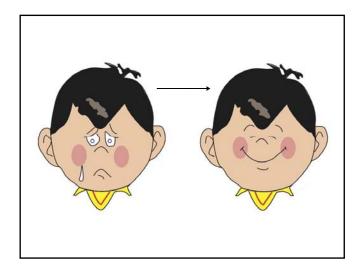
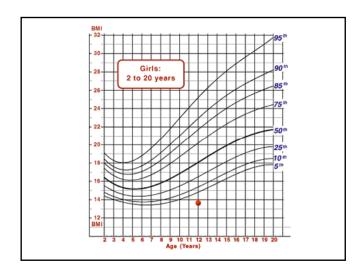
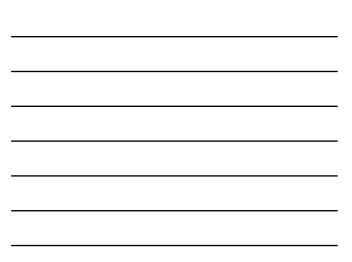

EARA 2009 Methodology Workshop


New methods for the analysis of change and development Growth curves and beyond

Prof. Wim Beyers Ghent University, Belgium wim.beyers@ugent.be


(no pics available)



DEVELOPMENT

- Time and intervals - Differential growth - Missing values · Classic methods and disadvantages - Absolute change: the difference score Absolute change+: repeated measures ANOVA _ _ Relative change: autoregression

- Relative change+: cross-lagged models

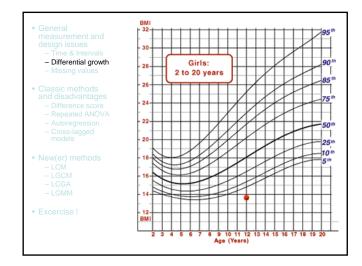
General measurement and design issues

· New and better methods

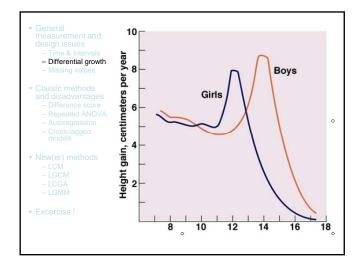
- With 2+ waves: LCM
- With 3+ waves: LGCM - With 4+ waves: LCGA
- With 4+ waves: LGMM
- The example DATA: - N = 405 adolescents (M_{age} = 13 at start) + mothers - Measures: Age 13: - Gender: 203 boys and 202 girls (A-report) - Support from mother (A-report) Age 13, 14, 15 and 16: - Antisocial behavior (M-report) - School GPA (A-report) - Missing data: - dropout and nonresponse from Age 14 onwards! - 7 (ANTI-3) to 34% (GPA-4) EARADATA.SAV - 13.5% overall EARADATA.DAT EARADATA.XLS EARADATA.TXT

General measurement and design issues

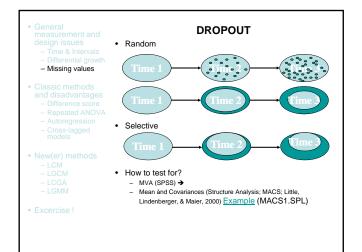
- Time & Intervals

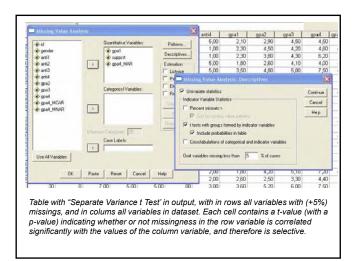

• When measuring CHANGE, how can we define TIME? - Age in years, months, days.

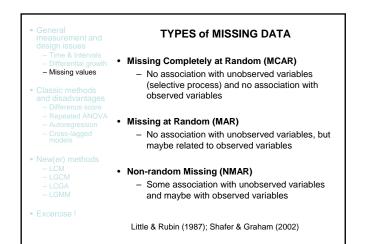
- Experiential time: Amount of time something is experienced Years of schooling (grade), length of relationship, amount of practice
- Calibrate on beginning of event, measure time experienced - Episodic time: Time of onset of a life event
 - Age, toilet trained, driver license, puberty, birth of child, retirement
 - Early onset, on-time, late onset: used to classify or calibrate
 Time since onset or time from normative or expected occurance.

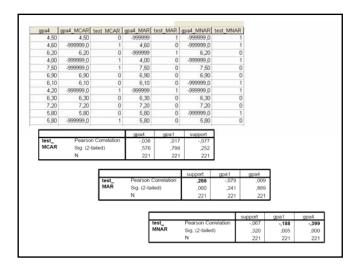

- - Intervals must be equal to or less than expected processes of change (e.g., schooling studies at half-year intervals)
 - If too short: too sensitive to measurement error - If too long: insensitive to change and variability in change

- An example article: Rueter & Conger (1998)


· What measurement Intervals should we take? - How fast is the developmental process?

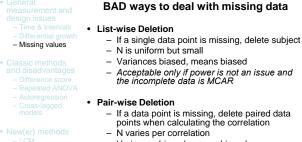






_

		Y (wave	e 2)	
X (wave1)	Compleet	MCAR	MAR	MNAR
130	101	101	101	101
145	155			
136	140	140	140	
146	134	134		134
111	129		111	129
134	124		124	124
153	112			112
137	122	122	122	122
118	118	118	118	118


General measurement and design issues	PREVENTING!
 Time & Intervals Differential growth Missing values 	• Dillman (1978) ✓ Intensive follow-up and tracking of subjects
 Classic methods and disadvantages Difference score Repeated ANOVA Autoregression Cross-lagged 	 ✓ Repeated invitations to participation, reminders ✓ Repeated sending of the measurements ✓ Do everything to prevent large dropout! • Planned missingness ✓ Do not measure all variables in all participants at all times.
models	Cohort-sequential design
• New(er) methods – LCM – LGCM – LCGA – LGMM	 Let new persons come in at each wave of the study, This way you create different patterns of missingness, not only dropout! Different ways to increase the chances of MAR or MCAR!

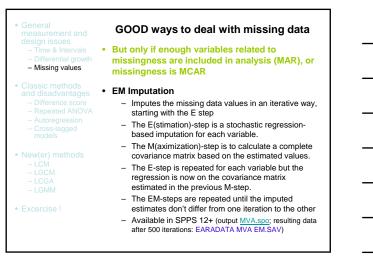
CURING!

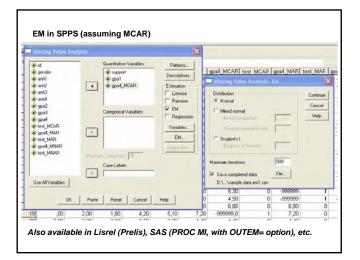
- Missing values

- Purpose is NOT to fill in empty cells in the data!
- Purpose IS to estimate the population parameters as good as possible, using a sample with missing data!
 - Which methods can help us in this challenging task?

6

- Variances biased, means biased
- Matrix often non-positive definite
- Acceptable only if power is not an issue and the incomplete data is MCAR


BAD ways to deal with missing data · Sample-wise Mean Substitution - Use the mean of the sample for any missing - Missing values value of a given individual - Variances reduced - Correlations biased - Never acceptable! · Subject-wise Mean Substitution - Use the mean score of other items for a given missing value • Depends on the homogeneity of the items used · Is like regression imputation with regression weights fixed at 1.0 · Acceptable only if set of items is homogeneous and only few missings!


Guession Imputation
 Autoregression
 Autoregression
 Chirshagged
 Chirshagged

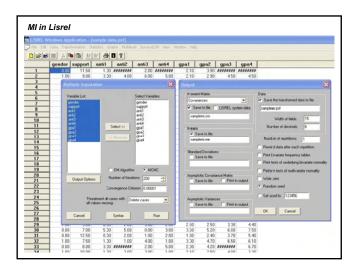
- Better if much predictors are used
- Assumes MCAR

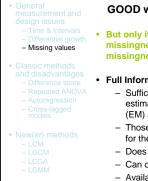
Stochastic Regression Imputation

- Same as above but a random error component is added to the imputed value to reduce the loss in variance
- Still assumes MCAR

Missing values

GOOD ways to deal with missing data


· But only if enough variables related to missingness are included in analysis (MAR), or missingness is MCAR


Multiple Imputation

- Estimate N (e.g., 5) datasets using the EM algorithm Each dataset is based on a kind of resampling of the
- original sample (equivalent to a random selection of a different sample from the population)
- Possible way 1:
 - Run the analyses N times
 Summarize the results of these N analyses using the formulas of Rubin
 (1987)
- Possible way 2: Collapse the N samples to one dataset and do the analyses.

NOR		_				- 1
_		Analyze Win	dow Help			_
ORM	session: u	nnamed				×
ata	EM algorithm	Data augmer	ntation Impute from parameters			1
Data	' ile Variable	es Summari:	ze			
Dou	ole-click on a c	ell or press EN1	ER to edit; T to tabulate; P to p	blot; C to compare		
	Name	In model	Transformations	Rounding	In *.imp	
	gender	*	none	integer	*	
	support	*	none	integer	*	
	anti1	*	none	integer	*	
	anti2	*	none	integer	*	
	anti3	*	none	integer integer	*	
7		*	none	integer	*	
8		*	none	integer		
ģ		-	none	integer		
	gpa4MAR	*	none	integer	*	

GOOD ways to deal with missing data

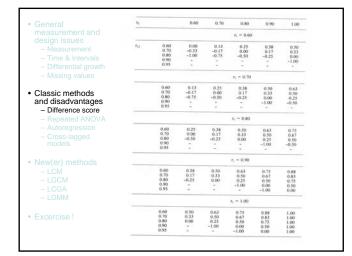
 But only if enough variables related to missingness are included in analysis (MAR), or missingness is MCAR

Full Information Maximum Likelihood

- Sufficient statistics (means, covariances) are estimated with the Expectation Maximization (EM) algorithm
- Those estimates then serve as the start values for the Maximum Likelihood model estimation
- Does not impute the missing values.
- Can only be used when testing a SEM-model.
- Available in Lisrel, AMOS, Mplus, EQS, etc.

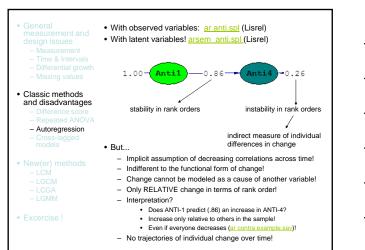
EXAMPLE comes with LGC models.

'Missing' Websites

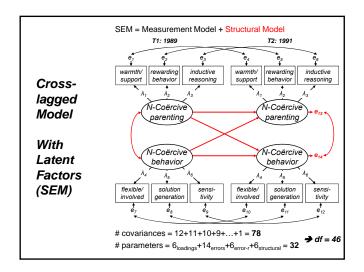

- http://www2.chass.ncsu.edu/garson/pa765/missing.htm
- http://www.stat.psu.edu/~jls/missing_data/index.html
- http://www.utexas.edu/its/rc/answers/general/gen25.html
- <u>http://www.stat.psu.edu/~jls/mifaq.html</u>

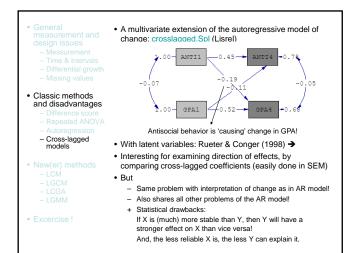
- http://www.stat.psu.edu/~jls/misoftwa.html (NORM)

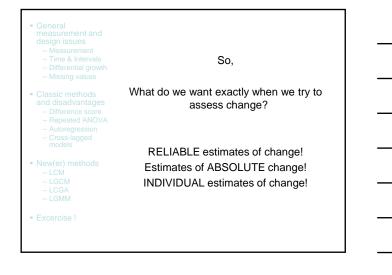
$CHANGE_{14} = ANTI_4 - ANTI_1$

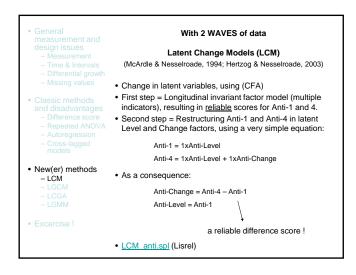

- Though many problems with it, still popular (e.g., intervention, pretest-posttest, or clinical studies)
- Most cited problem: <u>Unreliability</u> of the difference score when the component measures comprising the difference
- are only modestly reliable and positively correlated - which is typically the case in longitudinal research!
- And therefore also: lack of valididity
- Difference score Change is measured without taking level into account!

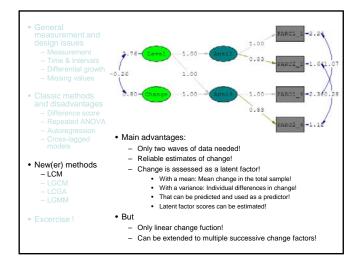
Classic methods and disadvantages

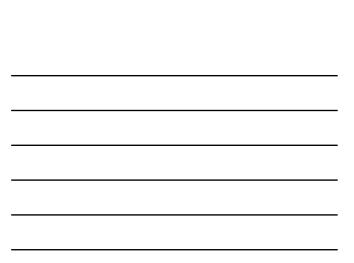


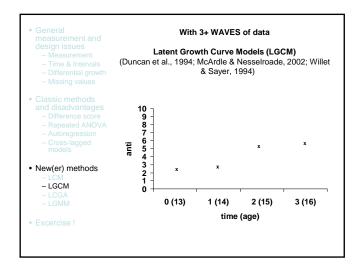

General measurement and design issues	CHANGE = effect of TIME in a repeated ANOVA
 Measurement Time & Intervals Differential growth 	SPSS output: <u>R ANOVA.spo</u>
- Missing values	 So, a good method
Classic methods	 To describe and test an overall change function, and test for the form of it (linear, quadratic, cubic, etc.)
and disadvantages – Difference score	 To test for the effect of covariates on the change function (e.g., support)
 Repeated ANOVA Autoregression Cross-lagged models 	 To test for the effect of between-subject factors on the change fuction (e.g., gender): Time x Gender interactions!
	• But
 New(er) methods – LCM 	 Only tests <u>mean change</u> over time in the whole sample and not deviations from that mean change
– LGCM – LCGA – LGMM	 And Group statistics (e.g., mean) represent everyone, and no one!
	 Equal intervals between measurements are necessary!
Excercise !	 Change is an outcome of the repeated measures (time) and cannot be used as a predictor of outcomes.

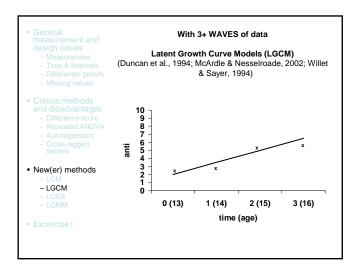




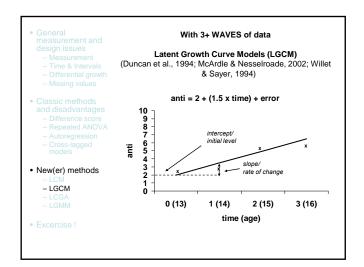


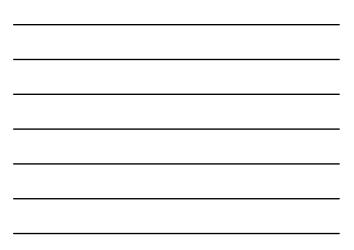




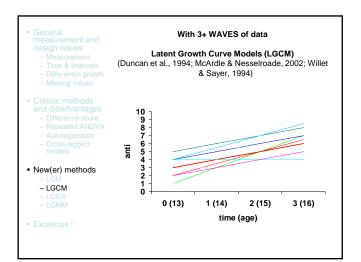


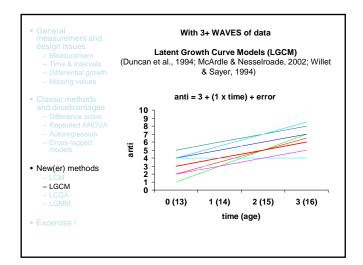
 General measurement and 	With 3+ WAVES of data
design issues – Measurement – Time & Intervals – Differential growth – Missing values	Latent Growth Curve Models (LGCM) (Duncan et al., 1994; McArdle & Nesselroade, 2002; Willet & Sayer, 1994)
	Questions:
 Classic methods and disadvantages 	 Does an individual characteristic (e.g., antisocial behavior)
	change over time?
	 Which trajectory is followed?
	 Interindividual differences?
	Step 1: Within-Person
	 Equation for every subject in the sample:
 New(er) methods 	anti = intercept + (slope x Time) + error (regression)
– LCM	 Growth can be non-linear too!
- LGCM	anti = intercept + (slope x Time) + (curve x Time ²) + error
– LCGA – LGMM	 Assumption: Indivuals share the shape of the change function (e.g., linear), but can differ in the amount or rate of change (individual growth parameters: intercept, slope, etc.)
 Excercise ! 	Step 2: Between-Person
	 Means (fixed) & variances (random) of intercepts, slopes
	 Predictors of change (conditional growth models).

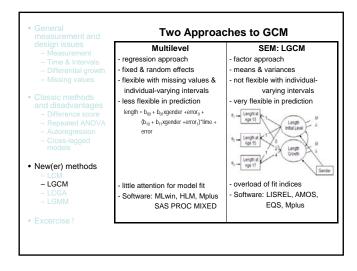


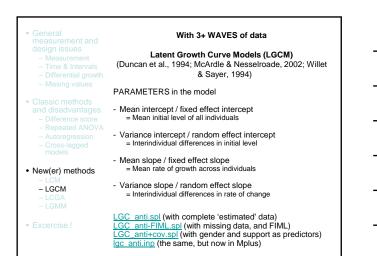


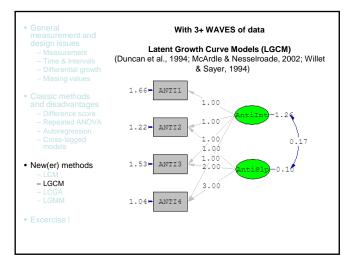


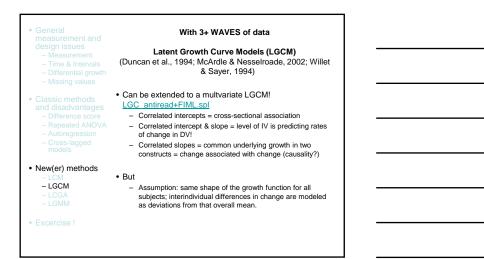


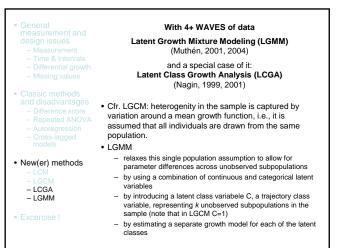


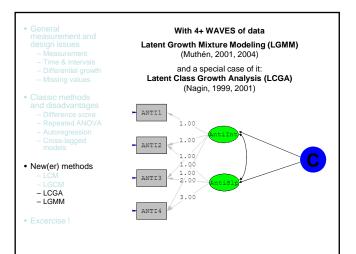












General

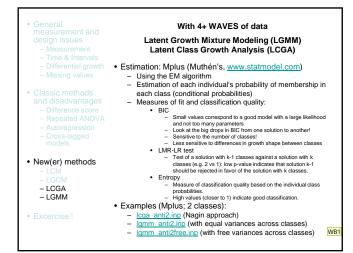
neasurement ai

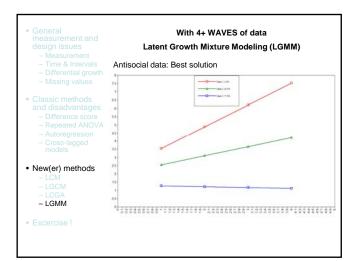
- Measurement
- Lime & Interva
 Differential grade
- Missing value
- Classia mathada
- and disadvantage
- Difference score
- Repeated ANO
- Cross-lagge
- models
- New(er) methods
 - LGC
 - LCGA – LGMM
 - LGIV
- Excercise

With 4+ WAVES of data

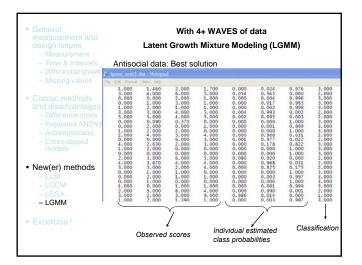
Latent Growth Mixture Modeling (LGMM)

LGMM: Class differences


- Typically between mean intercepts between classes
- Mean slopes in the classes
- Variance in intercept and slope
- Shape of the growth function!Influence of covariates!
- Innuence of covariates:


LGMM: Extensions

- Including covariates of change
- Including outcomes that are predicted from growth


LCGA (Nagin)

- Very similar, only no variances within classes are estimated (therefore a semi-parametric approach)
- Individuals within classes are treated as homogeneous

General measurement and design issues — Measurement — Time & Intervals — Differential growth	 Estimate a LGCM of GPA, using the FIML approach for missing data. Interprete the parameters that are found. DATA are EARADATA.DAT Software is Lisrel
 Missing values Classic methods and disadvantages Difference score Repeated ANOVA 	 Find the optimal LCGA solution of the GPA data. Explain why this solution was chosen and interprete the different classes. DATA are GPA.DAT Software is Mplus
 Autoregression Cross-lagged models New(er) methods LCM LGCM LCGA 	3. Evaluate the effect of mother support on antisocial behavior (level & change), using a conditional growth model and FIML DATA are EARADATA.DAT Software is Lisrel
- LGMM Excercise !	 Setup and do the analyses using the software! Present the results to the audience, using a single slide and explain the effects in words! Ask for help while doing the analyses!

٦

Change is inevitable. Change is constant. (Benjamin Disraeli)

Change is the nursery of music, joy, life, and eternity. (John Donne)

When you're finished changing, you're finished. (Benjamin Franklin)

We are restless because of incessant change, but we would be frightened if change were stopped. (Lyman Bryson)

> Change is a measure of time. (Edwin Way Teale)

sound