; Rogosa, 1979; Schaie & Hertzog, 1985).
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Variants of the autoregressive approach are still strongly recom-
mended today (e.g., Rudinger & Reitz, 2001). In this approach,
occasion-specific latent variables are modeled at each time of
measurement, as is a flow of influence from earlier to later points
in time. Figure 2 depicts a first-order autoregressive model, in
which a single latent variable L at time T is modeled as being
determined by the same latent variable at time T � 1. This
regression coefficient is the unstandardized equivalent of the sim-
ple stability coefficient already mentioned, because it estimates the
stability in rank orders of individuals between the two points in
time. Instability is reflected in the residual variance of the distur-
bance term, d, at time T, controlling for autoregression. Thus the
residual variance is an indirect measure of individual differences in
change from times T � 1 to T. Given two (or more) latent
variables, measured at two (or more) points in time, cross-lagged
or simultaneous regression models can be specified that start with
an autoregressive model for each latent variable. Variables that
predict a target variable at time T, controlling for autoregression,
are interpreted as causes of change from time T � 1 to T (Kessler
& Greenberg, 1981). This class of models has been fairly widely
used in gerontological research (e.g., Finch & Zautra, 1992; Hert-
zog, Cooper & Fisk, 1996; Newsom, Mishishiba, Morgan, &
Rook, 2003; Schooler, Mulatu, & Oates, 1999).

An interesting potential application of autoregressive models is
evaluation of direction of causation, either through the comparison
of magnitudes of cross-lagged regression coefficients (Rogosa,
1980) or simultaneous, reciprocal regression effects (e.g., Schooler
et al., 1999). Whether one would specify lagged or simultaneous
effects is in part a function of the frequency of longitudinal
sampling, relative to the dynamics of the causal process (Kessler &
Greenberg, 1981), as was alluded to in the earlier discussion of
timing of measurement. Whether comparisons of relative magni-
tudes of standardized regression coefficients can identify relative
importance of two or more variables in a causal process is a more
difficult question, one that is not fully resolved (Dwyer, 1983;
Gollob & Reichardt, 1987; Rogosa, 1979).

There is little question that the use of autoregressive structural
equation models for this purpose is superior to ordinary cross-

lagged correlation (Kenny, 1979) or multiple regression analysis,
in large part because specific error structures and regression rela-
tionships between residual (or disturbance) terms can be explicitly
modeled (e.g., Kessler & Greenberg, 1981). Hence, estimates of
stability and mutual influence between variables are corrected for
random measurement error, and sources of systematic error can be
specified and modeled, as well.

Because the autoregressive model has been widely used and
evaluated, much is known about its strengths and weaknesses. The
model is potentially useful for identifying flows of influence in
panel data. It has the additional virtue that stability of individual
differences in underlying constructs can be estimated from the
standardized autoregressive coefficient even if there is a lack of
full measurement equivalence in the measures over time, as long as
one can assume that the measures maintain configural invariance
over time (i.e., they continue to measure the same latent variable).
There are several potential limitations of the autoregressive ap-
proach, including the following: (a) the autoregressive model
parameters do not explicitly model change, but rather indirect
manifestations of change; (b) comparison of cross-lagged regres-
sion coefficients does not necessarily identify leading and lagging
(cause and effect) relationships in a panel design (Rogosa, 1980);
(c) the autoregressive model carries implicit assumptions of en-
tropy (decreases) in latent variable correlations that can be prob-
lematic (Hertzog & Nesselroade, 1987); (d) dynamic equilibrium
in causal structure may not be adequately reflected in parameters
estimated from panel data, in which a first point of measurement
is generally not the point of inception of the equilibrium process
(Curran & Bollen, 2001; Dwyer, 1983; Gollob & Reichardt, 1987);
(e) the autoregressive parameters are indifferent to the functional
form of change over time (e.g., exponential rates of learning) and
to individual differences in the parameters of any functions reflect-
ing factors that govern that change; and (f) change in a variable
cannot, in itself, be modeled as a cause of change in other vari-
ables, even when change is the theoretically meaningful causal
concept.

Latent Change Models

McArdle and Nesselroade (1994) introduced an alternative ap-
proach, latent change models. These models still specify occasion-
specific factors, but they do not use an autoregressive approach to
estimate stability coefficients. Difference scores are not calculated
and are not directly factored. Instead, additional higher order latent
variables are specified that measure latent initial level and change
for each latent variable. Figure 3 illustrates this type of model.
Such a model can be executed on a longitudinal covariance matrix,
with or without adding the vector of observed means. The chief
advantage of this model is that changes in the latent variables are
represented as factors. Thus, it is possible to estimate the variance
of the latent change factor as a parameter. Rejecting the null
hypothesis of zero variance indicates that there are reliable indi-
vidual differences in change. Such a test is relevant to claims that
individual differences in latent variables are highly if not perfectly
stable (e.g., Costa & McCrae, 1994). Small, Hertzog, Hultsch, and
Dixon (2003) used latent change models to demonstrate that,
despite impressive longitudinal stability of the so-called Big 5
personality factors, reliable individual differences in adult person-
ality change could be detected over a 6-year interval. Latent

Figure 2. A hypothetical autoregressive model with a latent variable Lt

(t � 1 . . . 5), a first-order autoregressive process (e.g., L13 L2), and two
observed variables, v1t and v2t, measuring Lt at each occasion of measure-
ment. The metric of Lt is defined by the fixed-1 loading of v1t on Lt.
Stability is indirectly reflected in the autoregressive coefficients, and
instability is indirectly reflected in the variance of the disturbance terms, dt

(t � 2 . . . 5).
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change models can also be used in structural regression models in
which change in one variable predicts change in another variable.
Hultsch et al. (1998) and Hertzog et al. (2003) used latent change
models to evaluate whether change in processing resource vari-
ables (speed and working memory) are associated with changes in
more complex cognitive variables, such as inductive reasoning and
episodic memory. Hultsch, Hertzog, Small, and Dixon (1999)
found that changes in self-reported health did not predict changes
in cognitive constructs like working memory but that changes in
intellectually engaging activities did predict changes in cognition.

A limitation of the latent change models as just illustrated is that
they are restricted to two occasions of measurement. As such, they
implicitly assume linear change between the two time points,
which may not be an apt description of change over longer time
intervals. However, the models can be extended to multiple
successive-difference or change factors across three or more oc-
casions (see McArdle & Aber, 1990).

LGMs

Basic model specification. The latent change models just de-
scribed can be considered a special case of LGM (Duncan &
Duncan, 1995; McArdle & Anderson, 1990). LGMs generally
specify a Level and a Shape latent variable for each construct.
Usually (but not always), the Level variable represents the initial
point of measurement in a longitudinal data set. The Shape vari-
able captures individual differences in rates of change over time.
Means of the observed variables are typically also modeled as
being determined by the means of the latent Level and Shape. The

functional form of change, which we refer to as the basis function
for scaling change, is defined by values of the loadings of observed
variables on the Shape factor. This basis for Shape can be defined
with a variety of metrics (e.g., McArdle & Bell, 2000; Rovine &
Molenaar, 2001), including a nonlinear basis function (e.g., a
Gompertz function) defined a priori (Browne & duToit, 1991). A
nonlinear basis function can also be estimated from the data, which
is a powerful alternative to polynomial decomposition of the curve
(McArdle, 1988; McArdle & Bell, 2000). LGMs can be specified
for a single variable or multiple variables so that correlations of
changes between variables can be evaluated. The technique is even
more powerful when applied to multiple latent constructs, so that
(a) latent occasion-specific factors are specified and (b) Level and
Shape factors are specified that relate to these factors, as in the
latent change models described previously. The chief advantage of
this approach is optimal correction for measurement error, relative
to models estimating curves for a single measure of a construct
(McArdle, 1988; Sayer & Cumsille, 2001).

Figure 4 depicts an LGM for a single observed variable, mea-
sured at five occasions (v1 . . . v5). At each occasion, the variable
is modeled as having components due to initial level, change from
initial level, and measurement error (the dt in Figure 4). The Level
factors are defined by fixed-1 loadings of all variables for a given
latent construct on its Level factor. In Figure 4, the scaling of the
basis function for both variables implies linear growth or decline.
This is reflected in the equal-interval increases in the fixed factor
loadings on the Shape latent variable over occasions of measure-
ment. In the example given, the scale of the basis vector is set as

Figure 3. Latent change model for two measures of a latent working memory variable (WM), measured at two
points in time (Occasions 1 and 2). The fixed-1 regression coefficients involving the latent variables implicitly
define the latent variable of Working Memory Level as equal to Working Memory at Wave 1 (WM1) and
Working Memory Change latent variable as the difference between Working Memory at the two waves (WM2 �
WM1). Residuals of the two measures of working memory (Sentence Construction and Computation Span) are
allowed to covary across occasions, reflecting stability in systematic errors over time.
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proportion of change between initial status (fixed 0) and final
status (.00, .25, .50, .75, and 1.00—see Rovine and Molenaar,
2000, for an alternative method of scaling the basis function with
integer weights). The fixed-0 and fixed-1 parameters at the end-
points are needed to define the Shape factor and to determine its
metric. If the Shape factor weights for Occasions 2–4 were esti-
mated from the data, a nonlinear shape could be implied.
For example, estimated weights of .0, .1, .2, .4, and 1.0 would
imply change that is accelerating in rate late in the observa-
tional time period. This basis function applies equally well to
growth and decline (individuals declining over time would, im-
plicitly, have negative scores on the Shape factor). However, a
critical assumption of the model is that all individuals in the
population have a growth (or decline) process that is governed by
this shape function. By assumption, individuals can vary in the
amount and rate of developmental change, not in the functional
form of development.

Important parameters in the model include means of the Level
and Shape factors (initial level and average change over time),
variance of Level and Shape variables (measuring initial interin-
dividual variability and individual differences in latent change,
respectively), covariances of Level and Shape variables within a

construct (indicating whether magnitude of change is dependent on
initial level), covariances of Level and Shape parameters between
constructs (indicating initial variable relations and covariances in
change between variables over time), and error variances over
time. These latter parameters allow for deviations of the observed
scores from the pattern of growth defined by the Shape parameter.
Restricted hypotheses can be tested by likelihood-ratio tests (e.g.,
testing for individual differences in change by evaluating whether
the variance in Shape is reliably greater than zero).

LGM can be extended to multiple observed variables and to
include a growth process on latent variables rather than observed
variables (McArdle, 1988). The critical issue for the analysis of
change is often the covariance between Shape parameters for
different variables, because these covariances address whether
individual differences in rates of change are correlated for different
variables. There is some controversy about whether the covariance
of Level and Shape for a given variable is actually interpretable,
substantively, in terms of individual differences in change (see
Rudinger & Reitz, 2001). In part, this is because the covariance of
Level and Shape is not invariant with respect to choice of scale
(i.e., how time is centered by the fixed zero loading on Shape; see
also Rovine & Molenaar, 1999).

Figure 4. A univariate latent growth curve model for a single variable measured at 5 occasions (v1 through v5)
in a panel study, using the Level, Shape, and disturbance term (d1 . . . d5) latent variables. The oval defines the
constant 1, which is used to estimate the mean level (ML) and mean shape (MS) of the developmental function.
Variances in the latent Level and Shape variables reflect individual differences in the shape of the developmental
function defined by the regression weights of observed variables on the Shape latent variable. The fixed weights
shown imply a linear growth function (given equal time intervals); the weight of .5 for the loading of v3 on Shape
indicates that 50% of the total change from Time 1 to Time 5 has occurred by Time 3. The model as drawn
assumes the covariance of Level and Shape is 0; a covariance parameter between Level and Shape can be added
to the model.
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Alternative LGMs for sequential data. A major issue in appli-
cations of growth curve models to sequential data is that, unlike a
traditional single-cohort longitudinal design, individuals will often
vary substantially in age (and birth cohort membership) at the
inception of the sample (see Schaie, 1996). This heterogeneous
sample will then be followed longitudinally, often at relatively
constant retest intervals. This kind of longitudinal sequence (Baltes
et al., 1988) generates relatively wide spans of chronological age,
cross-sectionally, and generates intraindividual change data
slowly, as years pass.

These kinds of designs immediately raise the question of
whether the growth curve model should use time—or occasion of
measurement—versus age, as the way of defining the basis curve
representing change (McArdle & Bell, 2000; Mehta & West,
2000). Figure 4 implies that occasion of measurement in a panel
study is used as a basis for organizing growth. This specification
would be appropriate if the form of change depends on time or
historical period. However, organizing growth curves in this way,
one may encounter the problem that the functional form of change
is governed by an age-graded developmental process, not by the
mere passage of time. If, in fact, the developmental curve is
entrained by processes associated with chronological age (as in
ontogenesis) and if the functional form of the basis curve is
nonlinear across age levels, then a standard LGM produces biased
estimates of the average change function and individual differ-
ences in the shapes of that function (Mehta & West, 2000). Under
these conditions, more complex models are required that use an
age-graded basis function. The LGM model can be expanded to
define multiple subgroups. Each member of a group would have
the same age span covered in its slice of the longitudinal sequence;
groups would differ in their realized age spans (McArdle &
Hamagami, 1992; Mehta & West, 2000). Estimation of the aggre-
gate developmental function in typical LGM invokes what is
called the convergence assumption (i.e., equivalent expected value
of cross-sectional and longitudinal sources of age effects; McArdle
& Bell, 2000). Indirectly, this assumption involves assuming no
cohort differences and negligible impact of other confounds (e.g.,
attrition, practice effects) on longitudinal and cross-sectional esti-
mates of age change.

Convergence assumptions can be problematic. Rates of attrition
are often quite substantial in longitudinal studies (Hultsch et al.,
1998; Schaie, 1996), and attrition is often related to the develop-
mental construct of interest. For example, depressed individuals
may be less likely to volunteer to be assessed again, and individ-
uals who have cognitive impairments may be more likely to die
(e.g., Berg, 1996). A common way of approaching this problem is
to analyze data only for those who return across all available
occasions of measurement in the longitudinal study, even though
this introduces bias to the estimated level and change functions and
may constrain external validity of longitudinal results to the larger
population. That is, one obtains an estimate of average level,
average intraindividual change, and individual differences in
change for a residual population that is positively selected relative
to the inception sample and to the population at large.

McArdle and Hamagami (1992, 2001) have argued instead that
all available data should be used to estimate the developmental
function. These authors have introduced complex multiple-group
LGMs that include all individuals, irrespective of their participa-
tion history. One specifies groups of persons who are homoge-

neous with respect to patterns of missing data. For example, in a
four-occasion longitudinal panel study, one group might have all
four occasions, and another group might have data on only the first
occasion, another group might have data on the first, third, and
fourth occasions of measurement. Obviously, as the number of
occasions grows, the number of possible combinations of missing
data patterns (and hence, groups) grows as well. Then, one esti-
mates the model constraining the key parameters (e.g., means of
Level and Shape, covariances of Shape parameters between vari-
ables) to be equal across the groups.

Extensions of growth curve models to more complex sampling
designs are possible and have considerable potential benefit. A key
problem in longitudinal studies is that practice effects or reactive
effects of testing are confounded with occasion of measurement.
Practice effects can bias estimates of average age changes, and
individual differences in practice benefit can bias estimates of
individual differences in rates of developmental change ( Donald-
son & Horn, 1992; Rabbitt, Diggle, Smith, Holland, & McInnes,
2001; Salthouse, 2000; Schaie, 1977). McArdle and Woodcock
(1997) considered how to extend LGMs for longitudinal sequences
to incorporate estimates of practice effects.

To some degree, the field is only beginning to explore what is
possible within different classes of latent variable models and what
can be gained by combining features from different classes. For
example, Curran and Bollen (2001) argued for a combination of
autoregressive models and LGM into a hybrid that preserves
important features of both kinds of change models. Rudinger and
Reitz (2001) argued that their reparameterization of autoregressive
models, allowing for autoregression from unobserved values of
variables prior to commencement of observation in a panel design
(see also Gollob & Reichardt, 1987), is superior to LGM. Un-
doubtedly, the next decade will see additional explorations of
alternative specifications of change and the consequences these
specifications have for measurement of development.

Applications of LGM to aging research. At present, there have
been relatively few applications of LGMs in empirical research in
gerontology, although the rate of application appears to be increas-
ing. McArdle, Hamagami, Elias, and Robbins (1991) applied LGM
with incomplete data to the study of relationships between hyper-
tension and cognition. There were some differences between hy-
pertensive and normotensive groups in patterns of cognitive
change. Lynch and George (2002) demonstrated that longitudinal
changes in late-life depressive symptoms were associated with
increases in psychological stress associated with loss-related
events (e.g., widowhood). Their data support the claim that a
substantial part of depressive symptoms in older adults are reac-
tions to stressors. Hofer et al. (2002) evaluated whether the apoE
genotype was associated with differential cognitive change in a
longitudinal study using LGM. Anstey, Hofer, and Luszcz (2003)
used LGM on latent variables to evaluate whether sensory changes
are as highly related to cognitive changes in longitudinal data as
expected from cross-sectional data showing strong sensory-
cognitive correlations. They found that these changes are not
highly related, suggesting that accounting for cross-sectional age-
related variance (Salthouse, 2000) is not necessarily identifying
variance in age-related change. Christensen et al. (2001) evaluated
whether longitudinal age changes were smaller in better-educated
older adults and concluded that they were not. Latent cognitive
slopes did not vary by educational level. McAuley et al. (1999)
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used LGM to evaluate an intervention trial (with a 1-year follow-
up) examining exercise regimen effects on self-efficacy and fre-
quency of exercise participation. Individual differences in change
in exercise efficacy were predicted by changes in exercise fre-
quency and change in physical fitness (in the stretching–toning
intervention).

In all these cases, modeling change in latent variables, correct-
ing for measurement error, was critical to be able to evaluate
relationships between variables over time. Furthermore, LGM
permitted an evaluation of how changes in psychological variables
predict changes in other variables, hypotheses that are not easily
tested in autoregressive models for panel data.

Multilevel (Random-Effects) Models

Basic features. Random-effects models represent a relatively
recent statistical approach that has been successfully applied to
longitudinal data analysis (Bryk & Raudenbush, 1987; Goldstein,
1995; Raudenbush, 2001). The approach uses a particular form of
the generalized linear model to specify fixed effects and random
effects, and can handle nested MLMs. Hence we refer to these
approaches as MLMs. Individuals (persons) represent one class of
random effects, and so individual differences in level and change
of psychological variables are treated as the lowest level in a
possible hierarchy of interrelated variables. When applied to de-
velopmental data, the basic setup for such models is as follows.

Consider a longitudinal sequence, with persons having varying
initial ages and age spans for which they are measured longitudi-
nally. The simplest MLM for data from such a sequence would
involve a single variable (e.g., fluid intelligence) to be modeled as
a function of development, but multiple variables can be included.
There are (at least) two basic equations to consider. The first
models each individual’s pattern of development in fluid intelli-
gence as a function of age or time (e.g., intercept and slope
parameters in straight-line growth). The second-level equation
models individual differences in these regression coefficients as a
function of individual differences in other variables. In this way,
covariates or predictors of change can be incorporated into the
model. Age, then, is treated as a random variable that differs
between persons (at the start of sampling) and increases longitu-
dinally within a person. Because the within-person regression
coefficients specifically use age as an index variable, age trends in
the data can be estimated (e.g., means at each age, individual
differences in age changes).

MLM for change in a single variable produces estimates of
average initial level and change, as well as individual differences
in level and change, that are formally equivalent to the estimates
obtained from an LGM (MacCallum, Kim, Malarkey, & Kiecolt-
Glaser, 1997; Raudenbush, 2001; Rovine & Molenaar, 2000,
2001). For univariate growth curves, then, the approaches are
interchangeable, although there has been some debate about
whether LGM or MLM is superior in certain applications. One of
the key benefits to MLM for this purpose is the flexible handling
of missing data, as well as the seamless treatment of convergence
assumptions for age effects within and between persons (McArdle
& Hamagami, 2001). Arguably, MLM is simpler than LGM when
analyzing longitudinal sequences under convergence assumptions.
Unlike LGM, MLM requires no grouping by homogeneous age
and missing data patterns. Furthermore, MLM can be used when

patterns of longitudinal sampling are irregular or even random
across persons. LGM uses a group aggregation approach, which
allows the exact spacing of longitudinal occasions for a given
person to deviate from the aggregate spacing implied by group
membership. This can introduce systematic bias in LGM estimates
that is rarely modeled explicitly. Conversely, MLMs are typically
limited to modeling growth and predictors of growth by using
observed variables, not latent variables. Hence the type of growth
curve on latent variables considered by McArdle (1988), Sayer and
Cumsille (2001), and others cannot easily be estimated by using
standard MLM techniques.

A major advantage of MLM is that the occasion-specific struc-
ture of the data is, in essence, ignored (but see Rudinger & Reitz,
2001). Because time (or age) is a critical index of reference in the
equations, the regression estimates for level and slope, under
missing-at-random assumptions, define the aggregate develop-
mental function. For nonlinear developmental functions, more
complex basis functions can be applied (e.g., polynomials) as in
LGM. More critically, time or age itself is treated as a random
variable, so the model is ideal for analyzing data where dates (and
hence, ages) of sampling vary randomly between participants.

More recent developments include methods for formally spec-
ifying nonlinear basis functions (e.g., SAS PROC NLMIXED;
SAS Insititute, 2000) and a new modeling approach, the bivariate
dual-change score model (Hamagami & McArdle, 2001; McArdle
& Hamagami, 2001) instantiated within an MLM. This model is
also a hybrid between LGM and the cross-lagged panel autore-
gressive model discussed earlier (see Ghisletta & Lindenberger,
2003).

Applications. A number of studies have estimated intraindi-
vidual change scores or slopes for multiple-occasion data, using
simple change scores or ordinary least squares (OLS) regression to
estimate individual slopes and intercepts (e.g., Alder, Adam, &
Arenberg, 1990; Christensen et al., 1999). These studies consis-
tently find reliable individual differences in magnitudes of cogni-
tive change during adulthood. However, a recent comparative
analysis suggests that MLM approaches are generally superior to
the analysis of change scores or other indirect methods for assess-
ing predictors of change (Reynolds, Gatz, & Pedersen, 2002).

A series of articles used longitudinal data from the Boston
Normative Aging Study to evaluate change in personality, health,
and mental health (e.g., Aldwin, Spiro, Levenson, & Bosse, 1989;
Aldwin, Spiro, Levenson, & Cupertino, 2001; Spiro, Aldwin,
Levenson, & Bosse, 1990). This study is best served by an MLM
approach to measuring individual change because of the irregular
sampling intervals for study participants. Their general approach
has been a two-stage analysis, in which the first step estimates
slopes and intercepts for each individual, and the second step
analyzes these parameter estimates with other predictors in regres-
sion models. Early work in this series also used OLS regression to
estimate individual change slopes (e.g., Spiro et al., 1990); later
work in this series has used SAS PROC MIXED (SAS Institute,
2000) to estimate parameters of latent curves (Aldwin et al., 2001).
In general, this research supports the argument that adult changes
in physical health, mental health, and personality covary.

Wilson et al. (2002) also used a two-stage estimation approach.
They first used SAS PROC MIXED to estimate linear change
slopes for individuals in their panel study and then conducted
additional analyses on the slopes. Substantial correlations of slopes
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across different cognitive measures were found, which Wilson et
al. argued was evidence for a higher order factor of cognitive
change (based in part on a principal-components analysis of the
estimated slopes). These results were relatively consistent with
work that has used latent change models to examine the structure
of cognitive change in late life (Hultsch et al., 1998), despite the
fact that the analysis of the structure of change was not conducted
simultaneously at the latent variable level.

Other research with MLMs has used simultaneous estimation of
change parameters and covariate–predictor relationships. Weath-
erell, Reynolds, Gatz, and Pedersen (2002) showed that state
anxiety was related to level of cognitive performance in a longi-
tudinal study, but that neuroticism was not a risk factor for greater
rates of cognitive decline. Lane and Zelinski (2003) demonstrated
weak relationships between memory complaints and longitudinal
changes in memory in a sequential sample, suggesting only limited
predictive validity of complaints for actual cognitive changes.
Kemper, Thompson, and Marquis (2001) showed that age was
associated with increased rates of longitudinal decline in gram-
matical complexity and other measures of language production and
that diagnosed Alzheimer’s disease was associated with a accel-
erated rate of decline. Sliwinski and Buschke (1999) used MLMs
to demonstrate that processing speed was an important covariate
for predicting cross-sectional age differences in episodic memory,
but that longitudinal changes in processing speed were not as
important for predicting longitudinal changes in episodic memory.
In the latter study, the modest relationship between speed and
cognitive change would not have been anticipated from existing
cross-sectional studies (e.g., Salthouse, 1996). Recent MLM lon-
gitudinal studies by Zimprich (2002) and MacDonald, Hultsch,
Strauss, and Dixon (2003) have come to a similar conclusion.

Rabbitt et al. (2001) applied MLM to separate practice effects,
mortality, and normative aging influences on a measure of general
intelligence, using data from a large community sample of older
adults. Practice effects were substantial, even in individuals who
had relatively long retest intervals; adjusting for practice effects
revealed a quadratic age-related cognitive decline function, with
reliable decline detected after age 70.

McArdle, Ferrer-Caja, and Hamagami (2002) used nonlinear
MLM to characterize changes in multiple intelligence factors,
including fluid and crystallized intelligence, across the entire hu-
man life span. Exponential growth and decline curves were fit to
the different abilities. They provided convincing evidence for the
differences in shapes of the age functions, with steeper changes
after maturity for fluid intelligence and general speediness than for
crystallized intelligence. Finkel, Reynolds, McArdle, Gatz, and
Pedersen (2003) used MLM to demonstrate accelerating cognitive
decline after age 65 on multiple measures in the Swedish Adop-
tion/Twin Study of Aging. Reynolds, Finkel, Gatz, and Pedersen
(2002) analyzed the same data set to show that slopes of change
showed less heritability than levels of cognitive performance, and
they attributed differential decline amongst members of twin pairs
to environmental causes. Ghisletta and Lindenberger (2003) used
the bivariate dual change score model to evaluate changes in
processing speed and semantic knowledge. The lagged parameters
indicated that the age-associated influence of speed on knowledge
was greater than the converse effect of knowledge on speed.

Klumb (2001) used MLM to evaluate intraindividual time-
sampling data. Older participants provided up to 30 self-reports of

activities, perceived difficulty of activities, affect, and self-efficacy
ratings over a 6-day period. MLM was then used to estimate
relations among level and change in different variables. Self-
efficacy level predicted intraindividual variability in positive affect
and perceived task difficulty.

From Statics to Dynamics: Recent Developments

The history of scientific disciplines supports the argument that
phenomena are not fully understood until the pertinent lawful
relationships are written in dynamic, change-process-oriented
terms (West, 1985). Behavioral and social science has not reached
this level of development despite advocacy for dynamic ap-
proaches (e.g., Coleman, 1968). With rare exceptions, social and
behavioral science continues to feature the static-equilibrium,
stability-oriented conceptions held by most sciences until the past
century (Holling, 1973). Thus, exciting developments in analysis
procedures that attempt to represent change in newer, more pow-
erful ways but that are not particularly dynamic—such as LGM—
can be regarded as “way stations” in the evolution of change
measurement (Molenaar et al., 2003).

Fortunately, we are seeing renewed interest in representing
dynamic relationships, including aspects of change measurement,
in powerful mathematical forms such as difference and differential
equations (Arminger, 1986; Boker, 2001; McArdle & Hamagami,
2001; Tuma & Hannan, 1984). A variety of dynamical modeling
thrusts have found their voices in the psychological literature of
the past decade (e.g., Vallacher & Nowak, 1994; Thelen & Smith,
1994). Boker and his colleagues have demonstrated the versatility
of the damped linear oscillator model with applications in the area
of substance abuse among adolescents (e.g., Boker & Graham,
1998). Factor analysis has received a dynamical “face lift” within
the context of linear dynamical systems modeling. Dynamic factor
analysis (DFA) models—extensions of Cattell’s P-technique fac-
tor analysis model—have been put forward (e.g., Molenaar, 1994;
see Nesselroade & Ghisletta, 2003, and Nesselroade, McArdle,
Aggen, & Meyers, 2002, for recent reviews).

Applications of these techniques are beginning to appear in the
empirical literature. For example, Shifrin, Hooker, Wood, and
Nesselroade (1997) used DFA to analyze daily self-reported affect
scores for 70� days by a sample of participants with Parkinson’s
disease. The analyses, which were done on each individual’s data,
revealed that patterns of intraindividual variability in reported
affect varied across individuals both in terms of dimensionality
(number of factors) and in terms of temporal organization (predic-
tion of later affective status from earlier affective status). Thus, the
notion of structure was elaborated from one of mere static dimen-
sionality (number of factors) to include the idea of temporal
organization (lagged relationships between factors and manifest
variables). This latter conveys the dynamical relationships con-
cerning how changes in the factors are linked to changes in the
variables.

The fuller integration of dynamical modeling approaches into
the study of behavioral change generally will be a difficult and
prolonged task. In addition to the sheer inertia that must be
overcome from decades of focusing on simple measures of change,
such as difference scores, the use of dynamical modeling proce-
dures is relatively data intensive. There are also difficult problems
of estimation that must be resolved (e.g., Boker & Nesselroade,
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2002) and the available computer software for conducting these
analyses is not as generally available, nor is it as user friendly as
some of the better conventional statistical packages. Despite the
uncommon level of quantitative sophistication required to use
these models (e.g., estimating first and second derivatives before
the actual model fitting can take place) and to interpret the results,
their promise is great. Indeed, the shift toward more dynamical
representations relying on advanced mathematical forms charac-
terizes how other scientific disciplines have evolved (West, 1985),
and this trend is likely to influence developmental psychology as
well.

Open Questions and Future Directions

The foregoing review of new statistical approaches to the mea-
surement of change raises some critical issues that are inherently
part of any longitudinal design and analysis targeting developmen-
tal change. Developmental psychologists—particularly ones inter-
ested in changes over the life span (e.g., Baltes, 1987, 1993;
Schaie, 1996) have considered in some detail the problems asso-
ciated with inferring age-related changes from empirical data
(Nesselroade & Labouvie, 1985; Schaie, 1977). Inferences about
aging require attention to a number of issues in design (e.g., Alwin
& Campbell, 2001; Cook & Campbell, 1979; Schaie, 1977) and
measurement (e.g., Baltes & Nesselroade, 1970; Labouvie, 1980;
Schaie & Hertzog, 1985). However, these considerations have not
always influenced applications of techniques like LGM or MLM to
longitudinal data. To bring this perspective into clearer focus, in
the subsections below, we summarize and discuss a few key issues
about analyzing developmental change.

What Are the Appropriate Assumptions for Models of
Change in Adulthood?

The quickest and most pragmatic longitudinal design for adult
developmental research involves the use of longitudinal sequences
(Baltes et al., 1988; Schaie, 1977), in which an initial cross-
sectional sample is followed longitudinally and new cross-
sectional samples are also collected (and followed longitudinally)
at later points in time. Once a second occasion of measurement is
available, models can be used to estimate change parameters
(Ghisletta & Lindenberger, 2003), even though more cross-
sectional than longitudinal information is available concerning
age-related change. LGM and MLM models for the data, estimat-
ing an age-basis for the function, rely on the assumption of
convergence (McArdle & Bell, 2000), that is, that age differences
in cross-section and longitudinal changes can be converged to
estimate age-related mean trends and individual differences in
change around those trends.

Ironically, most of the literature in life-span developmental
methodology challenges the viability of convergence assumptions
not merely because of the well-known problem of cohort effects
and/or Age � Cohort interactions (Kaufman, 2001; Neisser, 1998;
Schaie, 1996) but also because of the implicit additional assump-
tions: missing-at-random data for those who are lost to longitudi-
nal follow-up, absence of period, practice, and instrumentation
confounds, and so on. Unfortunately, most applications of LGM
and MLM to model longitudinal means and covariance structures
do not evaluate the viability of convergence assumptions, nor do

they explicitly attempt to estimate cohort effects from the data (but
see Miyazaki & Raudenbush, 2000). In a minimal longitudinal
sequence with a wide cross-sectional age span and a short retest
interval, it may not be possible to empirically identify cohort
differences and age changes, and different assumptions can lead to
widely disparate outcomes (Donaldson & Horn, 1992). Neverthe-
less, users of advanced longitudinal models assume convergence at
the peril of producing invalid estimates of age-related change.

A related assumption in longitudinal analysis is the assumption
of ergodicity (Molenaar et al., 2003), that is, that intraindividual
change functions can be captured by aggregating data in panel
studies and studying individual differences in intraindividual
change (as in the standard LGM and MLM analyses we have
reviewed). Molenaar et al. (2003) argued that in many cases
standard LGM models fail to capture important patterns of intra-
individual variability because of aggregation bias. They challenged
whether LGM parameters, such as the variance in Shapes, provides
a valid description of individual differences in rates of change.

The nature of this bias may be influenced by simplistic assump-
tions about the form of the underlying developmental function.
Some statistical models leave the developmental function open and
relatively unconstrained (as in the polynomial growth curve ap-
proach), whereas others specify a particular functional form. Like-
wise, models vary with respect to the assumptions they carry
regarding how the aggregate developmental function should orga-
nize measurement of change. The latent change model (McArdle
& Nesselroade, 1994) assumes that individual differences in
change can be analyzed when the mean change function is ignored,
but the specification of the model implies that change is linear for
the time interval spanned by the latent changes. Likewise, many
MLM models implicitly model simplified developmental functions
because they specify only a linear age term or linear and quadratic
age terms.

In general, applications of models for change should do more to
evaluate the assumptions that are (often implicitly) built into the
models. In some cases, explicit evaluation of convergence prop-
erties can be encouraging. Hultsch et al. (1998) found that cross-
sectional comparisons of cognitive factor structures for their
young-old and old-old subsamples revealed age differences in
factor correlations that were later mirrored in parameters from a
latent change model. For example, correlations of other cognitive
factors with Working Memory were higher in the old-old cross-
sectional sample, and the longitudinal model showed strong cor-
relations of changes in Working Memory with changes in cogni-
tive variables. This outcome suggested that the cross-sectional
correlational differences were indirectly reflecting longitudinal
changes in relationships between variables.

Are There Qualitative Differences in Patterns of Change?

Adult development and aging creates unique problems in defin-
ing the reference population of interest. Life-span developmental
theorists have long recognized that the causes of change in adult-
hood are not necessarily ontogenetic in nature. A variety of non-
normative influences can create qualitatively different subgroups,
in terms of patterns of change (e.g., Baltes, 1993, Busse, 1969).
The problem of external validity or generalizability for studies of
aging does not refer to the general population at any point in time
(e.g., the inception point of a longitudinal panel study) but rather

650 HERTZOG AND NESSELROADE



to a population of persons aging from birth to death, where aging
is an intraindividual phenomenon and the time and causes of death
are random variables. From this point of view, there is no single
reference population, but rather, implicit subpopulations develop-
ing in heterogeneous ways because of normative and nonnorma-
tive influences on developmental change. If population mortality is
nonrandom with respect to psychological processes (e.g., if the
hostility facet of personality and other behaviors are risk factors
for coronary artery disease; Haney et al., 1996), then attrition is not
merely a problem of positive bias due to missing information but
also a problem of shifting population composition. Indeed, data
from the Seattle Longitudinal Study show that prior longitudinal
change in intellectual functioning is a risk factor for subsequent
mortality (Bosworth et al., 1999).

Then the question becomes, To what reference population does
the aggregate developmental function generalize, if any (Nessel-
roade & Labouvie, 1985)? Referring back to Figure 1, it is not
difficult to imagine an aggregate curve that makes accurate prob-
abilistic statements (e.g., what is the best guess for the perfor-
mance level of a 50-year old?) but that is an accurate depiction of
the intraindividual change function of few, if any, individuals. This
issue is considered in some detail by Sliwinski, Hofer, and Hall
(2003; Sliwinski, Hofer, Hall, et al., 2003), who show that the
presence of subclinical Alzheimer’s disease can alter MLM esti-
mates of age-changes and individual differences in rates of change
in a panel study. Further, they showed that organizing the basis
function by time to diagnosis, rather than age, provided a better fit
to the patient group and dramatically reduced estimated individual
differences in rates of cognitive change.

The problem cannot always be addressed by identifying, even ex
post facto, subgroups with diagnosis of nonnormative pathology.
Typical LGM and MLM applications assume homogeneity of
developmental function; that is, that the same developmental func-
tion applies to all members of the population, with individuals
varying only in the values of the parameters specified (e.g., mag-
nitude of Level and Shape parameters). Heterogeneity in develop-
mental functions is allowed only within the constraints defined by
the parametric equations, including variation according to predic-
tors of change. Granted, a considerable degree of heterogeneity in
developmental change is afforded by variance in a nonlinear Shape
parameter, but it may still not be sufficient to adequately describe
and explain individual differences in change over time.

In contrast, person-centered approaches to the study of devel-
opment and change (Bergman, Magnusson, & El Khouri, 2003)
attempt to identify empirically subgroups of individuals who share
a common developmental pathway. By studying the differences in
these developmental pathways and identifying precursors, covari-
ates, and predictors, one hopes to build explanatory systems for the
differences that are observed in developmental outcomes.

Aldwin et al. (2001) reported an excellent example of the use of
cluster analysis to evaluate qualitatitive differences in change.
They used MLM to estimate individual developmental trajectories
for physical health and psychological symptoms for panel mem-
bers of the Normative Aging Study. They then used standard
cluster analysis techniques to identify subgroups differing in pat-
terns of symptom change. The modal pattern of symptoms in-
volved men with low, stable physical and psychological symptom
levels. However, smaller subgroups were identified with distinct
patterns of personality–symptom relationships. For example, older

men with high levels of physical health problems that increased
over time were higher in hostility and anxiety, were overweight,
and smoked. Similar work by Liang et al. (2003), using MLM
followed by cluster analysis, yielded similar results. They suggest
that, in old age, there are different patterns of change in subjective
health. They identified three types of change patterns, each of
which was associated with a different trajectory of change in
functional competence in everyday life.

Techniques are available that combine longitudinal change
models with a means of identifying subtypes of persons with
respect to change in simultaneous estimation approaches. Wood-
bury and Manton (1991) developed a technique, grade-of-
membership analysis, that allows individuals to be characterized as
members of fuzzy sets, according to a weight matrix that reflects
degree of membership in an idealized type (e.g., Manton, Corne-
lius, & Woodbury, 1995). The technique can be used to classify
persons with respect to heterogeneous patterns of change over
time. Manton, Siegler, and Woodbury (1986) used the techniques
to identify persons varying in patterns of intellectual development
in adulthood. A subtype of individuals had excellent physical and
mental health and maintained intellectual functioning over time,
whereas others were characterized by decline and a high proba-
bility of later dementia diagnosis.

Muthen (2001) has developed an approach that combines quali-
tatitive types with LGM. It explicitly allows for qualitatitive dif-
ferences in shapes of developmental functions and can estimate
whether an individual belongs to a particular latent class of persons
with different change patterns. A potential limitation of this ap-
proach is that nonnormal distributions can produce spurious evi-
dence for embedded subtypes (Bauer & Curran, in press).

It is too early to tell whether the promise of typological ap-
proaches will lead to new empirical advances in our understanding
of adult psychological development. A critical issue that such
approaches must address is that they can recover differences in
overall level of functioning that are just as easily (if not more
easily) understood as quantitative differences in the Level and
Shape parameters from latent growth curve analysis. An exciting
area for future work will be to refine our understanding of when a
typologically oriented analysis produces strong evidence of true
qualitative differences in patterns of developmental change, as
opposed to mere quantitative differences in an underlying function.
This is a classic and enduring problem in developmental analysis
(Baltes & Nesselroade, 1970; Wohlwill, 1973).

How Are Patterns of Developmental Change Reflected in
Model Parameters?

We believe there is a compelling need for simulation studies that
work up from patterns of developmental change toward under-
standing how such effects would be manifested in parameter
estimates from the types of statistical models reviewed in this
article. For example, we have little knowledge about how restric-
tion of range effects toward the bottom of a measurement scale
might influence estimated variance in latent slopes in an LGM or
MLM analysis. At present it is not known what the potential costs
and biases are for the kind of two-stage application of random-
effects models described earlier. To what extent is the estimation
of individual slopes (akin to factor score estimation), followed by
other exploratory techniques, likely to produce estimates and in-
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ferences about psychological change that are similar to estimates
and inferences obtained by a simultaneous multivariate approach
that estimates covariances between slopes and prediction equations
for slopes without two-stage estimation? There is also a major
need for additional simulation work that tests the consequences of
violating assumptions such as convergence or ergodicity for LGM
and MLM applications. At present we know far too little about the
robustness of parameter estimates, or about the robustness of
substantive inferences about development drawn from longitudinal
models. Finally, the potential controversy over whether tests of
factorial invariance requires estimation of factor means would be
best resolved by analyzing simulation data where the possible
consequences of selection on factor means and specific unique
component means for invariance could be evaluated.

Reconceptualizing Measurement “Error”

Meredith and Horn (2001) argued that longitudinal analyses
should explicitly model change in unique or specific factors,
including the mean changes in these components. Their argument
highlights the critical importance of conceiving of measurement
error as consisting of multiple components that may or may not
change in ways that are similar to the latent construct of interest.
Measurement error in this sense is not random error, but rather a
complex amalgam of multiple, systematic sources of variance that
are treated as error because they are not necessarily the target of
investigation. For example, individuals may choose a number on a
rating scale for a variety of reasons that are independent of the
target construct being rated, including social desirability, self-
handicapping, aversion to extreme responses, and uncertainty
about translations of scale. All such sources of error are lumped
into the residual error term without an attempt to measure them
explicitly. By assumption, and usually without supporting evi-
dence, residual effects are treated as stochastic and isolated from
the variables that are included in the model (the self-containment
assumption; see James, Mulaik, & Brett, 1982).

In principle, these sources of error could behave differently over
time than the constructs themselves, and the error components can
have different impact on means and on variances. Models of
processing component scores from experimental psychology are
instructive in this regard. They indicate that not all components
will have measurable means or measurable variances (Donaldson,
1983). In some cases experimental task manipulations have a
substantial mean effect, but produce little variance (individual
differences) in the magnitude of that effect. Latent difference score
models for such experiments will not produce robust variance
estimates for an experimental effect parameter (Donaldson, 1983;
Embretson, 1983). By analogy, there could also be little variation
in developmental change in such experimental effects. Some ex-
perimental task parameters (e.g., mental rotation task slopes) dem-
onstrate reliable individual differences, but others do not. So the
measurement error problem must be evaluated in the context of
each specific task, or in the case of development, in the context of
specific constructs and situations across parts of the life span.

The implication is that scientists taking to heart Meredith and
Horn’s (2001) recommendation to model means and variances of
changes in specific components must allow for the possibility that
the specific error components that predict individual differences in
change may not produce average mean changes, and vice versa.

Thus, components that explain changes in observed variable means
may not account for individual differences in observed changes
over time. The typical LGM specification presumes, to the con-
trary, that mean changes and changes in covariance structures are
determined by the same component processes. Generally, standard
models for longitudinal data incorporate assumptions about mea-
surement error that seem simplistic and even inaccurate. Univari-
ate LGMs typically assume that error variance at each longitudinal
measurement occasion is homogeneous and orthogonal to the
growth process being modeled. Yet error, in this sense, is merely
residual variance not accounted for by the growth curve, and as
such can contain multiple systematic sources of variance. Speci-
fying homogeneity of error variance may be required to identify
the model and/or to obtain stable parameter estimates, but this does
not imply that the assumption is correct or that the estimates
obtained thereby are unbiased.

Summary and Conclusions

The methodological arsenal of scientists interested in aging is
undergoing constant revision, and major progress is being made in
providing new tools and approaches for statistical models of de-
velopmental change in adulthood. One of our concerns, at present,
is that (to borrow a phrase from our late colleague Jack Wohlwill),
we cannot allow the statistical wing to flap the scientific bird.
Choice of modeling technique and implementation of a specific
modeling approach should be grounded in and reflect both the
theoretical nature of the developmental phenomenon and the fea-
tures of the sampling design that selected persons, variables, and
contexts for empirical observation. We advocate renewed attention
to the issues of internal validity, construct validity, and statistical
conclusion validity (Cook & Campbell, 1979) in research on
developmental change. Sophistication in modeling application is
not merely a function of the elegance of the statistical model. It is
also manifested in how one matches models to phenomena. Opti-
mally, one does so in a way that aggregates at minimal cost, that
represents key concepts as model parameters capturing the dynam-
ics of change, and that allows for the complexity of multiple
patterns and multiple influences on change.
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