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ABSTRACT. In this article, we propose a numerical method for two-

dimensional geometrical shape optimization problem in the context of structures 

of linear elasticity. Our approach is based on a combination of the classical shape 

derivative and Hadamard's boundary variation method. The shape derivative is 

computed by Lagrange's approach via the solution to the state and adjoint 

equations. In addition to the use of moving mesh according to the descent 

direction, the proposed algorithm also necessitates topological gradient 

resmoothing techniques. Its convergence to a (local) minimum, illustrated by 

several numerical experiments in the contexts of structural mechanics with the 

objective function of compliance and volume constraint. 
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Shape optimization in general and shape optimization of elastic structures has received 

a lot of attentions from mathematicians and engineers alike. 

 

Many approaches have been studied extensively over the years and have brought forth 

interesting results in theory and in applications. Among numerous methods introduced 

to solve the structural optimization problems at hands, the representation of the shapes 

and the computation of the sensitivity of the objective criterion with respect to the 

design are perhaps the two distinguishing factors. 

 

The oldest and most popular one, the classical shape optimization method  [17, 20],  
is based on the computation of the sensitivity of the criterion of interest with respect to 

a smooth variation of the boundary. Its main drawback is that it does not allow any 

topology changes.  

 

JOURNAL OF  

Mathematical Applications 
Vol. XVI, No1, 2018, 1 - 18 



2 Journal of Mathematical Applications, Vol. XVI, N. 1, 2018

To overcome this limitation, relaxed formulations using e.g. the homogeniza-
tion theory have been introduced [3, 1, 7]. Considering the number of publica-
tions, these approaches and their variants (power-law method or solid isotropic
microstructure with penalization method) are quite classical, see [6, 5, 7, 3, 1]
for examples. This class of methods is called the density methods. By defin-
ing a density function θ whose value range from 0 to 1 over a computational
domain D, the shape optimization problem is posed as a parametric optimiza-
tion problem, which is solved by optimizing the distribution of the mixture of
material and void in the computational. The value of θ is close to 0 if there is
almost only void, and close to 1 if there is almost only the shape.

However, these methods are mainly restricted to linear elasticity and partic-
ular objective functions. Despite their high computational cost, stochastic
algorithms (like genetic algorithms, see e.g. [15]) can be used to deal with
more general situations, or when practical reasons make difficult a sensitivity
computation (for instance the adjoint state may not be easily computable).

Aside from density methods, implicit methods have also been studied and de-
veloped. Interface-tracking or interface-capturing techniques in finite element
computation utilize them extensively. The most popular in shape-topology op-
timization of them is the level set method. Notable examples include Wang et
al. with a topology optimization method for linearly elastic structures using an
implicit moving boundary [22], or Allaire et al. with a structural optimization
method based on a combination of shape derivative and the level set method
for front propagation in [4].

In this article, we aim to construct a numerical scheme for the problem of
shape optimization in linear elasticity structure. We discuss the situation here
to illustrate our ideas: Let Ω ∈ Rd(d = 2 or 3) be a bounded open set occupied
by a linear isotropic elastic material governed by the elastic equations (the
static equilibrium equations (1) which will be considered in detail in the next
section): 

−div
(
Ae(u)

)
= f in Ω,

u = 0 on ΓD,(
Ae(u)

)
n = g on ΓN ,(

Ae(u)
)
n = 0 on Γ.

The problem is to minimize an objective function denoted by J(Ω) which de-
pends on the domain Ω via the solution uΩ of elastic system where the variable
shape Ω belongs to a set of admissible shapes Uad.
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Formally speaking, our model of shape optimization is:

inf
Ω∈Uad

J(Ω).

From the numerical point of view, shapes are represented via a computational
mesh, on which the elastic equations are solved. In our approach, the defor-
mation of shape Ω is achieved by moving the vertices of the mesh according to
the descent direction.

The direction is computed using the shape derivative, by means of an adjoint
problem. However, unlike the approach in [4] using the so-called ”ersatz mate-
rial” which amounts to fill the holes by a weak phase, we only need to impose
the state and adjoint problems on the computational shape. In the setting of
elastic equations, we optimize shapes with the objective function of compliance
under the volume constraints. It is achieved thanks to the Lagrangian - like
algorithm based on the first order derivative of shape which will be discussed
in details in section 4.

This is a continuation of our previous work in fluid mechanics shape opti-
mization [21, 16]. We also refer to [11] for more exhaustive study on this
topic. Naturally, in the context of many other complex physics problems such
as thermoelasticity, heat conduction,... this method also proves efficient to a
large extent. For this reason, we have made available our source code at:

Any suggestions or contributions are welcome.

This paper is organized into five sections. Section 2 provides a brief descrip-
tion of the optimization problem for linear elasticity problem. Section 3 re-
views some classical theories of shape sensitivity analysis based on Hadamard’s
boundary variation method. Section 4 is the central section. It presents the
computation of the objective function’s derivative, as well as the descent di-
rection; the details of our algorithm is outlined in Section 4.4. The numerical
test cases are presented in Section 5. Section 6 gives some perspectives and
comments about the effectiveness and limitations of the scheme.

2 Setting of the problem

Consider a bounded domain Ω ∈ Rd(d = 2 or 3) occupied by a linear
isotropic elastic material with Hooke’s law A. The boundary of Ω is made of
three disjoint parts:

∂Ω = ΓN ∪ ΓD ∪ Γ,

where ΓN is the Neumann boundary, ΓD is the Dirichlet boundary and Γ the
free moving boundary. We shall see that only the free moving boundary Γ is
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subject to optimization.
If Ω is held stationary on ΓD, let f be the vector-valued function of the

volume forces defined over every points in Ω and g be the surface loads. The
displacement field u in Ω is the solution to the linearized elasticity system:

−div
(
Ae(u)

)
= f in Ω,

u = 0 on ΓD,(
Ae(u)

)
n = g on ΓN ,(

Ae(u)
)
n = 0 on Γ,

(1)

which is the static equilibrium equations for u. A and e are defined by:

Aψ = 2µψ + λ(Trψ) Id,

e(u) =
1

2
(∇uT +∇u),

where µ and λ are the Láme module of the material, which are calculated from
the Young modulus E and the Poisson’s ratio ν by these formulas:

µ =
E

2(1 + ν)
,

λ =
Eν

(1 + ν)(1− 2ν)
.

Physically speaking A is the stress (the internal forces that neighboring par-
ticles of a continuous material exert on each other) and e is the strain in the
material (the deformation). While Ω changes over the optimization process,

ΓN

g

Ω
f

ΓD

Γ

Γ Γ

Figure 1: Setting of the problem of optimization in elastic structures

it is necessary to know f and g for all possible configurations. The set of all
admissible shapes is defined as:

Uad = {Ω bounded and Lipschitz, ΓN ∪ ΓD ⊂ ∂Ω}.
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As stated, we aim to minimize an objective function which depends on the
domain Ω via the solution uΩ of elastic system where the variable shape Ω
belongs to a set of admissible shapes Uad.

The first choice that comes to mind is the classic compliance which shall be
our main objective function of interest:

J1(Ω) =

∫
Ω
f · udx+

∫
ΓN

g · uds =

∫
Ω
Ae(u) : e(u)dx. (2)

Another choice is the least - square error:

J2(Ω) =

∫
Ω
|u− u0|2dx. (3)

3 Shape representation and derivatives

One particularly popular method for describing the variations of a shape is
Hadamard’s boundary variation method.

3.1 Shape sensitivity analysis by Hadamard method

Hadamard’s boundary variation’s core idea was proposed in the seminal
paper [13] (see also [20]) and later meticulously employed in [18]. Here, follow-
ing the approach of Murat [18] and Simon [19], we consider the variation of a
given smooth reference shape Ω according to the displacement θ:

(I + θ)(Ω)

with θ ∈ W 1,∞(Rd,Rd) (see figure 2). It is well known that, for sufficiently
small θ, (I + θ)(Ω) is a diffeomorphism in Rd.

Before going into more details of the Hadamard’s method, it is important that
we define the set of all admissible variations in our shape optimization scheme:

Θad = {θ ∈W 1,∞(Rd,Rd), θ = 0 on ΓN ∪ ΓD}.

In the context of Hadamard’s method, the variations (I + θ)(Ω) of Ω only
depend on the values taken by θ on ∂Ω, and we have the following consequence
of Picard’s fixed point theorem (see lemma 6.13 in [2] for a proof):

Lemma 1. For every deformation field θ ∈W 1,∞(Rd,Rd) such that ‖θ‖W 1,∞(Rd,Rd) <

1, the application (I + θ) : Rd → Rd is a Lipschitz homeomorphism with Lisp-
chitz inverse.
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Figure 2: Variation I + θ of a reference shape Ω.

Let Ω ⊂ Rd be a fixed domain, for which Lispchitz regularity holds. For any
θ ∈W 1,∞(Rd,Rd) satisfying ‖θ‖W 1,∞(Rd,Rd) < 1, we denote by Ωθ := (I+θ)(Ω)
the deformed shape with respect to θ.

Note that W 1,∞(Rd,Rd) ⊂ L∞(Rd)d is the Banach space of bounded functions
θ : Rd → Rd, equipped with the natural norm:

∀θ ∈W 1,∞(Rd,Rd), ‖θ‖W 1,∞(Rd,Rd) := ‖θ‖L∞(Rd)d + ‖∇θ‖L∞(Rd)d×d .

Hence, variations of a given shape Ω are parametrized by an open subset of
a Banach space. This allows us to rewrite operations performed on Ω in the
form using the underlying deformation field θ and enabled the introduction of
shape differentiability.

3.2 Shape differentiability

In order to apply a gradient method to the minimization problem in Section
2, we recall classical definition of shape derivative and results about the differ-
entiation with respect to the domain of functionals of type: Ω 7→ J(Ω) ∈ R.

Definition 1. Let J(Ω) be a functional of the domain. J is shape differentiable
at Ω if the underlying application:

W 1,∞(Rd,Rd) −→ R
θ 7−→ J(Ωθ)

is Fréchet differentiable at θ = 0. The associated Fréchet differential, denoted
J ′(Ω), is called the shape derivative of J at Ω. We have following expansion
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in the vicinity of 0 ∈W 1,∞(Rd,Rd):

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), with lim
θ→0

|o(θ)|
‖θ‖

= 0. (4)

Remark 1.
1. J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).
2. In the case of a functional which also depends on other variables than Ω,

the partial Fréchet differential with respect to the domain is denoted as
∂
∂Ω .

A classical result states that the directional derivative J ′(Ω)(θ) depends only
on the normal trace θ·n (n is the normal unit vector field to Ω) on the boundary
∂Ω, see [4].

Lemma 2. Let Ω be a smooth bounded open set and J(Ω) a differentiable
function at Ω. If θ1, θ2 ∈W 1,∞(Rd,Rd) satisfy θ2−θ1 ∈ C(Rd,Rd) and θ1 ·n =
θ2 · n, then we have:

J ′(Ω)(θ1) = J ′(Ω)(θ2).

We also recall here two results on shape derivative that will be used in com-
puting the shape derivatives in the sequence. (see [14] or [4] for the proofs).

Lemma 3. Let Ω be a bounded Lispchitz domain and let f(x) ∈ W 1,1(Rd). If
J(Ω) =

∫
Ω f(x)dx is a differentiable function at Ω then we have

J ′(Ω)(θ) =

∫
Ω

div(θf)dx =

∫
∂Ω
fθ · nds

for any θ ∈W 1,∞(Rd,Rd).

Lemma 4. Let Ω be a bounded Lispchitz domain in class C2 and g(x) ∈
W 2,1(Rd), κ be the curvature of shape defined as κ = div n. If J(Ω) =∫
∂Ω g(x)ds is a differentiable function at Ω, and

J ′(Ω)(θ) =

∫
∂Ω

(
∂g

∂n
+ κg

)
θ · nds

for any θ ∈ W 1,∞(Rd,Rd). Furthermore, this result still holds true if one
replaces ∂Ω by Γ, a smooth open subset of ∂Ω, and assumes that g = 0 on the
surface boundary of Γ.

Remark 2. In particular, Lemma 3 is useful in order to compute the shape
derivative of a volume constraint V (Ω) = C. Indeed, we have:

V (Ω) =

∫
Ω
dx and V ′(Ω)(θ) =

∫
∂Ω
θ · nds. (5)
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Similarly, Lemma 4 is useful in order to compute the shape derivative of a
perimeter constraint P (Ω) = C since we have:

P (Ω) =

∫
∂Ω
ds and P ′(Ω)(θ) =

∫
∂Ω
κθ · nds. (6)

4 The shape optimization algorithm

4.1 Computation of the derivatives

It is by no mean an easy task to compute the derivatives of the objective
functions mentioned in section 2, especially the compliance. To obtain the
derivatives of such functions, we use the Céa’s fast derivation method, intro-
duced in [9]. Assume that all the admissible shapes, deformation fields and
displacement functions u are smooth enough, and let j, l : Rd×Rd → R be two
smooth functions. Consider a general objective function:

J(Ω) =

∫
Ω
j(u)dx+

∫
Γ∪ΓN

l(u)ds. (7)

For the compliance objective function, j(u) = f · u and l(u) = g · u.

Theorem 1. J(Ω) of the form (7) is shape differentiable at any Ω ∈ Uad and
its shape derivative reads:

J ′(Ω)(θ) =

∫
Γ∪ΓN

θ · n
(
j(u) +Ae(u) : e(p)− p · f + κl(u) +

∂l(u)

∂n

)
ds

−
∫

ΓN

θ · n
(
κg · p+

∂(g · p)
∂n

)
ds+

∫
ΓD

θ · n
(
j(u) +Ae(u) : e(p)

)
ds,

(8)

where p ∈ (H1
ΓD

(Ω))d is the adjoint state, defined as the unique solution to the
system:


−div

(
Ae(p)

)
= −j′(u) in Ω,

p = 0 on ΓD,(
Ae(p)

)
n = −l′(u) on ΓN ∪ Γ.

(9)

Proof: We consider a general objective function:

J(Ω) =

∫
Ω
j
(
uΩ(x)

)
dx+

∫
Γ∪ΓN

l
(
uΩ(x)

)
ds.



Shape optimization for linear elastic structures using sensitivity,... 9

The Lagrange function can be constructed as:

L(Ω, u, p) =

∫
Ω
j (u) dx+

∫
Γ∪ΓN

l (u) ds+

∫
Ω

(
Ae(u) : e(p)− p · f

)
dx

−
∫

ΓN

p · gds−
∫

ΓD

(
p ·Ae(u)n+ u ·Ae(p)n

)
ds.

The partial derivatives of L with respect to the each variable read:〈
∂L
∂p

(Ω, u, p), ū

〉
=

∫
Ω

(
Ae(u) : e(ū)− ū · f

)
dx−

∫
ΓN

ū · gds

−
∫

ΓD

(
ū ·Ae(u)n+ u ·Ae(ū)n

)
ds

= −
∫

Ω
ū ·
(

div
(
Ae(u)

)
+ f

)
dx+

∫
ΓN

ū ·
(
Ae(u)n− g

)
ds

+

∫
Γ
ū ·Ae(u)nds−

∫
ΓD

u ·Ae(ū)nds.〈
∂L
∂u

(Ω, u, p), p̄

〉
=

∫
Ω
j′(u) · p̄dx+

∫
Γ∪ΓN

l′(u) · p̄ds+

∫
Ω
Ae(p̄) : e(p)dx

−
∫

ΓD

(
p ·Ae(p̄)n+ p̄ ·Ae(p)n

)
ds

=

∫
Ω

(
j′(u)− div

(
Ae(p)

))
· p̄dx+

∫
ΓN∪Γ

(
Ae(u)n+ l′(u)

)
· p̄ds

−
∫

ΓD

(
p ·Ae(p̄)n

)
ds.

It has been observed that the equilibrium of ∂L
∂p (Ω, u, p) yields the vari-

ational formulation associated to the state system. There exists an unique
solution uΩ of the weak form of the state system and it can be easily verified
that:

J(Ω) = L(Ω, uΩ, p), ∀ p ∈ H1
ΓD

(Rd)d.

By taking the partial derivative of two parts with respect to domain Ω, we
have:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, p)(θ) +
∂L
∂u

(Ω, uΩ, p)u
′
Ω(θ). (10)

Hence, if pΩ are solutions of the system of ∂L
∂u (Ω, uΩ, p) = 0 which is also called

adjoint system written as follows:
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−div

(
Ae(p)

)
= −j′(u) in Ω,

p = 0 on ΓD,(
Ae(p)

)
n = −l′(u) on ΓN ∪ Γ,

(11)

then the partial differential of objective function with respect to domain Ω can
be formulated in a rather simple way:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ)(θ). (12)

Applying Lemma 3, Lemma 4, we have the shape derivative of the objective
function in this case:

J ′(Ω)(θ) =

∫
∂Ω
θ · n

(
j(u) +Ae(u) : e(p)− p · f

)
ds+

∫
Γ∪ΓN

θ · n
(
κl(u) +

∂l(u)

∂n

)
ds

−
∫

ΓN

θ · n
(
κg · p+

∂(g · p)
∂n

)
ds−

∫
ΓD

θ · n
(
κh+

∂h

∂n

)
ds. (13)

with h = p ·Ae(u)n+ u ·Ae(p)n. Noting that u = p = 0 on ΓD, we have:

J ′(Ω)(θ) =

∫
Γ∪ΓN

θ · n
(
j(u) +Ae(u) : e(p)− p · f + κl(u) +

∂l(u)

∂n

)
ds

−
∫

ΓN

θ · n
(
κg · p+

∂(g · p)
∂n

)
ds+

∫
ΓD

θ · n
(
j(u) +Ae(u) : e(p)

)
ds.

(14)

The proof of Theorem 1 has been accomplished.

If the objective function is the compliance, i.e. j(u) = f · u, l(u) = g · u on ΓN
and l(u) = 0 on Γ, it is easy to see that p = −u and the problem is self-adjoint.
In this case, the shape derivative of the compliance objective function reads:

J ′(Ω)(θ) =

∫
ΓN

θ · n

(
2

(
u · f + κg · u+

∂(g · u)

∂n

)
−Ae(u) : e(u)

)
ds

+

∫
Γ
θ · n

(
2u · f −Ae(u) : e(u)

)
ds−

∫
ΓD

θ · nAe(u) : e(u)ds. (15)

4.2 The Lagrangian - like algorithm

In industrial context, a lot of demanding constraints may arise, such as
volume, perimeter, curvature of shapes,... so that while the compliance is op-
timized, the shape retains practicality and doesn’t impose a lot of difficulty in
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manufacturing. However, within the scope of this paper, we shall only limit
ourselves to the volume constraints.

The optimization problem is brought back to that of the constraints - free
minimization of a weighted sum of J(Ω) and V (Ω), the latter being penalized
with a fixed positive Lagrange multiplier l:

inf
Ω∈Uad

L(Ω), L(Ω) =
(
J(Ω) + lV (Ω)

)
. (16)

Also, it is known that for the optimization problem posed as (16), there exists
at least one optimal solution (see [4]).

Algorithm 1: Lagrangian - like algorithm

n = 0, start with an initial guess Ω0 and multiplier l.

for n = 1, 2, . . . until convergence do

1. Infer a descent direction θn for L(Ω).
2. Choose a descent step τn > 0 small enough so that
L((Id+ τnθn)Ωn) < L(Ωn).

3. Set Ωn+1 = Ωn
τnθn .

end

4.3 Computation the descent direction

Given a shape Ω ∈ Uad, the form

L′(Ω)(θ) =

∫
∂Ω
φΩθṅds

of the shape derivative of the Lagrange - like function is calculated in accor-
dance to 3.2, Section 4.1.

For any scalar field φΩ, this suggests an immediate choice for a descent direction
θ(x) ∈ Θad:

∀x ∈ ∂Ω, θ(x) = −φΩ(x)n(x). (17)

Using the finite element method, we can accurately obtain the solution to the
static equilibrium system on the computational mesh TΩ of Ω. Obviously, φΩ

is dependent on this solution. However, θ(x) proved quite impractical as a
descent direction for two reasons as stated as below.

• We need to search for a displacement field θ defined in a neighborhood
of ∂Ω rather than just on ∂Ω like formula (17).
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• The numerical stability of the scheme may not be guaranteed or even
completely compromised as the scalar field φΩ depends on the solution
to the static equilibrium equations, more specifically the derivatives of
such solution and the solution to the adjoint system, which may not be
regular.

Adopting a different scalar product instead of canonical one of L2(Γ) in iden-
tifying the gradient of L is an efficient way to address both problems at the
same time. We shall see if we can obtain θ in a Hilbert space V of more regular
vector fields, defined in Ω, such that:

(θ, η)V = L′(Ω)(η) =

∫
∂Ω
φΩηṅds ∀η ∈ V. (18)

The first option is to use the Laplace-Beltrami operator, the role of which is
to ensure the considered vector fields sustain regularity, on Γ. Explicitly, let
α > 0 be a small ”extension - regularization” parameter, V is equipped with
the inner product:

(θ, η)V = α

∫
Ω
∇θ : ∇ηdx+ (1− α)

∫
Γ
∇Γθ : ∇Γηds (19)

where∇Γf := ∇f−(∇f ·n)n is the tangential gradient of a (smooth) function f .

Another idea, presented in [8, 12] is to choose V =
{
v ∈ H1(Ω)d, v

∣∣
ΓN∪ΓD

= 0
}

.

For this θ is the solution of elliptic system:
−α∇θ + θ = 0 in Ω,

θ = 0 on ΓN ∪ ΓD,

α ∂θ∂n = φΩn on Γ.

(20)

This implies that the scalar product in (18) is replaced by:

(θ, η)V = α

∫
Ω
∇θ : ∇ηdx+

∫
Ω
θ · ηdx. (21)

Using the asymptotic expansion (4) we can show that θ is still a descent di-
rection for L (for t small enough: L(Ωθ) = L(Ω) − t

∫
Γ φ

2
+o(t)). However, θ

innately enjoys more regularity than those owing to the classical regularity
theory for elliptic equations, and is inherently defined over the whole domain
Ω.
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4.4 Description of proposed optimization algorithm

We are now in position to outline the proposed general strategy for handling
mesh evolution in the context of shape optimization.

Algorithm 2: Shape optimization algorithm

start with an initial guess Ω0, multiplier l of Lagrangian - like L and
triangulation mesh T 0.

for n = 1, 2, . . . until convergence do

1. Compute displacement un of the elasticity system (1) on mesh Tn.
2. Calculate shape gradient φn of L(Ωn) by using Theorem (1) and

Lemma (3), (4).
3. Infer a descent direction θn for L(Ωn) by solving equation (21), (19) on

the mesh Tn.
4. Choose a descent step τn > 0 small enough so that
L((Id+ τnθn)Ωn) < L(Ωn).

5. Move the vertices of Tn according to θn and τn.
6. Set Ωn+1 = Ωn

τnθn and evaluate J(Ωn+1).
if resulting mesh is valid and J(Ωn+1) < J(Ωn) then

Ωn+1 is retained as the new shape
else

Ωn+1 = Ωn.
Go back to Step 4, decreasing the chosen value for the time

step.
end

end

5 Numerical examples

In this section, we present our numerical results to the elastic shape op-
timization model that we have studied. For all tests, the coefficients for the
elastic material are E = 1 (the Young modulus) and ν = 0.3 (the Poisson
ratio). Also, we assume that no body forces are applied (f = 0). Under such
assumption, the shape derivative of (16) reads simply as:

L′(Ω) =

∫
Γ
(l −Ae(u) : e(u))θ · nds.

As for regularization of the shape boundary, the choice for the inner productthe
inner product is (19) with α specified for each case.
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5.1 A cantilever

The first test case we consider is a cantilever clamped near its top and
bottom left corner. Surface load g = (0,−1) are applied on ΓN which accounts
for a small area located at the center of its right-hand side.

ΓN

Γ

Γ

Γ

ΓD

Figure 3: Model of the cantilever test

The Lagrange multiplier is set to l = 12 and the extension - regularization
parameter is set to α = 0.95.

Figure 4: (From top to bottom) The 1st, 100th, 250th and final iterations of the
cantilever test case

The algorithm convergences to a local minimum which strongly depends on the
initial guess. By the time of convergence, the shape has been able to achieve
regularity as the sharp corners along the edges are no longer present. This
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Figure 5: Convergence history of the objective function and the volume of the
cantilever test case

result seems to be in congruence with the same test case in [4, 10].

5.2 A bridge

The second test case deals with a bridge, whose rigidity is also maximal,
just like the cantilever case. The bridge is clamped near its bottom - left and
bottom - right corner. Surface loads g = (0,−1) are applied to the bottom
side.

ΓNΓD

Γ

Γ

The Lagrange multiplier is set to l = 3 and the extension - regularization
parameter is set to α = 0.9.

The algorithm seems to converge much faster this time than the first test
case as the optimal shape is obtained only after around 300 iterations. The
shape has also been able to achieve regularity as we want it to. This result is
in accordance to the one in [10].
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Figure 6: (From top to bottom) The 1st, 40th, 100th and final iterations of the
bridge test case

Figure 7: Convergence history of the objective function and the volume of the
bridge test case

6 Conclusion and perspectives

We have proposed a numerical scheme for shape optimization in elastic-
ity structure. This algorithm can be extended to deal with other geomet-
ric situations, general objective functions and mechanical models, including
nonlinear elasticity and design-dependent loads. The efficiency and reliability
of present work is assessed by numerical examples in 2D for linear elasticity
problems with the minimizing of compliance. The program has been imple-
mented in the FreeFem++ environment. The source code are available online
at: https://github.com/lvchien/shapeoptimization.

The cost of our numerical algorithm is moderate, however, the resulting optimal
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shape is strongly dependent on the initial guess.

Regarding the perspectives, we would like to mention a few options:

• Extend the test cases in 3D with compliance objective function.

• Investigate this scheme with different objective functions (least-square)
as suggested in [4, 10].

• Develop an application of the present scheme for shape-topology opti-
mization in other complex physical problems: thermal structure, natural
convection, ...
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