

Symposium of IABEM 2024

A BOUNDARY ELEMENT METHOD FOR THE MAGNETIC FIELD INTEGRAL EQUATION IN ELECTROMAGNETICS*

VAN CHIEN LE

December 6, 2024

*A joint work with Prof. Kristof Cools

Electromagnetic scattering by perfect conductors

The scattered electric field e satisfies

$$\begin{aligned} & \operatorname{curl}\operatorname{curl}\boldsymbol{e} - \kappa^2\boldsymbol{e} = \mathbf{0} & & \operatorname{in} & \Omega^c, \\ & \boldsymbol{e} \times \mathbf{n} = -\boldsymbol{e}^{in} \times \mathbf{n} & & \operatorname{on} & \Gamma, \end{aligned}$$

and the Silver-Müller radiation condition

$$\lim_{r \to \infty} \int_{\partial B} \; \left| \operatorname{curl} \boldsymbol{e} \times \mathbf{n} + i \kappa (\mathbf{n} \times \boldsymbol{e}) \times \mathbf{n} \right|^2 \, \mathrm{d}s = 0.$$

Relich's lemma: The exterior problem has a unique solution for all $\kappa > 0$.

Electric vs. magnetic field integral equations

EFIE (first-kind):

- √ satisfies the strong ellipticity
- × produces ill-conditioned matrices
- × suffers from resonant instability.

MFIE (second-kind):

- ✓ produces well-conditioned matrices
- × does not satisfy the strong ellipticity
- × suffers from resonant instability.

Why MFIE? Both EFIE and MFIE are crucial in

- combined field integral equations
- Maxwell transmission problems.

Outline

• Function spaces

Potential and integral operators

- 3 The magnetic field integral equation
- Galerkin discretization

Function spaces

The Dirichlet and Neumann trace operators

$$\gamma_D \boldsymbol{u} := \boldsymbol{u} \times \boldsymbol{\mathsf{n}},$$

$$\gamma_N := \gamma_D \circ \operatorname{curl}.$$

The trace space

$$\mathbf{H}_{\times}^{s}(\Gamma) := \gamma_{D}(\mathbf{H}^{s+1/2}(\Omega)), \qquad s \in (0,1),$$

and its dual $\mathbf{H}_{\times}^{-s}(\Gamma)$, whose elements are identified via

$$\langle \boldsymbol{u}, \boldsymbol{v}
angle_{ imes, \Gamma} := \int_{\Gamma} (\boldsymbol{u} imes \mathbf{n}) \cdot \boldsymbol{v} \, \mathrm{d}s.$$

The natural trace space

$$\mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma) := \left\{ \boldsymbol{u} \in \mathbf{H}_{\times}^{-1/2}(\Gamma) : \mathsf{div}_{\Gamma}\boldsymbol{u} \in \mathrm{H}^{-1/2}(\Gamma) \right\}.$$

Potential operators

Let $\sigma = \kappa$ or $\sigma = i\kappa'$, with $\kappa, \kappa' > 0$. The fundamental solution associated with $\Delta + \sigma^2$

$$G_{\sigma}(oldsymbol{x},oldsymbol{y}) := rac{\exp(i\sigma\,|oldsymbol{x}-oldsymbol{y}|)}{4\pi\,|oldsymbol{x}-oldsymbol{y}|}, \qquad \qquad oldsymbol{x}
eq oldsymbol{y}.$$

The scalar and vectorial single layer potentials

$$\Psi_V^{\sigma}(\varphi)(\boldsymbol{x}) := \int_{\Gamma} \varphi(\boldsymbol{y}) G_{\sigma}(\boldsymbol{x}, \boldsymbol{y}) \, \mathrm{d}s(\boldsymbol{y}), \qquad \Psi_{\boldsymbol{A}}^{\sigma}(\boldsymbol{u})(\boldsymbol{x}) := \int_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) G_{\sigma}(\boldsymbol{x}, \boldsymbol{y}) \, \mathrm{d}s(\boldsymbol{y}).$$

The Maxwell single and double layer potentials

$$m{\Psi}^{\sigma}_{SL}(m{u}) := m{\Psi}^{\sigma}_{m{A}}(m{u}) + rac{1}{\sigma^2} \mathbf{grad} \, \Psi^{\sigma}_V(\mathsf{div}_{\Gamma}m{u}),$$

$$oldsymbol{\Psi}^{\sigma}_{DL}(oldsymbol{u}) := \operatorname{curl} oldsymbol{\Psi}^{\sigma}_{oldsymbol{A}}(oldsymbol{u}). \ \ \ \widehat{\underline{\underline{igstar}}}$$

Potential operators (cont.)

For any $m{u} \in \mathbf{H}_{ imes}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma)$, the potentials $m{\Psi}_{SL}^{\sigma}(m{u})$ and $m{\Psi}_{DL}^{\sigma}(m{u})$ are solutions to

$$\begin{aligned} & \operatorname{curl}\operatorname{curl}\boldsymbol{e} - \sigma^2\boldsymbol{e} = \mathbf{0} & \text{in} \quad \Omega \cup \Omega^c, \\ & \lim_{r \to \infty} \int_{\partial B_r} |\operatorname{curl}\boldsymbol{e} \times \mathbf{n} + i\sigma(\mathbf{n} \times \boldsymbol{e}) \times \mathbf{n}|^2 \, \, \mathrm{d}s = 0. \end{aligned}$$

Every solution $e \in \mathbf{H}_{\mathsf{loc}}(\mathbf{curl}^2, \Omega \cup \Omega^c)$ satisfies the Stratton-Chu representation formula

$$oldsymbol{e}(oldsymbol{x}) = -oldsymbol{\Psi}_{DL}^{\sigma}([\gamma_D]_{\Gamma}\,oldsymbol{e})(oldsymbol{x}) - oldsymbol{\Psi}_{SL}^{\sigma}([\gamma_N]_{\Gamma}\,oldsymbol{e})(oldsymbol{x}), \qquad \quad oldsymbol{x} \in \Omega \cup \Omega^c,$$

where
$$[\gamma]_{\Gamma} := \gamma^+ - \gamma^-$$
.

December 6, 2024

Definitions

Let us define

$$S_{\sigma} := \{\gamma_{D}\}_{\Gamma} \circ \mathbf{\Psi}_{SL}^{\sigma} \qquad : \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma) \to \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma),$$

$$C_{\sigma} := \{\gamma_{N}\}_{\Gamma} \circ \mathbf{\Psi}_{SL}^{\sigma} \qquad : \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma) \to \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma).$$

Taking into account the jump relation

$$[\gamma_D]_{\Gamma} \circ \mathbf{\Psi}_{SL}^{\sigma} = 0,$$
 $[\gamma_N]_{\Gamma} \circ \mathbf{\Psi}_{SL}^{\sigma} = -Id,$

we end up with

$$\gamma_D^{\pm} \circ \Psi_{SL}^{\sigma} = \frac{1}{\sigma^2} \gamma_N^{\pm} \circ \Psi_{DL}^{\sigma} = S_{\sigma},$$

$$\gamma_N^{\pm} \circ \Psi_{SL}^{\sigma} = \gamma_D^{\pm} \circ \Psi_{DL}^{\sigma} = \mp \frac{1}{2} Id + C_{\sigma}.$$

Properties of $S_{i\kappa'}$

Symmetry:

$$\langle \boldsymbol{v}, S_{i\kappa'} \boldsymbol{u} \rangle_{\times,\Gamma} = \langle \boldsymbol{u}, S_{i\kappa'} \boldsymbol{v} \rangle_{\times,\Gamma}, \qquad \forall \boldsymbol{u}, \boldsymbol{v} \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma).$$

Ellipticity:

$$\langle \boldsymbol{u}, S_{i\kappa'} \overline{\boldsymbol{u}} \rangle_{\times,\Gamma} \geq C \| \boldsymbol{u} \|_{\mathbf{H}^{-1/2}(\operatorname{\mathsf{div}}_{\Gamma},\Gamma)}^2, \qquad \quad \forall \boldsymbol{u} \in \mathbf{H}^{-1/2}_{\times}(\operatorname{\mathsf{div}}_{\Gamma},\Gamma).$$

Consequently, $\mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma)$ is a Hilbert space equipped with the inner product

$$(\boldsymbol{u}, \boldsymbol{v})_{\mathbf{X}_{\kappa'}} := \langle \boldsymbol{u}, S_{i\kappa'} \overline{\boldsymbol{v}} \rangle_{\times,\Gamma}, \qquad \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma).$$

Its induced norm is denoted by $\left\|\cdot\right\|_{\mathbf{X}_{\kappa'}}.$

Properties of $C_{i\kappa'}$

Compactness: the operator $C_{\kappa} - C_{i\kappa'}$ is compact.

Symmetry:

$$\langle \boldsymbol{v}, C_{i\kappa'} \boldsymbol{u} \rangle_{\times,\Gamma} = \langle \boldsymbol{u}, C_{i\kappa'} \boldsymbol{v} \rangle_{\times,\Gamma}, \qquad \forall \boldsymbol{u}, \boldsymbol{v} \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma).$$

Contraction:

$$\|C_{i\kappa'}\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}} \le \beta \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}, \qquad \forall \boldsymbol{u} \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma),$$

where

$$\beta(\kappa',\Gamma) := \sqrt{\frac{1}{4} - \frac{{\kappa'}^2}{C_S^2}} < \frac{1}{2}, \qquad C_S(\kappa',\Gamma) := \sup_{\boldsymbol{u} \in \mathbf{X}_{\kappa'}} \frac{\left\| S_{i\kappa'}^{-1} \boldsymbol{u} \right\|_{\mathbf{X}_{\kappa'}}}{\left\| \boldsymbol{u} \right\|_{\mathbf{X}_{\kappa'}}}.$$

Sketch of proof: to use the Calderón projection formulas.

Properties of $\frac{1}{2}Id \pm C_{i\kappa'}$

Contraction:

$$\left(\frac{1}{2} - \beta\right) \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}} \leq \left\| \left(\frac{1}{2} Id \pm C_{i\kappa'}\right) \boldsymbol{u} \right\|_{\mathbf{X}_{\kappa'}} \leq \left(\frac{1}{2} + \beta\right) \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}.$$

$S_{i\kappa'}$ -coercivity:

$$\left\langle \left(\frac{1}{2}Id \pm C_{i\kappa'}\right) \boldsymbol{u}, S_{i\kappa'} \overline{\boldsymbol{u}} \right\rangle_{\times \Gamma} \geq \left(\frac{1}{4} - \beta^2\right) \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}^2, \qquad \forall \boldsymbol{u} \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma).$$

Proof:

$$\left(\left(\frac{1}{2}Id \pm C_{i\kappa'}\right)\boldsymbol{u}, \boldsymbol{u}\right)_{\mathbf{X}_{\kappa'}} \geq \frac{1}{2} \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}^{2} - \|C_{i\kappa'}\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}} \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}
\geq \frac{1}{2} \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}^{2} - \frac{1}{4} \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}^{2} - \|C_{i\kappa'}\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}^{2}.$$

The magnetic field integral equation (MFIE)

The Stratton-Chu representation formula

$$oldsymbol{e}(oldsymbol{x}) = -oldsymbol{\Psi}^{\kappa}_{DL}([\gamma_D]_{\Gamma}\,oldsymbol{e})(oldsymbol{x}) - oldsymbol{\Psi}^{\kappa}_{SL}([\gamma_N]_{\Gamma}\,oldsymbol{e})(oldsymbol{x}), \qquad \quad oldsymbol{x} \in \Omega \cup \Omega^c.$$

Taking the exterior Neumann trace γ_N^+ gives the MFIE

$$\left(\frac{1}{2}Id + C_{\kappa}\right)(\boldsymbol{u}) = \boldsymbol{f},$$

where ${m u}:=\gamma_N^+{m e}\in {f H}_{ imes}^{-1/2}({\sf div}_\Gamma,\Gamma)$ is the unknown, and

$$\mathbf{f} := \kappa^2 S_{\kappa}(\gamma_D^+ \mathbf{e}^{in}).$$

Variational formulation

Flawed idea: using the $X_{\kappa'}$ -inner product

$$\left\langle \left(rac{1}{2}Id + C_{\kappa}
ight)oldsymbol{u}, S_{i\kappa'}oldsymbol{\overline{v}}
ight
angle_{ imes,\Gamma} = \left\langle oldsymbol{f}, S_{i\kappa'}oldsymbol{\overline{v}}
ight
angle_{ imes,\Gamma}, \qquad \quad orall oldsymbol{v} \in \mathbf{H}_{ imes}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma).$$

- \checkmark Advantage: forming a compact perturbation of a $\mathbf{X}_{\kappa'}$ -elliptic operator.
- × Drawback: involving three boundary integrals, making it undesirable in practice.

Appropriate form: using the duality pairing $\langle \cdot, \cdot \rangle_{\times, \Gamma}$

$$b(\boldsymbol{u},\boldsymbol{v}) := \left\langle \left(\frac{1}{2}Id + C_{\kappa}\right)\boldsymbol{u}, \overline{\boldsymbol{v}}\right\rangle_{\times,\Gamma} = \left\langle \boldsymbol{f}, \overline{\boldsymbol{v}}\right\rangle_{\times,\Gamma}, \qquad \quad \forall \boldsymbol{v} \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma).$$

Unique solvability

Assumption 1: κ^2 is bounded away from the spectrum of the interior Maxwell's problem.

 \Rightarrow the MFIE operator is injective.

For any $\kappa, \kappa' > 0$, the following generalized Gårding inequality holds

$$|b(\boldsymbol{u}, S_{i\kappa'}\boldsymbol{u}) - t(\boldsymbol{u}, S_{i\kappa'}\boldsymbol{u})| \ge \left(\frac{1}{4} - \beta^2\right) \|\boldsymbol{u}\|_{\mathbf{X}_{\kappa'}}^2, \qquad \forall \boldsymbol{u} \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma),$$

where the compact sesquilinear form

$$t(\boldsymbol{u}, \boldsymbol{v}) := \langle (C_{\kappa} - C_{i\kappa'}) \, \boldsymbol{u}, \overline{\boldsymbol{v}} \rangle_{\times, \Gamma}.$$

Theorem (Unique solvability)

Let Assumption 1 be satisfied. Then, there exists a unique $u \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma)$ that solves the variational problem.

Boundary element method

Let us consider the boundary element space

$$\mathbf{U}_h := \left\{ \boldsymbol{u}_h \in \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma}, \Gamma) : \left. \boldsymbol{u}_h \right|_T \in \mathrm{RT}_0(T), \, \forall T \in \mathcal{T}_h \right\}.$$

Flawed idea: find $oldsymbol{u}_h \in \mathbf{U}_h$ such that

$$\left\langle \left(rac{1}{2}Id + C_{\kappa}
ight)oldsymbol{u}_h, \overline{oldsymbol{w}_h}
ight
angle_{ imes,\Gamma} = \left\langle oldsymbol{f}, \overline{oldsymbol{w}_h}
ight
angle_{ imes,\Gamma}, \qquad orall oldsymbol{w}_h \in \mathbf{U}_h \, .$$

There exists $\mathbf{W}_h \subset \mathbf{U}_h$ such that

$$\sup_{\boldsymbol{u}_h \in \mathbf{U}_h} \sup_{\boldsymbol{w}_h \in \mathbf{W}_h} \frac{\left| \langle \boldsymbol{u}_h, \overline{\boldsymbol{w}_h} \rangle_{\times, \Gamma} \right|}{\left\| \boldsymbol{u}_h \right\|_{\mathbf{X}_{\kappa'}} \left\| S_{i\kappa'}^{-1} \boldsymbol{w}_h \right\|_{\mathbf{X}_{-\ell}}} \leq C h^{1/2}.$$

Boundary element method (cont.)

We choose $\mathbf{V}_h \subset \mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma)$ that

$$\inf_{\boldsymbol{u}_{h}\in\mathbf{U}_{h}}\sup_{\boldsymbol{v}_{h}\in\mathbf{V}_{h}}\frac{\left|\left\langle\boldsymbol{u}_{h},\overline{\boldsymbol{v}_{h}}\right\rangle_{\times,\Gamma}\right|}{\left\|\boldsymbol{u}_{h}\right\|_{\mathbf{X}_{\kappa'}}\left\|S_{i\kappa'}^{-1}\boldsymbol{v}_{h}\right\|_{\mathbf{X}_{\kappa'}}}\geq\alpha,$$

and $\dim \mathbf{V}_h = \dim \mathbf{U}_h$.

 \Rightarrow \mathbf{V}_h is the space of Buffa-Christiansen basis functions.

Please note that $\alpha(\kappa', \Gamma) \leq 1$.

Petrov-Galerkin discretization

Find $\boldsymbol{u}_h \in \mathbf{U}_h$ such that 1

$$b(\boldsymbol{u}_h, \boldsymbol{v}_h) = \left\langle \left(\frac{1}{2} Id + C_\kappa \right) \boldsymbol{u}_h, \overline{\boldsymbol{v}_h} \right\rangle_{\times, \Gamma} = \left\langle \boldsymbol{f}, \overline{\boldsymbol{v}_h} \right\rangle_{\times, \Gamma}, \qquad \forall \boldsymbol{v}_h \in \mathbf{V}_h.$$

For any $\kappa' > 0$, it holds

$$I := \inf_{\boldsymbol{u}_h \in \mathbf{U}_h} \sup_{\boldsymbol{v}_h \in \mathbf{V}_h} \frac{\left| \left\langle \left(\frac{1}{2} Id + C_{i\kappa'} \right) \boldsymbol{u}_h, \overline{\boldsymbol{v}_h} \right\rangle_{\times, \Gamma} \right|}{\left\| \boldsymbol{u}_h \right\|_{\mathbf{X}_{\kappa'}} \left\| S_{i\kappa'}^{-1} \boldsymbol{v}_h \right\|_{\mathbf{X}_{\kappa'}}} \ge \frac{\alpha}{2} - \beta.$$

Proof:

$$I \geq \frac{1}{2} \inf_{\boldsymbol{u}_h \in \mathbf{U}_h} \sup_{\boldsymbol{v}_h \in \mathbf{V}_h} \frac{\left| \langle \boldsymbol{u}_h, \overline{\boldsymbol{v}_h} \rangle_{\times, \Gamma} \right|}{\left\| \boldsymbol{u}_h \right\|_{\mathbf{X}_{\kappa'}} \left\| S_{i\kappa'}^{-1} \boldsymbol{v}_h \right\|_{\mathbf{X}_{\kappa'}}} - \sup_{\boldsymbol{u}_h \in \mathbf{U}_h} \sup_{\boldsymbol{v}_h \in \mathbf{V}_h} \frac{\left| \langle C_{i\kappa'} \boldsymbol{u}_h, \overline{\boldsymbol{v}_h} \rangle_{\times, \Gamma} \right|}{\left\| \boldsymbol{u}_h \right\|_{\mathbf{X}_{\kappa'}} \left\| S_{i\kappa'}^{-1} \boldsymbol{v}_h \right\|_{\mathbf{X}_{\kappa'}}}.$$

UNIVERSITY

¹K. Cools et. al., Accurate and conforming mixed discretization of the MFIE, *IEEE Antennas Wirel. Propag. Lett.*, pp. 528-531, 2011.

Unique solvability

Assumption 2: There is a $\kappa'_0 > 0$ such that

$$\alpha(\kappa'_0, \Gamma) > 2\beta(\kappa'_0, \Gamma).$$

If Assumptions 1 and 2 are satisfied, then

$$\inf_{\boldsymbol{u}_h \in \mathbf{U}_h} \sup_{\boldsymbol{v}_h \in \mathbf{V}_h} \frac{|b(\boldsymbol{u}_h, \boldsymbol{v}_h)|}{\|\boldsymbol{u}_h\|_{\mathbf{X}_{\kappa'_0}} \|S_{i\kappa'_0}^{-1} \boldsymbol{v}_h\|_{\mathbf{X}_{\kappa'_0}}} \ge \gamma > 0 \qquad \forall h < h_0.$$

Theorem (Unique solvability)

Let Assumptions 1 and 2 be satisfied. Then, there exists an $h_0 > 0$ such that for all $h < h_0$, the discrete problem has a unique solution $\mathbf{u}_h \in \mathbf{U}_h$ satisfying the quasi-optimal convergence

$$\|\boldsymbol{u} - \boldsymbol{u}_h\|_{\mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma)} \leq C \inf_{\boldsymbol{w}_h \in \mathbf{U}_h} \|\boldsymbol{u} - \boldsymbol{w}_h\|_{\mathbf{H}_{\times}^{-1/2}(\mathsf{div}_{\Gamma},\Gamma)}.$$

Matrix representation

Let $\{m{u}_1, m{u}_2, \dots, m{u}_N\}$ and $\{m{v}_1, m{v}_2, \dots, m{v}_N\}$ be bases of \mathbf{U}_h and \mathbf{V}_h , and

$$[\mathbf{B}]_{mn} := b(\boldsymbol{u}_n, \boldsymbol{v}_m),$$

$$\left[\mathbf{D}
ight]_{mn}:=\left\langle oldsymbol{u}_{n},\overline{oldsymbol{v}_{m}}
ight
angle _{ imes,\Gamma}$$
 .

Let the solution

$$oldsymbol{u}pprox\sum_{m=1}^{N}\widehat{u}_{m}oldsymbol{u}_{m}.$$

The coefficient vector $\widehat{\boldsymbol{u}}_h := (\widehat{u}_1, \widehat{u}_2, \dots, \widehat{u}_N)^\mathsf{T}$ is the solution to

$$\mathbf{B} \, \widehat{\boldsymbol{u}}_h = \boldsymbol{b}.$$

If Assumptions 1 and 2 are satisfied, then

$$\operatorname{cond}(\mathbf{D}^{-1}\mathbf{B}) \le C,$$

$$\forall h < h_0$$
.

Numerical results²

²K. Cools, BEAST.jl: Boundary Element Analysis and Simulation Toolkit, 2020.

Van Chien Le

0.025

Conclusions and future work

For the MFIE, we have shown that

- ✓ the continuous variational problem is uniquely solvable, under the uniqueness
- √ the Petrov-Galerkin discretization is uniquely solvable, under an additional assumption depending only on the geometry
- √ the numerical solutions satisfy the quasi-optimal convergence
- √ the Galerkin matrix system is well-conditioned.

Future work: to apply the proposed discretization scheme to

- combined field integral equations
- single source formulations.

References and acknowledgment

K. Cools, F. P. Andriulli, D. De Zutter, and E. Michielssen Accurate and conforming mixed discretization of the MFIE. *IEEE Antennas Wirel. Propag. Lett.*, pp. 528-531, 2011.

A. Buffa and S. H. Christiansen A dual finite element complex on the barycentric refinement. *Math. Comp.*, vol. 76, no. 260, pp. 1743-1770, 2007.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101001847).

THANKS FOR YOUR ATTENTION!

How to approximately compute α and β ?

$$\inf_{\boldsymbol{u}_{h}\in\mathbf{U}_{h}}\sup_{\boldsymbol{v}_{h}\in\mathbf{V}_{h}}\frac{\left|\left\langle\boldsymbol{u}_{h},\overline{\boldsymbol{v}_{h}}\right\rangle_{\times,\Gamma}\right|}{\left\|\boldsymbol{u}_{h}\right\|_{\mathbf{X}_{\kappa'}}\left\|S_{i\kappa'}^{-1}\boldsymbol{v}_{h}\right\|_{\mathbf{X}_{\kappa'}}}\geq\alpha,\qquad\sup_{\boldsymbol{u}_{h}\in\mathbf{U}_{h}}\sup_{\boldsymbol{v}_{h}\in\mathbf{V}_{h}}\frac{\left|\left\langle C_{i\kappa'}\boldsymbol{u}_{h},\overline{\boldsymbol{v}_{h}}\right\rangle_{\times,\Gamma}\right|}{\left\|\boldsymbol{u}_{h}\right\|_{\mathbf{X}_{\kappa'}}\left\|S_{i\kappa'}^{-1}\boldsymbol{v}_{h}\right\|_{\mathbf{X}_{\kappa'}}}\leq\beta.$$

Let $\widetilde{\mathbf{U}}_h$ be the RT space on the barycentric refinement $\widetilde{\Gamma}_h$ of Γ_h . We find $\widetilde{\boldsymbol{w}}_h \in \widetilde{\mathbf{U}}_h$ such that

$$\left\langle \widetilde{\boldsymbol{w}}_h, S_{i\kappa'} \overline{\widetilde{\boldsymbol{\varphi}}_h} \right\rangle_{\times,\Gamma} = -\left\langle \boldsymbol{v}_h, \overline{\widetilde{\boldsymbol{\varphi}}_h} \right\rangle_{\times,\Gamma}, \qquad \forall \widetilde{\boldsymbol{\varphi}}_h \in \widetilde{\mathbf{U}}_h.$$

Let $\mathbf{S}_{\kappa'}$ and $\widetilde{\mathbf{S}}_{\kappa'}$ be the Galerkin matrices of the $\mathbf{X}_{\kappa'}$ -inner product, \mathbf{G} be the Galerkin matrix of $\langle \cdot, \cdot \rangle_{\times,\Gamma}$ between \mathbf{V}_h and $\widetilde{\mathbf{U}}_h$. Then,

$$\begin{split} & \left\| \boldsymbol{u}_h \right\|_{\mathbf{X}_{\kappa'}} = \sqrt{\widehat{\boldsymbol{u}}_h^\mathsf{T} \, \mathbf{S}_{\kappa'} \, \widehat{\boldsymbol{u}}_h} = \left\| \mathbf{S}_{\kappa'}^{1/2} \, \widehat{\boldsymbol{u}}_h \right\|_{l^2}, \\ & \left\| S_{i\kappa'}^{-1} \boldsymbol{v}_h \right\|_{\mathbf{X}_{\kappa'}} \approx \sqrt{\widehat{\boldsymbol{w}}_h^\mathsf{T} \widetilde{\mathbf{S}}_{\kappa'} \widehat{\boldsymbol{w}}_h} = \left\| \left(\mathbf{G}^\mathsf{T} \, \widetilde{\mathbf{S}}_{\kappa'}^{-1} \, \mathbf{G} \right)^{1/2} \widehat{\boldsymbol{v}}_h \right\|_{l^2} =: \left\| \mathbf{M}^{1/2} \, \widehat{\boldsymbol{v}}_h \right\|_{l^2}. \end{split}$$

How to approximately compute α and β ?

Substituting into the formulations

$$\alpha \leq \inf_{\widehat{\boldsymbol{u}}_h \in \mathbb{C}^N} \sup_{\widehat{\boldsymbol{v}}_h \in \mathbb{C}^N} \frac{\left| \widehat{\boldsymbol{v}}_h^\mathsf{T} \mathbf{D} \widehat{\boldsymbol{u}}_h \right|}{\left\| \mathbf{S}_{\kappa'}^{1/2} \widehat{\boldsymbol{u}}_h \right\|_{l^2} \left\| \mathbf{M}_{\kappa'}^{1/2} \widehat{\boldsymbol{v}}_h \right\|_{l^2}} = \inf_{\widehat{\boldsymbol{\xi}}_h \in \mathbb{C}^N} \sup_{\widehat{\boldsymbol{\psi}}_h \in \mathbb{C}^N} \frac{\left| \widehat{\boldsymbol{\psi}}_h^\mathsf{T} \mathbf{M}_{\kappa'}^{-\mathsf{T}/2} \mathbf{D} \mathbf{S}_{\kappa'}^{-1/2} \widehat{\boldsymbol{\xi}}_h \right|}{\left\| \widehat{\boldsymbol{\xi}}_h \right\|_{l^2} \left\| \widehat{\boldsymbol{\psi}}_h \right\|_{l^2}},$$

$$\beta \geq \sup_{\widehat{\boldsymbol{u}}_h \in \mathbb{C}^N} \sup_{\widehat{\boldsymbol{v}}_h \in \mathbb{C}^N} \frac{\left| \widehat{\boldsymbol{v}}_h^\mathsf{T} \mathbf{C}_{\kappa'} \widehat{\boldsymbol{u}}_h \right|}{\left\| \mathbf{S}_{\kappa'}^{1/2} \widehat{\boldsymbol{u}}_h \right\|_{l^2} \left\| \mathbf{M}_{\kappa'}^{1/2} \widehat{\boldsymbol{v}}_h \right\|_{l^2}} = \sup_{\widehat{\boldsymbol{\xi}}_h \in \mathbb{C}^N} \sup_{\widehat{\boldsymbol{\psi}}_h \in \mathbb{C}^N} \frac{\left| \widehat{\boldsymbol{\psi}}_h^\mathsf{T} \mathbf{M}_{\kappa'}^{-\mathsf{T}/2} \mathbf{C}_{\kappa'} \mathbf{S}_{\kappa'}^{-1/2} \widehat{\boldsymbol{\xi}}_h \right|}{\left\| \widehat{\boldsymbol{\xi}}_h \right\|_{l^2} \left\| \widehat{\boldsymbol{\psi}}_h \right\|_{l^2}}.$$

Thus, α and β can be approximated by

$$\alpha \approx \left| \lambda_{\min} \left(\mathbf{M}_{\kappa'}^{-\mathsf{T}/2} \, \mathbf{D} \, \mathbf{S}_{\kappa'}^{-1/2} \right) \right|, \qquad \qquad \beta \approx \left| \lambda_{\max} \left(\mathbf{M}_{\kappa'}^{-\mathsf{T}/2} \, \mathbf{K}_{\kappa'} \, \mathbf{S}_{\kappa'}^{-1/2} \right) \right|. \quad \widehat{\underline{\mathbf{m}}}_{\text{GHEN}}$$